Identity-Based Solutions in Open

String Field Theory Revisited

Isao Kishimoto

References

* I. K. and T. Takahashi, "Open string field theory around universal solutions," Prog.Theor.Phys. 108 (2002) 591
+ S. Inatomi, I.K. and T. Takahashi, "Homotopy Operators and One-Loop Vacuum Energy at the Tachyon Vacuum," arXiv:1106.5314; (+ to appear...)

Plan

* Introduction
* Brief review of open SFT and developments in the 21 st century
+ Review of a class of identity-based solution
+ Cohomology around the tachyon vacuum (2002)
+ Homotopy operator
* On one loop vacuum energy
+ Concluding remarks
* (Extension to superstring field theory)

Introduction

* String Field Theory (SFT):
* An old-fashioned non-perturbative definition of string theory
* A string field includes infinite fields of particles in the space-time
* Applicable to "D-brane physics"

Cubic bosonic open SFT

* Action (Witten (1986)):

$$
\begin{aligned}
& \qquad S[\Psi]=-\frac{1}{g^{2}}\left(\frac{1}{2}\left\langle\Psi, Q_{\mathrm{B}} \Psi\right\rangle+\frac{1}{3}\langle\Psi, \Psi * \Psi\rangle\right) \\
& Q_{\mathrm{B}}=c_{0} L_{0}+b_{0} M+\tilde{Q} \\
& \text { Kato-Ogawa's BRST operator (1983) }
\end{aligned}
$$

* String field:

Midpoint interaction

$$
|\Psi\rangle=\phi(x) c_{1}|0\rangle+A_{\mu}(x) \alpha^{\mu} c_{1}|0\rangle+\chi(x) c_{0}|0\rangle+\cdots
$$

Equation of motion:

$$
Q_{\mathrm{B}} \Psi+\Psi * \Psi=0
$$

Gauge transformation:

$$
\delta \Psi=Q_{\mathrm{B}} \Lambda+\Psi * \Lambda-\Lambda * \Psi
$$

Finite version:

$$
\Psi^{\prime}=e^{-\Lambda} \Psi e^{\Lambda}+e^{-\Lambda} Q_{\mathrm{B}} e^{\Lambda}
$$

Non-perturbative vacuum

perturbative vacuum

$Q_{\mathrm{B}} \boldsymbol{\omega}_{t}+\boldsymbol{\omega}_{t} * \boldsymbol{\omega}_{i}=0$
tachyon condensed vacuum

Solutions for tachyon condensation

* Numerical solution in Siegel gauge
* Sen-Zwiebach (1999),Moeller-Taylor (2000), Gaiotto-Rastelli (2002), I.K.-Takahashi $(2009,2010)$ up to level 26
* Takahashi-Tanimoto's solution (2002-)
* A class of identity-based solutions
+ Schnabl's solution (2005-)
+ Based on "KBc algebra"

Brief review of TT solution

* Takahashi-Tanimoto's solution (2002)

$$
\begin{gathered}
\Psi_{h}=Q_{L}\left(e^{h}-1\right) I-C_{L}\left((\partial h)^{2} e^{h}\right) I \\
\text { identity state (identity element of star product) } \\
I * A=A * I=A, \quad \forall A \\
\begin{array}{c}
Q_{L}(f)=\int_{C_{\text {left }}} \frac{d z}{2 \pi i} f(z) j_{\mathrm{B}}(z), \quad C_{L}(f)=\int_{C_{\text {left }}} \frac{d z}{2 \pi i} f(z) c(z) \\
h(z)=h(-1 / z), \quad h(\pm i)=0
\end{array}
\end{gathered}
$$

* Theory around the solution:

$$
\begin{aligned}
S^{\prime}[\Phi] & =S\left[\Psi_{h}+\Phi\right]-S\left[\Psi_{h}\right] \\
& =-\frac{1}{g^{2}}\left(\frac{1}{2}\left\langle\Phi, Q^{\prime} \Phi\right\rangle+\frac{1}{3}\langle\Phi, \Phi * \Phi\rangle\right)
\end{aligned}
$$

BRST operator at the TT solution:

$$
Q^{\prime}=Q\left(e^{h}\right)-C\left((\partial h)^{2} e^{h}\right)
$$

Explicit expression can be found!

$$
Q(f)=\oint \frac{d z}{2 \pi i} f(z) j_{\mathrm{B}}(z), \quad C(f)=\oint \frac{d z}{2 \pi i} f(z) c(z) .
$$

