HOMOTOPY OPERATORS AND IDENTITY-BASED SOLUTIONS IN SUPERSTRING FIELD THEORY
 Isao Kishimoto

(Niigata University, Japan)

Talk@SFT2011,Prague, Czech Republic

REFERENCES

+ S. Inatomi, I.K. and T. Takahashi, "Homotopy Operators and Identity-Based Solutions in Cubic Superstring Field Theory," arXiv: 1109.2406

See, also,

+ S. Inatomi, I.K. and T. Takahashi, "Homotopy Operators and One-Loop Vacuum Energy at the Tachyon Vacuum," arXiv:1106.5314
- Introduction
- Identity-based solution in cubic superstring field theory
- Homotopy operator for the BRST operator at the solution
- Similarity transformation and the BRST cohomology
- Concluding remarks

A CLASS OF IDENTITYBASED SOLUTIONS IN SFT

- Takahashi-Tanimoto’s identity-based solutions (2002)
- Marginal solution $\begin{aligned} & \Psi=- V_{L}^{a}\left(F_{a}\right) I-\frac{1}{4} g^{a b} C_{L}\left(F_{a} F_{b}\right) I \\ & \sim c \partial X^{\mu}\end{aligned}$
- extension to marginal solutions in super SFT $\boldsymbol{\Phi}=-\tilde{\boldsymbol{V}}_{L}^{a}\left(\boldsymbol{F}_{a}\right) \boldsymbol{I}$ [Kishimoto-Takahashi (2005)]
- Scalar solution $\quad \Psi_{h}=Q_{L}\left(e^{h}-1\right) I-C_{L}\left((\partial h)^{2} e^{h}\right) I$
- a candidate for tachyon vacuum
- extension to solution in super SFT ? [This talk]

THE SCALAR SOLUTION IN BOSONIC SFT

- Structure of the solution:

$$
\Psi_{h}=Q_{L}\left(e^{h}-1\right) I-C_{L}\left((\partial h)^{2} e^{h}\right) I
$$

$$
\begin{aligned}
& h(z)=h(-1 / z), \quad h(\pm i)=0 \\
& Q_{L}(f)=\int_{C_{\mathrm{L}}} \frac{d z}{2 \pi i} f(z) j_{\mathrm{B}}(z), \quad C_{L}(f)=\int_{C_{\mathrm{L}}} \frac{d z}{2 \pi i} f(z) c(z)
\end{aligned}
$$

$$
j_{\mathrm{B}}=c T^{\mathrm{m}}+b c \partial c+\frac{3}{2} \partial^{2} c \quad: \text { BRST current (primary) }
$$

OPERATOR PRODUCT EXPANSION IN BOSONIC STRING

- The following OPEs were essential to prove the equation of motion: $Q_{\mathrm{B}} \Psi_{h}+\Psi_{h} * \Psi_{h}=0$

$$
\begin{aligned}
& j_{\mathrm{B}}(y) j_{\mathrm{B}}(z) \sim \frac{-4}{(y-z)^{3}} c \partial^{3} c(z)+\frac{-2}{(y-z)^{2}} c \partial^{2} c(z) \\
& j_{\mathrm{B}}(y) c(z) \sim \frac{1}{y-z} c \partial c(z)
\end{aligned}
$$

$j_{\mathrm{B}}, \boldsymbol{c}$ form a closed algebra.

- The identity state I is an identity element of the star product.

OPERATOR PRODUCT EXPANSIONS IN RNS SUPERSTRING

- BRST current and c-ghost and...
$j_{\mathrm{B}}=c T^{\mathrm{m}}+\gamma G^{\mathrm{m}}+b c \partial c+\frac{1}{4} c \partial \beta \gamma-\frac{3}{4} c \beta \partial \gamma+\frac{3}{4} \partial c \beta \gamma-b \gamma^{2}+\frac{3}{4} \partial^{2} c$
:primary, dim. 1, s.t., $\left\{Q_{\mathrm{B}}, \boldsymbol{b}(z)\right\}=\boldsymbol{T}(z)$
$\boldsymbol{\theta} \equiv \boldsymbol{c \beta \gamma}-\partial c$:primary, dim. 0

