

開弦の場の理論の数値解について

References: I.K.-T.Takahashi, Theor.Math.Phys.163(2010)710; 717; PTP108(2002)591 I.K., talk@SFT2010, YITP, Kyoto Univ. (+その後の計算)

セミナー@新潟大学理学部

Introduction

- 標準模型、量子重力を含む「究極の理論」の最有力候補:超弦理論
- その定式化の一つの手法:弦の場の理論
- 弦の場の理論:
 - 通常の点粒子の場の理論を弦の場に拡張したもの

損動論を超えるときに「弦の場の理論」は通常の 第一量子化の方法よりも役に立つと期待される。

ここで考える開弦の場の理論

• Witten (1986)

$$S[\Psi] = -rac{1}{g^2} \left(rac{1}{2} \langle \Psi, Q\Psi
angle + rac{1}{3} \langle \Psi, \Psi st \Psi
angle
ight)$$
 $Q = c_0 L_0 + b_0 M + ilde{Q}$
:加藤-小川の弦の第一量子化の
BRST operator (1983)

 $|\Psi
angle=\phi(x)c_1|0
angle+A_{\mu}(x)lpha_{-1}^{\mu}c_1|0
angle+\chi(x)c_0|0
angle+\cdots$

:弦場は、通常の場を無限個含む

開弦の場の理論の非摂動論的真空

タキオン凝縮解(の候補)としては...

- Siegelゲージの数値解 $b_0 \Psi_N = 0$ Sen-Zwiebach (1999), Moeller-Taylor (2000), Gaiotto-Rastelli (2002),...
- 高橋-谷本による解析解(TT解)(2002~)
 "Identity-based"な形の解
- Schnablによる解析解(2005~)
 "Identity-based"ではない形の解

今回の計算...

Siegelゲージの数値解を構成し、ゲージ不変量を評価した。

➡ レベルトランケーションの世界記録を更新! up to level (18,54) :Gaiotto-Rastelli, hep-th/0211012

up to level (20,60) :2009.10 (proceedings of SFT2009@Moscow) up to level (24,72) :2009.12 (talk@APCTP workshop, Korea) up to level (26,78) :2010.10 (talk@SFT2010, YITP, Kyoto)

TT解周りの理論のSiegelゲージの数値解を構成し、ゲージ不変量を評価した。

up to level 6 :Zeze's PhD thesis(2003), Drukker-Okawa(2005)

up to level (16,48) :2009.04 I.K.-T.T. arXiv:0904.1095 up to level (20,60) :2009.10 (proceedings of SFT2009@Moscow) up to level (24,72) :2009.12 (talk@APCTP workshop, Korea) up to level (26,78) :2010.10 (talk@SFT2010, YITP, Kyoto, I=1について) (I=2,3のlevel (26,78)については2010年11月に得られた。)

数値計算の結果(1)

Level	Potential height	Gauge inv. overlap
(0,0)	-0.6846162	0.7165627
(2,6)	-0.9593766	0.8898618
(4,12)	-0.9878218	0.9319524
(6,18)	-0.9951771	0.9510789
(8,24)	-0.9979301	0.9611748
(10,30)	-0.9991825	0.9681148
(12,24)	-0.9998223	0.9725595
(14,42)	-1.0001737	0.9761715
(16,48)	-1.0003755	0.9786768
(18,54)	-1.0004937	0.9809045
(20,60)	-1.0005630	0.9825168
(22,66)	-1.0006023	0.9840334
(24,72)	-1.0006227	0.9851603
(26,78)	-1.0006312	0.9862619

Normalization Potential height:

$$V(\Psi_{
m Sch}) = -rac{2\pi^2 g^2 S[\Psi_{
m Sch}]}{V_{26}} = -1$$

Gauge inv. overlap:

$${\cal O}_V(\Psi_{
m Sch})=1$$

数値計算の結果(2-1)

• Numerical solution to

$$Q'\Phi+\Phi*\Phi=0$$

in Siegel gauge

Level	Potential height	Gauge inv. overlap
(0,0)	2.3105795	-1.0748441
(2,6)	2.5641847	-1.0156983
(4,12)	1.6550774	-0.9539832
(6,18)	1.6727496	-0.9207572
(8,24)	1.4193393	-0.9377548
(10,30)	1.4168893	-0.9110994
(12,24)	1.3035715	-0.9237917
(14,42)	1.2986472	-0.9056729
(16,48)	1.2357748	-0.9229035
(18,54)	1.2310583	-0.9086563
(20,60)	1.1915648	-0.9212376
(22,66)	1.1874828	-0.9103838
(24,72)	1.1605884	-0.9231608
(26,78)	1.1571287	-0.9142181

in the theory around

$$\Psi_{l=1,a=-1/2}$$

数値計算の結果(2-2)