* Examples of weighting function \boldsymbol{h}

$$
\begin{aligned}
h_{a}^{l}(z)= & \log \left(1-\frac{a}{2}(-1)^{l}\left(z^{l}-(-1)^{l} z^{-l}\right)^{2}\right) \\
& a \geq-1 / 2 \quad: \text { reality condition for the solution } \\
& l=1,2,3, \cdots
\end{aligned}
$$

(Formal) similarity transformation:

$$
\begin{aligned}
& Q^{\prime}=e^{q\left(h_{a}^{l}\right)} Q_{\mathrm{B}} e^{-q\left(h_{a}^{l}\right)} \\
& \begin{array}{cc}
q(f)=\oint \frac{d z}{2 \pi i} f(z) j_{\mathrm{gh}}(z) & j_{\mathrm{gh}(y) j_{\mathrm{gh}}(z) \sim} \frac{1}{(y-z)^{2}} \\
\uparrow & \vdots
\end{array} \\
& e^{ \pm q\left(h_{a}^{l}\right)}: \\
& \text { ghost current } \\
& a=-1 / 2
\end{aligned}
$$

* Pure gauge in the case $\boldsymbol{a}>\mathbf{- 1 / 2}$
$Q^{\prime}=e^{\boldsymbol{q}\left(\boldsymbol{h}_{a}^{l}\right)} \boldsymbol{Q}_{\mathrm{B}} e^{-\boldsymbol{q}\left(\boldsymbol{h}_{a}^{l}\right)} \quad$ is well-defined
$\simeq Q_{\mathrm{B}}$ cohomologically the same as perturbative vacuum

The solution can be rewritten as a pure gauge form:

$$
\begin{gathered}
\Psi_{h_{a}^{l}}=\exp \left(q_{L}\left(h_{a}^{l}\right) I\right) Q_{\mathrm{B}} \exp \left(-q_{L}\left(h_{a}^{l}\right) I\right) \\
q_{L}(f)=\int_{C_{\text {lert }}} \frac{d z}{2 \pi i} f(z) j_{\mathrm{gh}}(z)
\end{gathered}
$$

Vanishing cohomology at $\boldsymbol{a}=\mathbf{- 1 / 2}$

I.K.-Takahashi (2002)

+ BRST operator at the solution:

$$
Q^{\prime}=\frac{1}{2} Q_{\mathrm{B}}+\frac{(-1)^{l}}{4}\left(Q_{2 l}+Q_{-2 l}\right)+2 l^{2} c_{0}-(-1)^{l} l^{2}\left(c_{2 l}+c_{-2 l}\right)
$$

+ Similarity transformation:

$$
\begin{aligned}
& Q^{\prime}=\frac{(-1)^{l}}{4} U_{l} Q_{\mathrm{B}}^{(2 l)} U_{l}^{-1} \quad U_{l}=\exp \left(-2 \sum_{n=1}^{\infty} \frac{(-1)^{n(l+1)}}{n} q_{-2 n l}\right) \\
& Q_{\mathrm{B}}^{(2 l)}=\left.Q_{\mathrm{B}}\right|_{b_{n} \rightarrow b_{n-2 l}, c_{n} \rightarrow c_{n+2 l}}=Q_{2 l}-4 l^{2} c_{2 l}
\end{aligned}
$$

+ Solving cohomology using Kato-Ogawa's result

$$
Q^{\prime} \psi=0 \quad \Leftrightarrow
$$

$$
|\psi\rangle=|P\rangle \otimes U_{l} b_{-2 l} b_{-2 l+1} \cdots b_{-2}|0\rangle
$$

$$
+\left|P^{\prime}\right\rangle \otimes U_{l} b_{-2 l+1} b_{-2 l+2} \cdots b_{-2}|0\rangle+Q^{\prime}|\phi\rangle
$$

DDF states in the matter sector
Non-trivial states have ghost number $-2 l+1,-2 l+2$

In bosonic open SFT, string fields have ghost number 1.
No cohomology in the ghost number one sector.
No physical excitations around the solution.
D-brane vanishes at the solution.

Homotopy operator
 Inatomi-I.K.-Takahashi(2011)

- OPE:

$$
j_{\mathrm{B}}(y) b(z) \sim \frac{3}{(y-z)^{3}}+\frac{1}{(y-z)^{2}} j_{\mathrm{gh}}(z)+\frac{1}{y-z} T(z)
$$

* Anti-commutation relation:
$\{Q(f), b(z)\}=\frac{3}{2} \partial^{2} f(z)+\partial f(z) j_{\mathrm{gh}}(z)+f(z) T(z)$

These terms vanish at second order zeros of $\boldsymbol{f}(\boldsymbol{z})$
The RHS becomes a c-number!
Note: $\quad Q^{\prime}=Q\left(e^{h}\right)-C\left((\partial h)^{2} e^{h}\right) \quad\{C(f), b(z)\}=f(z)$