$$
\begin{aligned}
j_{\mathrm{B}}(y) j_{\mathrm{B}}(z) \sim & \frac{1}{(y-z)^{3}}\left(-\frac{17}{8} c \partial c(z)+3 \gamma^{2}(z)\right)+\frac{1}{(y-z)^{2}} \frac{1}{2} \partial\left(-\frac{17}{8} c \partial c(z)+3 \gamma^{2}(z)\right) \\
& +\frac{1}{y-z} \partial\left(\frac{1}{4} c \gamma G^{\mathrm{m}}(z)+\frac{1}{2} b c \gamma^{2}(z)+\frac{1}{4} \beta \gamma^{3}(z)\right)
\end{aligned}
$$

$$
j_{\mathrm{B}}(y) \theta(z) \sim \frac{1}{(y-z)^{2}}\left(\frac{1}{4} c \partial c(z)-\gamma^{2}(z)\right)+\frac{1}{y-z}\left(-c \gamma G^{\mathrm{m}}(z)-2 b c \gamma^{2}(z)-\beta \gamma^{3}(z)\right)
$$

$$
j_{\mathrm{B}}(y) c(z) \sim \frac{1}{y-z}\left(c \partial c(z)-\gamma^{2}(z)\right) \quad \theta(y) \theta(z) \sim \frac{1}{y-z} c \partial c(z)
$$

ANTI-COMMUTATION RELATIONS FROM OPE

- Mode expansions:

$$
j_{\mathrm{B}}(z)=\sum_{n} Q_{n} z^{-n-1}, c(z)=\sum_{n} c_{n} z^{-n+1}, \quad \theta(z)=\sum_{n} \theta_{n} z^{-n}
$$

- Anti-commutation relations can be derived from OPE:
$\left\{Q_{n}, Q_{m}\right\}=n m\left(-\frac{7}{16}\left\{\theta_{n}, \theta_{m}\right\}+\frac{3}{2}\left\{Q_{\mathrm{B}}, c_{n+m}\right\}\right)+\frac{n+m}{4}\left\{Q_{\mathrm{B}}, \theta_{n+m}\right\}$, $\left\{Q_{n}, c_{m}\right\}=\left\{Q_{\mathrm{B}}, c_{n+m}\right\}$,
$\left\{Q_{n}, \theta_{m}\right\}=\left\{Q_{\mathrm{B}}, \theta_{n+m}\right\}+n\left(-\frac{3}{4}\left\{\theta_{n}, \theta_{m}\right\}+\left\{Q_{\mathrm{B}}, c_{n+m}\right\}\right)$.
Note: $Q_{0}=Q_{B}$

ANTI-COMMUTATION RELATIONS INCLUDING HALF INTEGRATION

- Half-integration with a weighting function:
$Q_{L}(f)=\int_{C_{\mathrm{L}}} \frac{d z}{2 \pi i} f(z) j_{\mathrm{B}}(z), \quad C_{L}(g)=\int_{C_{\mathrm{L}}} \frac{d z}{2 \pi i} g(z) c(z), \quad \Theta_{L}(h)=\int_{C_{\mathrm{L}}} \frac{d z}{2 \pi i} h(z) \theta(z)$
- Anti-commutation relations from mode expansions:
$\left\{Q_{\mathrm{B}}, Q_{L}(f)\right\}=\frac{1}{4}\left\{Q_{\mathrm{B}}, \Theta_{L}(\partial f)\right\}$,
$\left\{Q_{L}(f), Q_{L}(f)\right\}=-\frac{7}{16}\left\{\Theta_{L}(\partial f), \Theta_{L}(\partial f)\right\}+\frac{3}{2}\left\{Q_{\mathrm{B}}, C_{L}\left((\partial f)^{2}\right)\right\}+\frac{1}{2}\left\{Q_{\mathrm{B}}, \Theta_{L}(f \partial f)\right\}$,
$\left\{Q_{L}(f), C_{L}(g)\right\}=\left\{Q_{\mathrm{B}}, C_{L}(f g)\right\}$,
$\left\{Q_{L}(f), \Theta_{L}(h)\right\}=\left\{Q_{\mathrm{B}}, \Theta_{L}(f h)\right\}-\frac{3}{4}\left\{\Theta_{L}(\partial f), \Theta_{L}(h)\right\}+\left\{Q_{\mathrm{B}}, C_{L}((\partial f) h)\right\}$

$$
f(\pm i)=0 \text { for partial integrations }
$$

HALF INTEGRATIONS AND THE STAR PRODUCT

- For a primary field $\boldsymbol{\sigma}$ with dim. h, half integrations:
$\begin{aligned} \Sigma_{L}(F)= & \int_{C_{\mathrm{L}}} \frac{d z}{2 \pi i} F(z) \sigma(z), \quad \Sigma_{R}(F)=\int_{C_{\mathrm{R}}} \frac{d z}{2 \pi i} F(z) \sigma(z) \\ & F(-1 / z)=\left(z^{2}\right)^{1-h} F(z)\end{aligned}$

