Comments on Solutions for Nonsingular Currents in Open String Field Theories

Isao Kishimoto

I. K., Y. Michishita, arXiv:0706.0409 [hep-th], to be published in PTP

基研研究会@近畿大学

Introduction

• Witten's bosonic open string field theory (d=26):

$$S[\Psi] = -rac{1}{g^2} igg(rac{1}{2} \langle \Psi, Q_{
m B} \Psi
angle + rac{1}{3} \langle \Psi, \Psi st \Psi
angle igg).$$

- There were various attempts to prove Sen's conjecture since around 1999 using the above.
- Numerically, it has been checked with "level truncation approximation." [c.f. ... Gaiotto-Ratelli "Experimental string field theory"(2002)]
- Analytically, some solutions have been constructed.
- Here, we generalize "Schnabl's analytical solutions" (2005, 2007) which include "tachyon vacuum solution" in Sen's conjecture and "marginal solutions."

 In Berkovits' WZW-type superstring field theory (d=10) the action in the NS sector is given by

$$S_{
m NS}[\Phi] = -rac{1}{g^2} \int_0^1 dt \langle\!\langle (\eta_0 \Phi) (e^{-t \Phi} Q_{
m B} e^{t \Phi})
angle \, .$$

- There were some attempts to solve the equation of motion.
- Numerically, tachyon condensation was examined using level truncation. [Berkovits(-Sen-Zwiebach)(2000),...]
- Analytically, some solutions have been constructed.
- Recently [April (2007)], Erler / Okawa constructed some solutions, which are generalization of Schnabl / Kiermaier-Okawa-Rastelli-Zwiebach's marginal solution (2007) in bosonic SFT. We consider generalization of their solutions and examine gauge transformations.

Main claim

Suppose that $\hat{\psi}$ is BRST invariant and nilpotent:

$$egin{aligned} Q_{
m B}\hat\psi&=0,\ \hat\psi*\hat\psi&=0. \end{aligned}$$
 Then, $\Psi^{(lpha,eta)}&=P_lpha*rac{1}{1+\hat\psi*A^{(lpha+eta)}}*\hat\psi*P_eta \end{aligned}$

gives a solution to the EOM: $Q_{\rm B}\Psi^{(lpha,eta)} + \Psi^{(lpha,eta)} * \Psi^{(lpha,eta)} = 0,$

where $Q_{
m B}P_{lpha}=0, \ P_{lpha}*P_{eta}=P_{lpha+eta}, \ P_{lpha=0}=I\,,$ $Q_{
m B}A^{(\gamma)}=I-P_{\gamma}\,.$

In the case $|r = \alpha + 1\rangle = P_{\alpha}$: wedge state, we have $A^{(\gamma)} = \frac{\pi}{2} \int_{0}^{\gamma} d\alpha B_{1}^{L} P_{\alpha}$.

 $\hat{\psi} = U_1^{\dagger} U_1 \lambda c J(0) |0\rangle$, : Schnabl / Kiermaier-Okawa-Rastelli-Zwiebach's $\alpha = \beta = 1/2$ marginal solution for nonsingular current is reproduced.

 $\hat{\psi} = \hat{\lambda} Q_{\rm B} U_1^{\dagger} U_1 B_1^L c_1 |0\rangle, \quad :$ Schnabl's tachyon vacuum solution is reproduced. $\alpha = \beta = 1/2, \ \hat{\lambda} = \infty$