* Homotopy operator for $Q^{\prime}(a=-\mathbf{1} / \mathbf{2})$

$$
\begin{aligned}
& \left\{Q^{\prime}, \hat{A}\right\}=1, \quad \hat{A}^{2}=0 \\
& \hat{A}=\sum_{k=1}^{2 l} a_{k} l^{-2} z_{k}^{2} b\left(z_{k}\right), \quad z_{k}^{2 l}+(-1)^{l}=0, \quad \sum_{k=1}^{2 l} a_{k}=1 \\
& \text { second order zeros of } \exp \left(h_{a=-\frac{1}{2}}^{l}(z)\right)
\end{aligned}
$$

+ No cohomology in all ghost number sectors:

$$
Q^{\prime} \psi=0 \quad \Leftrightarrow \quad \psi=Q^{\prime}(\hat{A} \psi)
$$

Consistency?

* What happens in the non-trivial sector found in 2002?

$$
|\varphi\rangle=|P\rangle \otimes U_{l} b_{-2 l} b_{-2 l+1} \cdots b_{-2}|0\rangle+\left|P^{\prime}\right\rangle \otimes U_{l} b_{-2 l+1} b_{-2 l+2} \cdots b_{-2}|0\rangle
$$

$$
b(z) U_{l}=\exp \left(-2 \sum_{n=1}^{\infty} \frac{(-1)^{n(l+1)}}{n} z^{-2 n l}\right) U_{l} b(z)
$$

$$
\hat{A} U_{l} b_{-m} \cdots b_{-2}|0\rangle=\exp \left(-2 \sum_{n=1}^{\infty} \frac{1}{n}\right) U_{l} \hat{A} b_{-m} \cdots b_{-2}|0\rangle=0
$$

$$
|\varphi\rangle=Q^{\prime}(\hat{A}|\varphi\rangle)
$$

One-loop vacuum energy

* In the Siegel gauge in the theory around the solution, the inverse propagator: $L^{\prime}=\left\{b_{0}, Q^{\prime}\right\}$

$$
V_{1-\text { loop }}=-\frac{1}{2} \log \operatorname{det}\left(L^{\prime}\right)=\int_{0}^{\infty} \frac{d t}{2 t} Z(t) \quad Z(t)=\operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-t L^{\prime}} b_{0} c_{0}\right]
$$

+ Let us consider a variation of moduli such as interbrane distances:

$$
Q^{\prime} \rightarrow Q^{\prime}+\delta Q^{\prime}
$$

Noting the relations:

$$
\delta L^{\prime}=\left\{\delta Q^{\prime}, b_{0}\right\} \quad\left\{\delta Q^{\prime}, \hat{A}\right\}=0 \quad\left\{\hat{A}, b_{0}\right\}=0
$$

: consistent with vanishing D-branes

A proof of moduli-independence

$$
\begin{aligned}
\delta Z(t) & =-t \int_{0}^{1} d \alpha \operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}}\left\{\delta Q^{\prime}, b_{0}\right\} e^{-(1-\alpha) t L^{\prime}} b_{0} c_{0}\right] \\
& =-t \int_{0}^{1} d \alpha \operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}} b_{0} \delta Q^{\prime} e^{-(1-\alpha) t L^{\prime}} b_{0} c_{0}\right] \\
& =t \int_{0}^{1} d \alpha \operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}} \delta Q^{\prime} e^{-(1-\alpha) t L^{\prime}} b_{0} c_{0} b_{0}\right] \\
& =t \int_{0}^{1} d \alpha \operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}} \delta Q^{\prime} e^{-(1-\alpha) t L^{\prime}} b_{0}\right] \\
& =t \int_{0}^{1} d \alpha \operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}} \delta Q^{\prime} e^{-(1-\alpha) t L^{\prime}}\left\{Q^{\prime}, \hat{A}\right\} b_{0}\right] \\
& =t \int_{0}^{1} d \alpha\left(\operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}} \delta Q^{\prime} e^{-(1-\alpha) t L^{\prime}} Q^{\prime} \hat{A} b_{0}\right]+\operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}} \delta Q^{\prime} e^{-(1-\alpha) t L^{\prime}} \hat{A} Q^{\prime} b_{0}\right]\right) \\
& =t \int_{0}^{1} d \alpha\left(\operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}} \delta Q^{\prime} e^{-(1-\alpha) t L^{\prime}} Q^{\prime} \hat{A} b_{0}\right]+\operatorname{Tr}\left[(-1)^{N_{\mathrm{FP}}} e^{-\alpha t L^{\prime}} \delta Q^{\prime} e^{-(1-\alpha) t L^{\prime}} Q^{\prime} b_{0} \hat{A}\right]\right) \\
& =0
\end{aligned}
$$