$\left(\Sigma_{R}(F) B_{1}\right) * B_{2}=-(-1)^{|\sigma|\left|B_{1}\right|} B_{1} *\left(\Sigma_{L}(F) B_{2}\right)$
- For identity state, we have simple formulas:

$$
\begin{aligned}
& \Sigma_{R}(F) I=-\Sigma_{L}(F) I \\
& \left(\Sigma_{L}(F) I\right) * B=\Sigma_{L}(F) B \\
& B *\left(\Sigma_{L}(F) I\right)=-(-1)^{|\sigma||B|} \Sigma_{R}(F) B
\end{aligned}
$$

ANSATZ FOR STRING

 FIELD- Identity-based string field (ghost number 1, picture number 0)

$$
A_{c}=Q_{L}(f) I+C_{L}(g) I+\Theta_{L}(h) I
$$

$$
f(-1 / z)=f(z), \quad g(-1 / z)=z^{4} g(z), \quad h(-1 / z)=z^{2} h(z), \quad f(\pm i)=0
$$

- Calculation using the previous formulas:

$$
\begin{aligned}
& Q_{\mathrm{B}} A_{c}+A_{c} * A_{c} \\
& =[\\
& =\left[Q_{\mathrm{B}}, C_{L}\left((1+f) g+\frac{3}{4}(\partial f)^{2}+h \partial f\right)\right\}+\left\{Q_{\mathrm{B}}, \Theta_{L}\left((1+f)\left(h+\frac{1}{4} \partial f\right)\right)\right\} \\
& \left.\quad-\frac{7}{32}\left\{\Theta_{L}(\partial f), \Theta_{L}(\partial f)\right\}+\frac{1}{2}\left\{\Theta_{L}(h), \Theta_{L}(h)\right\}-\frac{3}{4}\left\{\Theta_{L}(\partial f), \Theta_{L}(h)\right\}\right] I .
\end{aligned}
$$

- The above vanishes if we choose the functions as follows:

$$
f=e^{\lambda}-1, g=-\frac{1}{2}(\partial \lambda)^{2} e^{\lambda}, h=-\frac{1}{4}(\partial \lambda) e^{\lambda} \quad \lambda(-1 / z)=\lambda(z), \lambda(\pm i)=0 .
$$

IDENTITY-BASED SOLUTION TO MODIFIED CUBIC SSFT

- Equations of motion of modified cubic SSFT:

$$
\begin{aligned}
& Y_{-2}\left(Q_{\mathrm{B}} A+A * A\right)+Y \Psi * \Psi=0, \\
& Y\left(Q_{\mathrm{B}} \Psi+A * \Psi+\Psi * A\right)=0
\end{aligned}
$$

- A class of identity-based solution in the NS sector (as an extension of Takahashi-Tanimoto's scalar solution to SSFT):

$$
\begin{gathered}
A_{c}=Q_{L}\left(e^{\lambda}-1\right) I+C_{L}\left(-\frac{1}{2}(\partial \lambda)^{2} e^{\lambda}\right) I+\Theta_{L}\left(-\frac{1}{4} \partial e^{\lambda}\right) I \\
\lambda(-1 / z)=\lambda(z), \lambda(\pm i)=0 .
\end{gathered}
$$

$$
Q_{\mathrm{B}} A_{c}+A_{c} * A_{c}=0
$$

BRST OPERATOR AT THE SOLUTION

- Re-expansion of the action of SSFT around the solution:

$$
\begin{aligned}
& S^{\prime}[A, \Psi] \equiv S\left[A+A_{c}, \Psi\right]-S\left[A_{c}, 0\right] \\
& =\frac{1}{2}\left\langle A, Y_{-2} Q^{\prime} A\right\rangle+\frac{1}{3}\left\langle A, Y_{-2} A * A\right\rangle+\frac{1}{2}\left\langle\Psi, Y Q^{\prime} \Psi\right\rangle+\langle A, Y \Psi * \Psi\rangle
\end{aligned}
$$