bosonic SFT

Suppose that
$$\hat{\phi}$$
 satisfies following conditions:
 $\eta_0 Q_B \hat{\phi} = 0, \quad \hat{\phi} * \hat{\phi} = 0, \quad \hat{\phi} * \eta_0 \hat{\phi} = 0, \quad \hat{\phi} * Q_B \hat{\phi} = 0.$
Then, $\Phi_{(1)}^{(\alpha,\beta)} = \log(1 + P_\alpha * f_{(1)} * P_\beta), \quad f_{(1)} = \frac{1}{1 - \eta_0 \hat{\phi} * Q_B \hat{A}^{(\alpha+\beta)}} * \hat{\phi},$
 $\Phi_{(2)}^{(\alpha,\beta)} = \log(1 + P_\alpha * f_{(2)} * P_\beta), \quad f_{(2)} = \hat{\phi} * \frac{1}{1 - \eta_0 \hat{A}^{(\alpha+\beta)}} * Q_B \hat{\phi},$
 $\Phi_{(3)}^{(\alpha,\beta)} = -\log(1 - P_\alpha * f_{(3)} * P_\beta), \quad f_{(3)} = \frac{1}{1 - Q_B \hat{\phi} * \eta_0 \hat{A}^{(\alpha+\beta)}} * \hat{\phi},$
 $\Phi_{(4)}^{(\alpha,\beta)} = -\log(1 - P_\alpha * f_{(4)} * P_\beta), \quad f_{(4)} = \hat{\phi} * \frac{1}{1 - Q_B \hat{A}^{(\alpha+\beta)}} * \eta_0 \hat{\phi},$
give solutions to the EOM: $\eta_0 (e^{-\Phi_{(i)}^{(\alpha,\beta)}} Q_B e^{\Phi_{(i)}^{(\alpha,\beta)}}) = 0, \quad (i = 1, 2, 3, 4)$
where $\eta_0 P_\alpha = 0, \quad Q_B P_\alpha = 0, \quad P_\alpha * P_\beta = P_{\alpha+\beta}, \quad P_{\alpha=0} = I,$
 $\eta_0 Q_B \hat{A}^{(\gamma)} = I - P_\gamma.$
In the case P_α : wedge state, we find $\hat{A}^{(\gamma)} = \int_0^{\gamma} d\alpha \log\left(\frac{\alpha}{\gamma}\right) \left(\frac{\pi}{2} J_1^{--L} + \alpha \frac{\pi^2}{4} \tilde{G}_1^{-L} B_1^L\right) P_\alpha.$
 $\hat{\phi} = \zeta_a U_1^{\dagger} U_1 c \xi e^{-\phi} \psi^a(0) | 0 \rangle, \quad \zeta_a \zeta_b \Omega^{ab} = 0, \quad \alpha = \beta = 1/2$
: Erler / Okawa's marginal solutions for nonsingular supercurrents are reproduced.

Witten's bosonic open string field theory

Action:
$$S[\Psi] = -\frac{1}{g^2} \left(\frac{1}{2} \langle \Psi, Q_{\rm B} \Psi \rangle + \frac{1}{3} \langle \Psi, \Psi * \Psi \rangle \right)$$

String field: $|\Psi\rangle = \phi(x)c_1|0\rangle + A_{\mu}(x)\alpha_{-1}^{\mu}c_1|0\rangle + iB(x)c_0|0\rangle + \cdots$

BRST operator:
$$Q_{\rm B} = \oint \frac{dz}{2\pi i} \left(cT^{\rm m} + bc\partial c + \frac{3}{2}\partial^2 c \right)$$

Witten star product:

Equation of motion:

 $Q_{
m B}\Psi + \Psi * \Psi = 0$

Gauge transformation: $\delta_{\Lambda}\Psi = Q_{\rm B}\Lambda + \Psi * \Lambda - \Lambda * \Psi$

Preliminary

• "sliver frame": $\tilde{z} = \arctan z$ (z :UHP) For a primary field ϕ of dim=h, $\tilde{\phi}(\tilde{z}) = \left(\frac{dz}{d\tilde{z}}\right)^h \phi(z) = (\cos \tilde{z})^{-2h} \phi(\tan \tilde{z})$