Numerical solution to

 $Q'\Phi + \Phi * \Phi = 0$ in Siegel gauge

Level	Potential height	Gauge inv. overlap
(0,0)	288.8224425	-5.3742203
(2,6)	92.1238442	-3.1048971
(4,12)	48.7033363	-2.6003723
(6,18)	31.6992499	-2.2279366
(8,24)	22.6595219	-2.0575256
(10,30)	17.2812044	-1.8761349
(12,24)	13.8061273	-1.7589056
(14,42)	11.4523287	-1.6466427
(16,48)	9.7610020	-1.5812240
(18,54)	8.5029788	-1.5129234
(20,60)	7.5338958	-1.4632552
(22,66)	6.7726232	-1.4139118
(24,72)	6.1591160	-1.3803795
(26.78)	5.6571904	-1.3453959

in the theory around

$$\Psi_{l=2,a=-1/2}$$

数値計算の結果(2-3)

Numerical solution to

 $Q'\Phi + \Phi * \Phi = 0$ in Siegel gauge

Gauge inv. overlap Level Potential height (0,0) 3669.1147320 -12.5398475 (2,6) 1069.0267362 -6.9447829(4,12) 469.8576394 -5.6412136 (6,18) 264.1631512 -4.4016913(8,24) -3.9168243 169.6466508 (10, 30)-3.4132963118.8569322 (12, 24)88.1014995 -3.1705974(14,42) 68.1558589 -2.8864809(16, 48)54.5068784 -2.7221662 (18, 54)44.7485588 -2.5342661(20, 60)37.5395492 -2.4137280 (22,66) 32.0687967 -2.2791648 (24,72)27.8108828 -2.1939288(26, 78)24.4312138 -2.0969334

in the theory around

$$\Psi_{l=3,a=-1/2}$$

Contents

- Introduction
 - 弦の場の理論とそれを用いた今回の結果
- Schnabl解について
 - 近年の開弦の場の理論の進展について
- TT解について
 - TT解まわりのBRSTコホモロジー
- TT解まわりの理論の数値解
 - *l=1* の場合
 - *l=2,3* の場合
- まとめと展望

Schnabl解について (1)

- 運動方程式: $Q\Psi + \Psi * \Psi = 0$ の解析解 Ψ_{Sch} あらわな表式が書き下されている。 Siegelゲージ条件は満たさない。
- ポテンシャルの高さ=D brane tension

$$S[\Psi_{
m Sch}]/V_{26} = rac{1}{2\pi^2 g^2}$$

[Schnabl(2005),Okawa,Fuchs-Kroyter(2006)]

Schnabl解について (2)

• Gauge invariant overlapの値: $\mathcal{O}_V(\Psi_{\mathrm{Sch}}) = \frac{1}{2\pi} \langle B | c_0^- | \phi_V \rangle$ $\mathcal{O}_V(\Psi) := \langle \hat{\gamma}(1_{\mathrm{c}}, 2) | \phi_V \rangle_{1_{\mathrm{c}}} | \Psi \rangle_2$

[Ellwood, Kawano-Kishimoto-Takahashi(2008)]

$$m{\Gamma}$$

ゲージ変換: $\delta_{\Lambda}\Psi=Q\Lambda+\Psi*\Lambda-\Lambda*\Psi$ で不変

• 解のまわりのBRSTコホモロジーが消えている: $Q' = Q + [\Psi_{Sch}, \cdot]_*$ $(Q'A = \mathcal{I}, \exists A)$

[Ellwood-Schnabl(2006)]

Schnabl解のまわりでは、物理的なopen stringの自由度がない ~ D braneが消えている!

TT解について

• Schnabl解以前の「解析解」の一つ:高橋-谷本解

$$egin{aligned} \Psi_{l,a} &= Q_L ig(e^{h_a^l} - 1 ig) \mathcal{I} - C_L ig((\partial h_a^l)^2 e^{h_a^l} ig) \mathcal{I} \ & \ h_a^l(z) &= \log ig(1 - rac{a}{2} (-1)^l ig(z^l - (-1)^l rac{1}{z^l} ig)^2 ig) \ &= -\log((1 - Z(a))^2) - \sum_{n=1}^\infty rac{(-1)^{ln}}{n} Z(a)^n (z^{2ln} + z^{-2ln}) \end{aligned}$$

$$l=1,2,3,\cdots$$
 $Z(a)=rac{1+a-\sqrt{1+2a}}{a}$ $a\geq -1/2$

identity state~弦場のスター積に関する単位元

 $\mathcal{I} * A = A * \mathcal{I} = A \quad \forall A$

TT解とゲージ不変量

TT解に対するポテンシャルの高さおよびgauge invariant overlapの値はともに 〈I | (・・・) | I 〉 の形 で与えられる。

 $\langle \mathcal{I} | \phi
angle = \langle h_\mathcal{I} [\phi(0)]
angle_{ ext{UHP}}$