- BRST operator at the solution can be expressed as:

$$
\begin{aligned}
Q^{\prime} & =Q_{\mathrm{B}}+\left[A_{c}, \cdot\right\}_{*} \\
& =Q_{\mathrm{B}}+\left(Q_{L}(f)+C_{L}(g)+\Theta_{L}(h)\right)+\left(Q_{R}(f)+C_{R}(g)+\Theta_{R}(h)\right) \\
& =Q\left(e^{\lambda}\right)+C\left(-\frac{1}{2}(\partial \lambda)^{2} e^{\lambda}\right)+\Theta\left(-\frac{1}{4} \partial e^{\lambda}\right) \\
& Q(f)=\oint \frac{d z}{2 \pi i} f(z) j_{\mathrm{B}}(z), \quad C(g)=\oint \frac{d z}{2 \pi i} g(z) c(z), \quad \Theta(h)=\oint \frac{d z}{2 \pi i} h(z) \theta(z)
\end{aligned}
$$

TOWARD HOMOTOPY OPERATOR FOR Q

- OPE with b-ghost:

$$
\begin{aligned}
& j_{\mathrm{B}}(y) b(z) \sim \frac{3 / 2}{(y-z)^{3}}+\frac{1}{(y-z)^{2}}\left(-b c(z)-\frac{3}{4} \beta \gamma(z)\right)+\frac{1}{y-z} T(z), \\
& c(y) b(z) \sim \frac{1}{y-z}, \quad \theta(y) b(z) \sim \frac{1}{(y-z)^{2}}+\frac{1}{y-z} \beta \gamma(z)
\end{aligned}
$$

- Anti-commutation relation from the OPEs:

$$
\begin{gathered}
\left\{Q^{\prime}, b(z)\right\}=\frac{1}{2}\left(\partial^{2} \lambda(z)\right) e^{\lambda(z)}+\left(\partial e^{\lambda(z)}\right) j_{\mathrm{gh}}(z)+e^{\lambda(z)} T(z) . \\
j_{\mathrm{gh}}=-b c-\beta \gamma
\end{gathered}
$$

- It becomes a c-number at a second order zero $z=z_{0}$ of $e^{\boldsymbol{\lambda}(z)}$

$$
\left\{Q^{\prime}, b\left(z_{0}\right)\right\}=\left.\frac{1}{2}\left(\partial^{2} \lambda(z)\right) e^{\lambda(z)}\right|_{z=z_{0}}
$$

HOMOTOPY OPERATOR FOR Q' AT A PARTICULAR FUNCTION

- Example of the function: $\boldsymbol{\lambda}(\boldsymbol{z})=h_{a}^{l}(\boldsymbol{z})$

$$
h_{a}^{l}(z)=\log \left(1-\frac{a}{2}(-1)^{l}\left(z^{l}-(-1)^{l} z^{-l}\right)^{2}\right), \quad(a \geq-1 / 2 ; l=1,2,3, \cdots) .
$$

:the same functions with the bosonic case

- $e^{h_{a}^{l}(z)}$ has second order zeros $z_{k}\left(z_{k}^{2 l}=-(-1)^{l}\right)$ only for $a=-\frac{1}{2}$
- Homotopy operator \hat{A} for $\lambda(z)=h_{a=-1 / 2}^{l}(z)$

$$
\begin{aligned}
& \left\{Q^{\prime}, \hat{A}\right\}=1, \quad \hat{A}^{2}=0 \\
& \hat{A}=\sum_{k=1}^{2 l} a_{k} l^{-2} z_{k}^{2} b\left(z_{k}\right), \quad \sum_{k=1}^{2 l} a_{k}=1
\end{aligned}
$$

:the same form with the bosonic case

SIMILARITY TRANSFORMATION OF BRST OPERATOR

- It turns out that Q'can be rewritten as a similarity transform using the ghost number current: $\boldsymbol{j}_{\mathrm{gh}}=-\boldsymbol{b} \boldsymbol{c}-\boldsymbol{\beta} \boldsymbol{\gamma}$

$$
\begin{array}{rlr}
Q^{\prime} & =e^{q(\lambda)} Q_{\mathrm{B}} e^{-q(\lambda)} & q(\lambda)=\oint \frac{d z}{2 \pi i} \lambda(z) j_{\mathrm{gh}}(z) \\
& =Q\left(e^{\lambda}\right)+C\left(-\frac{1}{2}(\partial \lambda)^{2} e^{\lambda}\right)+\Theta\left(-\frac{1}{4} \partial e^{\lambda}\right) .
\end{array}
$$

- Unlike the bosonic case, $e^{ \pm q(\lambda)}$ is not singular even for $\lambda=h_{a=-\frac{1}{2}}^{l}$

$$
j_{\mathrm{gh}}(y) j_{\mathrm{gh}}(z) \quad(y \rightarrow z) \text { :regular for superstring }
$$

- Nevertheless, there exists a homotopy operator for $\lambda=h_{a=-\frac{1}{2}}^{l}$ It implies:

$$
Q^{\prime} \psi=0 \Leftrightarrow \psi=Q^{\prime}(\hat{A} \psi)
$$

Vanishing cohomology for all ghost number sectors!

