Gauge invariants for identity－based tachyon vacuum solutions
 Isao Kishimoto（Niigata University）

Reference：Isao Kishimoto，Toru Masuda and Tomohiko Takahashi，PTEP（2014）103B02［arXiv：1408．6318］
（See also：Nobuyuki Ishibashi，arXiv：1408．6319）
Nov．7－9， 2014 19th Niigata－Yamagata School（Bandai，Fukushima，Japan）

Summary

In my previous talk＠Niigata－Yamgata School（Nov．2，2013）， we have computed gauge invariant overlaps for identity－based marginal solution［KT（2013）］using＂$K^{\prime} B c$ algebra＂in cubic bosonic open string field theory（SFT）．
$\Downarrow \quad$ Extension to the Takahashi－Tanimoto（TT）identity－based scalar solution
Here，we compute gauge invariants，vacuum energy and gauge invariant overlap（GIO），for the TT identity－based scalar solution， using a deformed $K^{\prime} B c$ algebra．The result is consistent with the previous one obtained with other（indirect）methods．

String field theory

The gauge invariant action for cubic bosonic open SFT

$$
S\left[\Psi ; Q_{\mathrm{B}}\right]=-\int\left(\frac{1}{2} \Psi * Q_{\mathrm{B}} \Psi+\frac{1}{3} \Psi * \Psi * \Psi\right)
$$

string field：$|\Psi\rangle=t(x) c_{1}|0\rangle+A_{\mu}(x) \alpha_{-1}^{\mu} c_{1}|0\rangle+i B(x) c_{0}|0\rangle$
Q_{B} ：Kato－Ogawa＇s BRST operator
＊：interaction of open strings（star product） \int ：contraction with the identity state $\langle I|$
The equation of motion
$Q_{\mathrm{B}} \Psi+\Psi * \Psi=0$

Gauge transformation and gauge invariant overlap
The action is invariant under the following transformation： Gauge transformation
$\Psi^{\prime}=e^{-\Lambda} Q_{\mathrm{B}} e^{\Lambda}+e^{-\Lambda} \Psi e^{\Lambda}$
Λ ：gauge parameter string field，the symbol＂$*$＂is omitted．
Gauge invariants defined by an onshell closed string vertex V at the string midpoint：
GIO

$$
O_{V}(\Psi)=\langle I| V(i)|\Psi\rangle
$$

$K B c$ algebra and the ES simple solution
$K B c$ algebra［Schnabl（2005），Okawa（2006）］ $K=Q_{\mathrm{B}} B, \quad Q_{\mathrm{B}} K=0, \quad Q_{\mathrm{B}} c=c K c, \quad B^{2}=0, \quad c^{2}=0, \quad B c+c B=1$ $B=\frac{\pi}{2}\left(B_{1}\right)_{L} I, \quad c=\frac{1}{\pi} c(1) I, \quad\left(B_{1}\right)_{L}=\int_{C_{\text {left }}} \frac{d z}{2 \pi i}\left(1+z^{2}\right) b(z)$ The simple tachyon vacuum solution［Erler－Schnabl（2009）］ $\Psi_{0}(K, B, c)=\frac{1}{\sqrt{1+K}}(c+c K B c) \frac{1}{\sqrt{1+K}}$
Gauge invariants for the ES simple solution can be evaluated：
$-S\left[\Psi_{0}(K, B, c), Q_{\mathrm{B}}\right]=-\frac{1}{2 \pi^{2}}, \quad O_{V}\left(\Psi_{0}(K, B, c)\right)=\frac{1}{\pi}\left\langle V(i \infty) c\left(\frac{\pi}{2}\right)\right\rangle$

The theory around the TT identity－based solution
Action expanding around the TT solution：$\Psi=\Psi_{0}(a)+\Phi$

$$
S\left[\Psi ; Q_{\mathrm{B}}\right]=S\left[\Psi_{0}(a) ; Q_{\mathrm{B}}\right]+S\left[\Phi ; Q^{\prime}\right]
$$

where $Q^{\prime}=\oint \frac{d z}{2 \pi i}\left(e^{h_{a}(z)} j_{\mathrm{B}}(z)-\left(\partial h_{a}(z)\right)^{2} e^{h_{a}(z)} c(z)\right)$
The BRST operator Q^{\prime} around the solution $\Psi_{0}(a)$
$a>-1 / 2: \quad Q^{\prime}=e^{\tilde{q}\left(h_{a}\right)} Q_{\mathrm{B}} e^{-\tilde{q}\left(h_{a}\right)}, \quad \tilde{q}\left(h_{a}\right)=\oint \frac{d z}{2 \pi i} h_{a}(z)\left(j_{\mathrm{gh}}(z)-\frac{3}{2 z}\right)$ $a=-1 / 2: \quad Q^{\prime}$ has no cohomology［KT（2002），Inatomi－KT（2011）］