 $h_{\mathcal{I}}(z) = h^{-1}(h(z)^2) = rac{2z}{1-z^2}$

TT解周りのコホモロジー

- TT解周りの理論: $S_{l,a}[\Phi] \equiv S[\Psi_{l,a} + \Phi] - S[\Psi_{l,a}]$ $= -\frac{1}{g^2} \left(\frac{1}{2} \langle \Phi, Q'\Phi \rangle + \frac{1}{3} \langle \Phi, \Phi * \Phi \rangle \right)$
- 新たなBRST operatorのコホモロジー: [Kishimoto-Takahashi (2002)] $Q' = Q + [\Psi_{l,a}, \cdot]_* = Q(e^{h_a^l}) - C((\partial h_a^l)^2 e^{h_a^l})$ $\Longrightarrow Q' = e^{q(h_a^l)} Q e^{-q(h_a^l)}$
 - a>-1/2 :通常の加藤-小川のBRST演算子と全く同様に 開弦スペクトラムがある

 $\implies \Psi_{l,a>-1/2}$:pure gauge

a = -1/2:上記similarity変換がill-definedになりghost数1セクターではコホモロジーが消えている(物理的開弦がない)

 $\Rightarrow \ \Psi_{l,a=-1/2}$:tachyon vacuum

TT解周りの理論の数値解

• 運動方程式: $Q'\Phi + \Phi * \Phi = 0$ 構成法から $\Phi = -\Psi_{l,a}$ が解であるが、これを用いたの では、ゲージ不変量の定量的評価が困難。 代わりにSiegelゲージ: $b_0\Phi = 0$ の数値解を構成し評価する

$$L_{l,a}\Phi + b_0(\Phi * \Phi) = 0 を数値的に解く !$$

$$L_{l,a} = \{b_0, Q'\}$$

$$= (1+a)(L'_0 - 1) - \frac{(-1)^l}{2}a(L'_{2l} + L'_{-2l}) + 4l^2aZ(a)$$

$$L'_n = L_n^{\text{mat}} + L_n^{\text{gh}'}$$

$$L_n^{\text{gh}'} \equiv L_n^{\text{gh}} + nq_n + \delta_{n,0} \qquad \longleftarrow \qquad j_{\text{gh}}(z) = cb(z) = \sum_n q_n z^{-n-1}$$

逐次近似による数値解の構成

「ニュートン法」

 $n o \infty$ $L_{l,a} \Phi^{(\infty)} + b_0 (\Phi^{(\infty)} * \Phi^{(\infty)}) = 0$

もし収束すれば解が得られる

収束するようにinitial configuration $\Phi^{(0)}$ を選ぶ

レベルゼロの近似

• Ansatz: $\Phi_{L=0} = \phi c_1 |0\rangle$

レベルトランケーション近似

• Level (L,3L) truncation $L = L_0 + 1$

$$|A\ast B
angle = \sum_i |\phi^i
angle \langle V_3(1,2,3)|\phi_i
angle_1|A
angle_2|B
angle_3$$

up to total level 3L

• 更にconsistentなtruncation:

$$(-1)^{L_0+1}\Phi=\Phi$$
 : twist even

$$\Phi \sim L_{-n_1}^{\mathrm{mat}} L_{-n_2}^{\mathrm{mat}} \cdots L_{-n_1}^{\mathrm{gh}\prime} L_{-n_2}^{\mathrm{gh}\prime} \cdots c_1 |0\rangle$$
 : universal and su(1,1) singlet

$$\mathcal{G}\Phi=X\Phi=Y\Phi=0$$
 $\mathcal{G}=\sum_{n=1}^{\infty}(c_{-n}b_n-b_{-n}c_n)\quad X=-\sum_{n=1}^{\infty}nc_{-n}c_n\quad Y=\sum_{n=1}^{\infty}rac{1}{n}b_{-n}b_n$

Dimension of truncated space

L	dim <i>H</i> + _{univ}	dim H ⁺ _{singl}
0	1	1
2	3	3
4	9	8
6	26	21
8	69	51
10	171	117
12	402	259
14	898	549
16	1925	1124
18	3985	2236
20	7995	4328
22	15606	8176
24	29736	15121
26	55433	27419

 $\mathcal{H}^+_{ ext{univ}}$

twist even, universal space, Siegel gauge, ghost number 1

 $\mathcal{H}^+_{ ext{singl}}$

twist even, universal space, Siegel gauge, ghost number 1, su(1,1) singlet

弦場の相互作用項

展開したときの各項の計算は...