COMMENTS ON COHOMOLOGY OF THE BRST OPERATOR

- At least formally, we have

$$
\begin{aligned}
Q_{\mathrm{B}} \phi=0 & \Leftrightarrow Q^{\prime}\left(e^{q\left(h_{-1 / 2}^{l}\right)} \phi\right)=0 \\
& \Leftrightarrow e^{q\left(h_{-1 / 2}^{l}\right)} \phi=Q^{\prime}\left(\hat{A} e^{q\left(h_{-1 / 2}^{l}\right)} \phi\right)
\end{aligned}
$$

- Using the explicit form of the nontrivial part $\boldsymbol{\varphi}$ of $\boldsymbol{Q}_{\mathbf{B}^{-}}$ cohomology in the NS and R sector, we find:

$$
\phi=\varphi+Q_{\mathrm{B}} \chi
$$

$$
\begin{gathered}
e^{q\left(h_{-1 / 2}^{l}\right)} \phi=U 2^{-2 g} \varphi+Q^{\prime}\left(e^{q\left(h_{-1 / 2}^{l}\right)} \chi\right) \\
g: \text { ghost number } \\
U=\exp \left(-\sum_{n=1}^{\infty} \frac{(-1)^{n(l+1)}}{n} q_{-2 n l}\right) \quad j_{\mathrm{gh}}(z)=\sum_{n} q_{n} z^{-n-1}
\end{gathered}
$$

ZERO IN THE FOCK SPACE BUT NONZERO IN A LARGER SPACE

- In a similar way to the bosonic case,

$$
\begin{array}{r}
{\left[q_{n}, b_{m}\right]=-b_{n+m} \quad U^{-1} b(z) U=e^{-\sum_{n=1}^{\infty} \frac{(-1)^{n(l+1)}}{n} z^{-2 n l}} b(z)} \\
\quad \hat{A} U 2^{-2 g}|\varphi\rangle=\exp \left(-\sum_{n=1}^{\infty} \frac{1}{n}\right) U \hat{A} 2^{-2 g}|\varphi\rangle=0
\end{array}
$$

- It implies that all coefficients of $\hat{\boldsymbol{A}} \boldsymbol{U} \mathbf{2}^{-\mathbf{2 g}} \boldsymbol{\varphi}$ vanish in the Fock space.
- However, we should have $e^{q\left(h_{-1 / 2}^{l}\right)} \varphi=Q^{\prime}\left(\hat{A} U 2^{-2 g} \varphi\right)$

$$
\neq 0
$$

- Nontrivial part of $\boldsymbol{Q}_{\mathbf{B}}$-cohomology becomes Q^{\prime}-exact outside the Fock space by $\boldsymbol{e}^{\boldsymbol{q}\left(\boldsymbol{h}_{-1 / 2}^{l}\right)}$ as far as we respect the homotopy relation:

$$
\left\{Q^{\prime}, \hat{A}\right\}=1
$$

PURE GAUGE FORM OF THE SOLUTION

- In a similar way to the bosonic case, we have

$$
\begin{gathered}
A_{c}=\exp \left(q_{L}(\lambda) I\right) Q_{\mathrm{B}} \exp \left(-q_{L}(\lambda) I\right) \\
q_{L}(\lambda)=\int_{C_{\mathrm{L}}} \frac{d z}{2 \pi i} \lambda(z) j_{\mathrm{gh}}(z)
\end{gathered}
$$

- Unlike the bosonic case, $\exp \left(\pm \boldsymbol{q}_{L}(\boldsymbol{\lambda}) \boldsymbol{I}\right)$ is not singular even for $\boldsymbol{\lambda}=\boldsymbol{h}_{a=-\mathbf{1 / 2}}^{l}$
- Formally, it corresponds to a pure gauge solution to Berkovits' WZW-type SSFT: $\Phi_{c}=-q_{L}(\lambda) I=\eta_{0}\left(-\xi_{0} q_{L}(\lambda) I\right)$

$$
\eta_{0}\left(e^{-\Phi_{c}} \boldsymbol{Q}_{\mathrm{B}} e^{\Phi_{c}}\right)=0
$$

SUMMARY

- A type of identity-based solution to modified cubic SSFT was constructed, which is a straightforward extension of TakahashiTanimoto's scalar solution in bosonic SFT.
- A homotopy operator for the BRST operator Q^{\prime} at the solution was constructed in the same way as the bosonic case.
- Q' can be expressed as a similarity transformation from the conventional BRST operator, even in the case that there exists a homotopy operator.
- Nontrivial part of the conventional BRST cohomology is mapped to Q'-exact form outside the Fock space by a similarity transformation.