Comments on higher order zeros

* Other solution associated with function with higher order zeros [Igarashi-Itoh-Katsumata-Takahashi-Zeze (2005)]

$$
\begin{aligned}
& h_{a}^{(4)}(z)=\log \left(1+2 a-\frac{a}{8}\left(z-z^{-1}\right)^{4}\right) \quad(a \geq-1 / 2) \\
& Q^{(4)}=Q\left(F_{4}\right)+C\left(G_{4}\right) \\
& \quad=\frac{3}{8} Q_{\mathrm{B}}-\frac{1}{4}\left(Q_{2}+Q_{-2}\right)+\frac{1}{16}\left(Q_{4}+Q_{-4}\right)+2 c_{0}-c_{4}-c_{-4}, \\
& F_{4}(z)=\frac{1}{16}\left(z-z^{-1}\right)^{4}, \quad G_{4}(z)=-z^{-2}\left(z^{2}-z^{-2}\right)^{2} \\
& \quad(a=-1 / 2)
\end{aligned}
$$

* Homotopy operator for the solution with 4 -th order zeros:

$$
\begin{aligned}
& \left\{Q^{(4)}, \hat{A}^{(4)}\right\}=1, \quad\left(\hat{A}^{(4)}\right)^{2}=0 \\
& \hat{A}^{(4)}=\frac{1}{8}\left(\partial^{2} b(1)+\partial^{2} b(-1)\right)+\frac{5}{8}(\partial b(1)-\partial b(-1))+\frac{1}{2}(b(1)+b(-1))=\sum_{n=-\infty}^{\infty} n^{2} b_{2 n}
\end{aligned}
$$

On cohomology

+ Non-trivial part exists in ghost number: $\mathbf{- 3 , - \mathbf { 2 }}$

$$
\begin{aligned}
& Q^{(4)} \psi=0 \Leftrightarrow \\
& |\psi\rangle=|P\rangle \otimes U_{(4)} b_{-4} b_{-3} b_{-2}|0\rangle+\left|P^{\prime}\right\rangle \otimes U_{(4)} b_{-3} b_{-2}|0\rangle+Q^{(4)}|\phi\rangle
\end{aligned}
$$

$$
U_{(4)}=\exp \left(-4 \sum_{n=1}^{\infty} \frac{1}{n} q_{-2 n}\right)
$$

+ Using the homotopy operator, cohomology vanishes, in a similar way to the case of $h=h_{a=-1 / 2}^{l}$

$$
\begin{aligned}
& \left|\varphi_{(4)}\right\rangle=|P\rangle \otimes U_{(4)} b_{-4} b_{-3} b_{-2}|0\rangle+\left|P^{\prime}\right\rangle \otimes U_{(4)} b_{-3} b_{-2}|0\rangle \\
& \left|\varphi_{(4)}\right\rangle=Q^{(4)}\left(\hat{A}^{(4)}\left|\varphi_{(4)}\right\rangle\right) \quad \hat{A}^{(4)} U_{(4)} b_{-m} \cdots b_{-2}|0\rangle=0
\end{aligned}
$$

Details of vanishing state in the Fock space:

$$
\begin{aligned}
b(z) U_{(4)}= & \exp \left(-4 \sum_{n=1}^{\infty} \frac{z^{-2 n}}{n}\right) U_{(4)} b(z)=\left(1-z^{-2}\right)^{4} U_{(4)} b(z) \\
\partial b(z) U_{(4)}= & \left(1-z^{-2}\right)^{4} U_{(4)} \partial b(z)+8 z^{-3}\left(1-z^{-2}\right)^{3} U_{(4)} b(z) \\
\partial^{2} b(z) U_{(4)}= & \left(1-z^{-2}\right)^{4} U_{(4)} \partial^{2} b(z)+16 z^{-3}\left(1-z^{-2}\right)^{3} U_{(4)} \partial b(z) \\
& -24 z^{-4}\left(1-3 z^{-2}\right)\left(1-z^{-2}\right)^{2} U_{(4)} b(z) \\
& z \rightarrow \pm 1 \\
& b(\pm 1) U_{(4)} b_{-m} \cdots b_{-2}|0\rangle=0 \\
& \partial b(\pm 1) U_{(4)} b_{-m} \cdots b_{-2}|0\rangle=0 \\
& \partial^{2} b(\pm 1) U_{(4)} b_{-m} \cdots b_{-2}|0\rangle=0
\end{aligned}
$$

Concluding remarks

* We have found homotopy operators for a class of identitybase solutions.
+ Moduli independence of 1-loop vacuum energy is shown by obtained homotopy operators.
* The existence of homotopy operator suggests that the nontrivial cohomology in the wrong ghost number sectors (2002) may be "trivial" beyond a single Fock space.
* Mathematically more rigorous definition of state space seems to be necessary to derive "physics" from SFT.