 $\langle V(1,2,3)|\phi_1
angle|\phi_2
angle|\phi_3
angle$

 $=\langle V(1,2,3)|\phi_1
angle|\phi_2
angle|\phi_3
angle|_{
m mat}\langle V(1,2,3)|\phi_1
angle|\phi_2
angle|\phi_3
angle|_{
m gh}$

32ビット int を超える数!

 $\frac{1}{6} \cdot 2436 \cdot (2436 + 1) \cdot (2436 + 2) \simeq 2.41221 \times 10^9 > 2^{(32-1)}$ matter と ghost セクターそれぞれこれくらいの種類の相互作用項がある。

Dimension of $\{ L_{-n_1}^{\text{mat}} L_{-n_2}^{\text{mat}} \cdots |0\rangle_{\text{mat}} \}$ or $\{ L_{-n_1}^{\text{gh}\prime} L_{-n_2}^{\text{gh}\prime} \cdots c_1 |0\rangle_{\text{gh}} \}$ up to level (26,78)

レベル(26,78)までの計算に用いたマシン

PC cluster @ Nara Women's Univ.

特に大容量メモリ: 64×3+48 +120+20 +... (GB) を用いて計算

MacPro@RIKEN

RIKEN Integrated Cluster of Clusters (RICC)

Potential height at Φ_t in SFT around $\Psi_{l=1,a}$

Comments on solution for a = 0 (Q' = Q)

• potential heightの外挿法:

fitting function: $F_N(L) = \sum_{n=0}^N \frac{a_n}{(L+1)^n}$ [Gaiotto-Rastelli (2002)]

L=0,2,4,6,8,10,12,14,16 (N=9)のデータを使ってフィットすると

 $F_{N=9}(L=18) = -1.0004937$

 $F_{N=9}(L=20) = -1.0005630$

直接的計算とよく合致している!

 $F_{N=9}(L=22) = -1.0006023$

 $F_{N=9}(L=26) = -1.0006313$

 \leftarrow -1.0006312

 $F_{N=9}(L=\infty) = -1.0000293$

Extrapolation of potential height at a = 0 (Q' = Q)

Extrapolation of potential height for $l=1, a=-rac{1}{2}$

Gauge invoverlap at Φ_t in SFT around $\Psi_{l=1,a}$

TT解(I=1)周りの理論の数値解のまとめ

レベルを上げていくとゲージ不変量の値は階段関数的になる:

※ともに、Schnabl解における値で規格化している。

TT解(I=1)周りの理論の構造

Numerical results for Φ_t s.t. $Q' \Phi_t + \Phi_t * \Phi_t = 0$ suggest:

 $\Psi_{l=1,a=-1/2}$: tachyon vacuum

$$\Psi_{l=1,a>-1/2}$$
 : pure gauge

TT解(I=2,3)周りの理論について

コホモロジーの解析結果[Kishimoto-Takahashi(2002)]から、 aを変えたときにI=2,3,...の場合もI=1 と同様に振る舞う。

TT解(I=1,2,3,...)同士のゲージ変換の解析など [Igarashi-Itoh-Katsumata-Takahashi-Zeze(2005)]

ここではTT解I=2,3周りの理論のSiegelゲージの数値解 をレベル(26,78)までI=1と同様に調べた。 しかし、I=2,3では運動項がより高いレベルを混ぜるので、 a=-1/2の定量的な振る舞いはまだはっきりとはみえていない。 ただし、I=2,3ともにレベルを上げると階段関数的になり、 a>-1/2ではpotential height は-1, gauge invariant overlapは +1 にそれぞれ近づいていくことは見えている。 Potential height at Φ_t in SFT around $\Psi_{l=2,a}$

Gauge invoverlap at Φ_t in SFT around $\Psi_{l=2,a}$

 ${\cal O}_V(\Phi_t)$

Potential height at Φ_t in SFT around $\Psi_{l=3,a}$

Gauge invoverlap at Φ_t in SFT around $\Psi_{l=3,a}$

まとめと展望

- TT解周りの理論のSiegelゲージの数値解をレベル(26,78)まで構成し ゲージ不変量(ポテンシャルの高さとgauge invariant overlap)を評価した。
- 数値計算の結果は従来の解釈:

 $\Psi_{l,a=-1/2}$:nontrivial solution

```
\Psi_{l,a>-1/2} :pure gauge
```

と整合する。さらにTT解(I=1,a=-1/2)がSiegelゲージの数値解、Schnabl解と ゲージ同値であることを定量的に示唆する。

- I=2,3の場合はa=-1/2の値の定量的な振る舞いはまだはっきりしない。
- Gauge invariant overlapのfitの仕方は?
- Siegelゲージの厳密解は?
- あるいはTT解周りの理論の別のゲージでの解析解は?
- TT解におけるゲージ不変量の直接的評価は? (正則化の方法、そのためには弦場の空間の数学的な定義...)