DISCUSSION

- Vanishing cohomology at the solution might imply that the D-brane vanishes although it is in the GSO(+) sector.(?)
[cf. Erler(2007)]
- Evaluation of vacuum energy or gauge invariant overlap with appropriate regularization is desired.
- Why does there exist a homotopy operator for (at least apparently) pure gauge solution ?
- More rigorous statement of $\hat{A} U \mathbf{2}^{-2 g} \varphi \simeq 0$ and $e^{q\left(h_{-1 / 2}^{l}\right)} \varphi=Q^{\prime}\left(\hat{A} U 2^{-2 g} \varphi\right)$ $\neq 0$
- Or the relation $\left\{Q^{\prime}, \hat{A}\right\}=\mathbf{1}$ might be broken?

$$
\begin{equation*}
\left(Q^{\prime} \hat{A}+\hat{A} Q^{\prime}\right) U|\cdot\rangle \neq Q^{\prime}(\hat{A} U \mid \cdot \cdot)+\hat{A}\left(Q^{\prime} U \mid \cdot \cdot\right) \tag{?}
\end{equation*}
$$

CALCULATION OF THE STAR PRODUCT FOR THE ANSATZ

- Using star product formulas and anti-commutation relations,

$$
\begin{aligned}
A_{c} * A_{c}= & {\left[\frac{1}{2}\left\{Q_{L}(f), Q_{L}(f)\right\}+\frac{1}{2}\left\{C_{L}(g), C_{L}(g)\right\}+\frac{1}{2}\left\{\Theta_{L}(h), \Theta_{L}(h)\right\}\right.} \\
& \left.\quad+\left\{Q_{L}(f), C_{L}(g)\right\}+\left\{Q_{L}(f), \Theta_{L}(h)\right\}+\left\{C_{L}(g), \Theta_{L}(h)\right\}\right] I \\
=[- & \frac{7}{32}\left\{\Theta_{L}(\partial f), \Theta_{L}(\partial f)\right\}+\frac{3}{4}\left\{Q_{\mathrm{B}}, C_{L}\left((\partial f)^{2}\right)\right\}+\frac{1}{4}\left\{Q_{\mathrm{B}}, \Theta_{L}(f \partial f)\right\}+\frac{1}{2}\left\{\Theta_{L}(h), \Theta_{L}(h)\right\} \\
& \left.+\left\{Q_{\mathrm{B}}, C_{L}(f g)\right\}+\left\{Q_{\mathrm{B}}, \Theta_{L}(f h)\right\}-\frac{3}{4}\left\{\Theta_{L}(\partial f), \Theta_{L}(h)\right\}+\left\{Q_{\mathrm{B}}, C_{L}((\partial f) h)\right\}\right] I
\end{aligned}
$$

- BRST multiplication noting $Q_{\mathrm{B}} I=0$:

$$
\begin{aligned}
Q_{\mathrm{B}} A_{c} & =\left[\left\{Q_{\mathrm{B}}, Q_{L}(f)\right\}+\left\{Q_{\mathrm{B}}, C_{L}(g)\right\}+\left\{Q_{\mathrm{B}}, \Theta_{L}(h)\right\}\right] I \\
& =\left[\frac{1}{4}\left\{Q_{\mathrm{B}}, \Theta_{L}(\partial f)\right\}+\left\{Q_{\mathrm{B}}, C_{L}(g)\right\}+\left\{Q_{\mathrm{B}}, \Theta_{L}(h)\right\}\right] I
\end{aligned}
$$