Comparison of analytic solutions in bosonic open SFT

	Takahashi-Tanimoto's identity-based solution	Schnabl's solution (and variants)
Equation of motion	2002	2005 (2009)
D-brane tension	(indirectly, numerically $2009,2010)$	O.K. 2005 (2009)
Gauge invariant overlap	(indirectly, numerically 2009,2010)	O.K. 2008 (2009)
Cohomology	(ghost \#1, 2002) all ghost \#	all ghost \#, 2006 (2009)
One-loop	(moduli-independence)	?

Extension to superstring

Inatomi-I.K.-Takahashi (to appear)

* In the framework of modified cubic superstring field theory, a class of identity-based solution is constructed:

$$
\begin{gathered}
A_{c}=\left(Q_{L}\left(e^{\lambda}-1\right)-\frac{1}{2} C_{L}\left((\partial \lambda)^{2} e^{\lambda}\right)-\frac{1}{4} \Theta_{L}\left((\partial \lambda) e^{\lambda}\right)\right) I \\
\lambda(-1 / z)=\lambda(z), \quad \lambda(\pm i)=0 \\
\Theta_{L}(h)=\int_{C_{\text {left }}} \frac{d z}{2 \pi i} h(z)(c \beta \gamma(z)-\partial c(z))
\end{gathered}
$$

$\boldsymbol{Q}_{\mathrm{B}} \boldsymbol{A}_{\boldsymbol{c}}+\boldsymbol{A}_{\boldsymbol{c}} * \boldsymbol{A}_{\boldsymbol{c}}=\mathbf{0} \quad \square$ The EOM in the NS sector holds.

BRST operator at the solution

* Action expanded around the solution:

$$
S^{\prime}[A, \Psi] \equiv S\left[A+A_{c}, \Psi\right]-S\left[A_{c}, 0\right]
$$

$$
=\frac{1}{2}\left\langle A, Y_{-2} Q^{\prime} A\right\rangle+\frac{1}{3}\left\langle A, Y_{-2} A * A\right\rangle+\frac{1}{2}\left\langle\Psi, Y Q^{\prime} \Psi\right\rangle+\langle A, Y \Psi * \Psi\rangle
$$

String field (\boldsymbol{A}, Ψ)

NS sector (space-time boson) R sector (space-time fermion)

$$
Q^{\prime}=Q\left(e^{\lambda}\right)+C\left(-\frac{1}{2}(\partial \lambda)^{2} e^{\lambda}\right)+\Theta\left(-\frac{1}{4}(\partial \lambda) e^{\lambda}\right)
$$

Homotopy operators

* In the same way as the bosonic case, homotopy operators for the BRST operator at the solution with a particular type of associated function.

$$
\begin{aligned}
& \{Q(f), b(z)\}=\frac{3}{4} \partial^{2} f(z)+\partial f(z)\left(-b c(z)-\frac{3}{4} \beta \gamma(z)\right)+f(z) T(z), \\
& \{C(g), b(z)\}=g(z) \\
& \{\Theta(h), b(z)\}=\partial h(z)+h(z) \beta \gamma(z)
\end{aligned}
$$

$$
\left\{Q^{\prime}, \hat{A}\right\}=1, \quad \hat{A}^{2}=0
$$

$$
\hat{A}=\sum_{k=1}^{2 l} a_{k} l^{-2} z_{k}^{2} b\left(z_{k}\right), \quad z_{k}^{2 l}+(-1)^{l}=0, \quad \sum_{k=1}^{2 l} a_{k}=1
$$

$$
\lambda=h_{a=-1 / 2}^{l}
$$

Comments on the solution

* Pure gauge form: $\boldsymbol{A}_{\boldsymbol{c}}=\exp \left(q_{L}(\lambda) I\right) Q_{\mathrm{B}} \exp \left(-q_{L}(\lambda) I\right)$

$$
q_{L}(\lambda)=\int_{C_{\text {left }}} \frac{d z}{2 \pi i} \lambda(z)(-b c(z)-\beta \gamma(z))
$$

$$
1
$$

regular OPE

* "BPS" D-brane vanishes ??

Similar solutions have been constructed:
Erler's soltuion (2007) (extension of Schnabl's solution to superstring)