EOM to the theory around $\Psi_{0}(a)$
$Q^{\prime} \Phi+\Phi * \Phi=0$

$$
\begin{aligned}
& Q_{\Psi_{a}} \text { has a homotopy operator, } \frac{B}{1+K^{\prime}} \text {, and it } \\
& \Rightarrow \quad \exists \Lambda_{a} \text { s.t. } \frac{d}{d a} \Psi_{a}=Q_{\Psi_{a}} \Lambda_{a}
\end{aligned}
$$

Integrating this expression，we obtain a gauge equivalence relation

$$
0-2
$$

$B C$ algebra and the ES－like solution（ $a>-1 / 2$ ）
$K^{\prime} B c$ algebra for $a>-1 / 2$
$K^{\prime}=Q^{\prime} B, Q^{\prime} K^{\prime}=0, Q^{\prime} c=c K^{\prime} c, B^{2}=0, c^{2}=0, B c+c B=1$
The ES－like wedge－based solution to the EOM

$$
\Phi_{0}\left(K^{\prime}, B, c\right)=\frac{1}{\sqrt{1+K^{\prime}}}\left(c+c K^{\prime} B c\right) \frac{1}{\sqrt{1+K^{\prime}}}
$$

In order to evaluate the gauge invariants，we find a relation：

$$
\Phi_{0}\left(K^{\prime}, B, c\right)=e^{\tilde{q}\left(h_{a}\right)} U_{f}^{-1} \Psi_{0}(K, B, c)
$$

where $U_{f}=\exp \left(\sum_{n} v_{n}\left(L_{n}-(-1)^{n} L_{-n}\right)\right)$ is given by a conformal transformation determined by $h_{a}(z)$ ．

Using the above relation，we have
$S\left[\Phi_{0}\left(K^{\prime}, B, c\right) ; Q^{\prime}\right]=S\left[\Psi_{0}(K, B, c) ; U_{f} Q_{\mathrm{B}} U_{f}^{-1}\right]$

$$
=S\left[\Psi_{0}(K, B, c) ; Q_{\mathrm{B}}\right] .
$$

We also note

$$
\langle I| V(i) \tilde{q}\left(h_{a}\right)=0, \quad\langle I| V(i)\left(L_{n}-(-1)^{n} L_{-n}\right)=0
$$

Gauge invariants for the ES－like solution：

$-S\left[\Phi_{0}\left(K^{\prime}, B, c\right), Q^{\prime}\right]=-\frac{1}{2 \pi^{2}}, \quad O_{V}\left(\Phi_{0}\left(K^{\prime}, B, c\right)\right)=\frac{1}{\pi}\left\langle V(i \infty) c\left(\frac{\pi}{2}\right)\right\rangle$
These are the same value for the ES simple solution for tachyon condensation in the original theory．

Gauge equivalence relation
$\Psi_{a} \sim \Psi_{0}(K, B, c)$

$$
\Psi_{0}(a)+\Phi_{0}\left(K^{\prime}, B, c\right)=\Psi_{0}(K, B, c)+\int_{0}^{a} Q_{\Psi_{a}} \Lambda_{a} d a
$$ Or equivaletly，this can be rewritten as

$$
\Psi_{0}(a)+\Phi_{0}\left(K^{\prime}, B, c\right)=g^{-1} Q_{\mathrm{B}} g+g^{-1} \Psi_{0}(K, B, c) g
$$

where $g=\mathrm{P} \exp \left(\int_{0}^{a} \Lambda_{a} d a\right)$ ．
The above implies following relations among gauge invariants：

$$
S\left[\Psi_{0}(a) ; Q_{\mathrm{B}}\right]+S\left[\Phi_{0}\left(K^{\prime}, B, c\right) ; Q^{\prime}\right]=S\left[\Psi_{0}(K, B, c) ; Q_{\mathrm{B}}\right]
$$

$$
O_{V}\left(\Psi_{0}(a)\right)+O_{V}\left(\Phi_{0}\left(K^{\prime}, B, c\right)\right)=O_{V}\left(\Psi_{0}(K, B, c)\right)
$$

Gauge invariants for the identity－based solution

> Then, we immediately obtain:

Energy for the identity－based solution

$$
-S\left[\Psi_{0}(a) ; Q_{\mathrm{B}}\right]= \begin{cases}0 & (a>-1 / 2) \\ -\frac{1}{2 \pi^{2}} & (a=-1 / 2)\end{cases}
$$

GIO for the identity－based solution

$$
O_{V}\left(\Psi_{0}(a)\right)= \begin{cases}0 & (a>-1 / 2) \\ \frac{1}{\pi}\left\langle V(i \infty) c\left(\frac{\pi}{2}\right)\right\rangle & (a=-1 / 2)\end{cases}
$$

These results strongly support our previous expectation

NideAt	Nucasi	Nicait	NUEAA	Nicatic	NUCAAA	Nicait	MVEAA	Nicatia	NGEAA	Nilicita	NMEASA	Nicati	Nucasi	Nicata	NUSAAA
㮽的大昜				＊ \％$_{\text {明大昜 }}$				米的大昜							