MODIFIED CUBIC SUPER STRING FIELD THEORY

- Action:
[Preitschopf-Thorn-Yost, Arefeva-Medvedev-Zubarev(1990)]
$S[A, \Psi]=\frac{1}{2}\left\langle A, Y_{-2} Q_{\mathrm{B}} A\right\rangle+\frac{1}{3}\left\langle A, Y_{-2} A * A\right\rangle+\frac{1}{2}\left\langle\Psi, Y Q_{\mathrm{B}} \Psi\right\rangle+\langle A, Y \Psi * \Psi\rangle$
String field
\boldsymbol{A} :NS sector, 0-picture, ghost number 1, Grassmann odd
$\Psi:$ R sector, (-1/2)-picture, ghost number 1/2, Grassmann odd Inverse picture changing operators

$$
\begin{array}{ll}
\boldsymbol{Y}=\boldsymbol{Y}(i)=c(i) \delta^{\prime}(\gamma(i)) & \text { :picture number -1 } \\
\boldsymbol{Y}_{-2}=\boldsymbol{Y}(i) \boldsymbol{Y}(-i) & \text { :picture number -2 }
\end{array}
$$

- A part of (finite) gauge transformations:

$$
A^{\prime}=e^{-\Lambda} A e^{\Lambda}+e^{-\Lambda} Q_{\mathrm{B}} e^{\Lambda}, \quad \Psi^{\prime}=e^{-\Lambda} \Psi e^{\Lambda}
$$

BRST COHOMOLOGY IN 0-PICTURE

- BRST cohomology for $p^{+} \neq 0$
[cf. Kohriki-Kunitomo-Murata(2010)]

$$
Q_{\mathrm{B}} \phi=0 \Leftrightarrow
$$

$$
\phi=\mathcal{P}|\operatorname{tach}\rangle_{0}+\mathcal{P}^{\prime}\left(c_{0}|\operatorname{tach}\rangle_{0}+\frac{\sqrt{2}}{\sqrt{\alpha^{\prime}} k^{+}} \gamma_{-\frac{1}{2}}\left|0, k_{1}\right\rangle_{0}\right)+Q_{\mathrm{B}} \chi
$$

$$
|\operatorname{tach}\rangle_{0}=\left(\psi_{-\frac{1}{2}}^{-}-\frac{1}{\sqrt{2 \alpha^{\prime} k^{+}}} b_{-1} \gamma_{\frac{1}{2}}+\frac{1}{4 \alpha^{\prime}\left(k^{+}\right)^{2}} \psi_{-\frac{1}{2}}^{+}\right)\left|0, k_{1}\right\rangle_{0}, \quad \text { :onshell tachyon in 0-picture }
$$

$$
\left|0, k_{1}\right\rangle_{0}=\left|k_{1}\right\rangle_{\mathrm{mat}} \otimes c_{1}|0\rangle_{b c} \otimes|P=0\rangle_{\beta \gamma}, \quad k_{1}^{+}=k^{+}, k_{1}^{-}=\frac{1}{4 \alpha^{\prime} k^{+}}, k^{i}=0
$$

$\mathcal{P}, \mathcal{P}^{\prime}$:DDF operators in the matter sector

Note: $\left|\mathbf{0}, \boldsymbol{k}_{\mathbf{1}}\right\rangle_{-\mathbf{1}}=\delta\left(\gamma_{\frac{1}{2}}\right)\left|\mathbf{0}, \boldsymbol{k}_{\mathbf{1}}\right\rangle_{\mathbf{0}} \quad$:onshell tachyon in (-1)-picture

$$
|\operatorname{tach}\rangle_{0}=X(0) \frac{1}{\sqrt{2 \alpha^{\prime}} k^{+}}\left|0, k_{1}\right\rangle_{-1}
$$

BRST COHOMOLOGY IN 0PICTURE WITH ZERO MOMENTUM

- BRST cohomology for $\boldsymbol{p}^{\mu}=\mathbf{0}$ can be obtained by expanding the BRST operator with respect to $\gamma_{\frac{1}{2}}$ and $\boldsymbol{\beta}_{-\frac{1}{2}}$.

$$
\begin{aligned}
& Q_{\mathrm{B}} \phi=0 \Leftrightarrow \\
& \phi=\mathcal{C}^{(0)} b_{-1}|\downarrow\rangle_{0}+\mathcal{C}_{\mu}^{(1)}\left(\alpha_{-1}^{\mu}+\psi_{-\frac{1}{2}}^{\mu} b_{-1} \gamma_{\frac{1}{2}}\right)|\downarrow\rangle_{0}+\mathcal{C}_{\mu}^{(2)}\left(\alpha_{-1}^{\mu} c_{0}+2 \psi_{-\frac{1}{2}}^{\mu} \gamma_{-\frac{1}{2}}+\psi_{-\frac{1}{2}}^{\mu} b_{-1} c_{0} \gamma_{\frac{1}{2}}\right)|\downarrow\rangle_{0} \\
& \\
& \quad+\mathcal{C}^{(3)}\left(2 \gamma_{-\frac{1}{2}}^{2}+c_{-1} c_{0}+\gamma_{-\frac{1}{2}} \gamma_{\frac{1}{2}} b_{-1} c_{0}\right)|\downarrow\rangle_{0}+Q_{\mathrm{B}} \chi
\end{aligned}
$$

$$
|\downarrow\rangle_{0}=|0\rangle_{\text {mat }} \otimes c_{1}|0\rangle_{b c} \otimes|P=0\rangle_{\beta \gamma} \quad \mathcal{C}^{(0)}, \mathcal{C}_{\mu}^{(1)}, \mathcal{C}_{\mu}^{(2)}, \mathcal{C}^{(3)}: \text { constants }
$$

- It turned out that they can be also obtained by $X(0)$ from the result of (-1)-picture, up to BRST-exact term.

$$
\begin{aligned}
& Q_{\mathrm{B}} \phi=0 \Leftrightarrow \\
& \phi=\mathcal{C}^{(0)} \beta_{-\frac{1}{2}}|\downarrow\rangle_{-1}+\mathcal{C}_{\mu}^{(1)} \psi_{-\frac{1}{2}}^{\mu}|\downarrow\rangle_{-1}+\mathcal{C}_{\mu}^{(2)} \psi_{-\frac{1}{2}}^{\mu} c_{0}|\downarrow\rangle_{-1}+\mathcal{C}^{(3)} \gamma_{-\frac{1}{2}} c_{0}|\downarrow\rangle_{-1}+Q_{\mathrm{B}} \chi
\end{aligned}
$$

BRST COHOMOLOGY IN (-1/2)-PICTURE

[Henneaux(1987),Lian-Zuckerman(1989)]

- BRST cohomology for $p^{+} \neq 0$

$$
\begin{gathered}
Q_{\mathrm{B}} \phi=0 \Leftrightarrow \quad \phi=|\mathcal{P}\rangle_{-\frac{1}{2}}+\left(c_{0}+\gamma_{0} \frac{\psi_{0}^{+}}{\sqrt{2 \alpha^{\prime}} p^{+}}\right)\left|\mathcal{P}^{\prime}\right\rangle_{-\frac{1}{2}}+Q_{\mathrm{B}} \chi \\
|\mathcal{P}\rangle_{-\frac{1}{2}},\left|\mathcal{P}^{\prime}\right\rangle_{-\frac{1}{2}}: \text { DDF states in the matter sector }
\end{gathered}
$$

- BRST cohomology for $p^{\mu}=\mathbf{0}$

$$
Q_{\mathrm{B}} \phi=0 \Leftrightarrow \phi=A_{0}^{a}\left|S_{a}\right\rangle_{-\frac{1}{2}}+A_{1}^{a} \gamma_{0}\left|S_{a}\right\rangle_{-\frac{1}{2}}+Q_{\mathrm{B}} \chi
$$

$$
\left|S_{a}\right\rangle_{-\frac{1}{2}} \text { :ground states }
$$

$$
A_{0}^{a}, \boldsymbol{A}_{1}^{a} \text { :constants with spacetime spinor index }
$$

ON THE NONTRIVIAL PART OF THE BRST COHOMOLOGY

- Both NS and R sectors, nontrivial part $\boldsymbol{\varphi}$ of $\boldsymbol{Q}_{\mathrm{B}}$-cohomology satisfies: $\quad q_{n}|\varphi\rangle=0 \quad(n>1)$

$$
\begin{aligned}
& q\left(h_{-1 / 2}^{l}\right)=q^{(+)}\left(h_{-1 / 2}^{l}\right)+q^{(0)}\left(h_{-1 / 2}^{l}\right)+q^{(-)}\left(h_{-1 / 2}^{l}\right) \\
& q^{(0)}\left(h_{-1 / 2}^{l}\right)=-q_{0} \log 4, \quad q^{(\pm)}\left(h_{-1 / 2}^{l}\right)=-\sum_{n=1}^{\infty} \frac{(-1)^{n(l+1)}}{n} q_{ \pm 2 n l} \\
& {\left[q_{n}, q_{m}\right]=0} \\
& e^{q\left(h_{-1 / 2}^{l}\right)}|\varphi\rangle=e^{q^{(-)}\left(h_{-1 / 2}^{l}\right)} 2^{-2 q_{0}}|\varphi\rangle=U 2^{-2 g}|\varphi\rangle
\end{aligned}
$$