In particular, we often use $\mathcal{L}_0 \equiv \tilde{L}_0 = L_0 + \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{4k^2 - 1} L_{2k}, \quad K_1 \equiv \tilde{L}_{-1} = L_1 + L_{-1},$ $\mathcal{B}_0 \equiv \tilde{b}_0 = b_0 + \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{4k^2 - 1} b_{2k}, \quad B_1 \equiv \tilde{b}_{-1} = b_1 + b_{-1},$ and $\hat{\mathcal{L}} = \mathcal{L}_0 + \mathcal{L}_0^{\dagger}, \quad K_1^{L/R} = \frac{1}{2} K_1 \pm \frac{1}{\pi} \hat{\mathcal{L}}, \quad \hat{\mathcal{B}} = \mathcal{B}_0 + \mathcal{B}_0^{\dagger}, \quad B_1^{L/R} = \frac{1}{2} B_1 \pm \frac{1}{\pi} \hat{\mathcal{B}}.$

Using
$$U_r = \left(\frac{2}{r}\right)^{\mathcal{L}_0} = \left(\frac{2}{r}\right)^{L_0} e^{-\frac{r^2-4}{3r^2}L_2 + \frac{r^4-16}{30r^4}L_4 + \cdots}$$
 we have a * product formula:

 $U_{r}^{\dagger}U_{r}\tilde{\phi}_{1}(\tilde{x}_{1})\cdots\tilde{\phi}_{n}(\tilde{x}_{n})|0\rangle * U_{s}^{\dagger}U_{s}\tilde{\psi}_{1}(\tilde{y}_{1})\cdots\tilde{\psi}_{m}(\tilde{y}_{m})|0\rangle \\= U_{r+s-1}^{\dagger}U_{r+s-1}\tilde{\phi}_{1}(\tilde{x}_{1}+\frac{\pi}{4}(s-1))\cdots\tilde{\phi}_{n}(\tilde{x}_{n}+\frac{\pi}{4}(s-1))\tilde{\psi}_{1}(\tilde{y}_{1}-\frac{\pi}{4}(r-1))\cdots\tilde{\psi}_{m}(\tilde{y}_{m}-\frac{\pi}{4}(r-1))|0\rangle$

For the wedge state: $|r = \alpha + 1\rangle = U_{\alpha+1}^{\dagger}U_{\alpha+1}|0\rangle = P_{\alpha}$, we have $P_{\alpha} * P_{\beta} = P_{\alpha+\beta}$.

• Associated with the wedge states, we have $A^{(\gamma)} = \frac{\pi}{2} \int_0^{\gamma} d\alpha \, B_1^L P_\alpha \quad \text{such as} \quad Q_B A^{(\gamma)} = I - P_\gamma \quad .$ [Ellwood-Schnabl]

With BRST invariant and nilpotent $\hat{\psi}$:

$$Q_{
m B}\hat\psi=0,\;\;\hat\psi*\hat\psi=0,$$

we have a solution to the equation of motion

$$egin{array}{rll} \Psi^{(lpha,eta)} &=& P_lpha st rac{1}{1+\hat{\psi}st A^{(lpha+eta)}}st \hat{\psi}st P_eta \ &=& \sum_{k=0}^\infty (-1)^k P_lpha st (\hat{\psi}st A^{(lpha+eta)})^k st \hat{\psi}st P_eta \,. \end{array}$$

$$\begin{split} Q_{\rm B} \Psi^{(\alpha,\beta)} &= P_{\alpha} * Q_{\rm B} \left(\frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} \right) * \hat{\psi} * P_{\beta} \\ &= -P_{\alpha} * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \left(Q_{\rm B} (I + \hat{\psi} * A^{(\alpha+\beta)}) \right) * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \hat{\psi} * P_{\beta} \\ &= P_{\alpha} * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \hat{\psi} * \left(Q_{\rm B} A^{(\alpha+\beta)} \right) * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \hat{\psi} * P_{\beta} \\ &= P_{\alpha} * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \hat{\psi} * (I - P_{\alpha+\beta}) * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \hat{\psi} * P_{\beta} \\ &= P_{\alpha} * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \underbrace{\hat{\psi} * \hat{\psi} *}_{0} \frac{1}{1 + A^{(\alpha+\beta)} * \hat{\psi}} * P_{\beta} \\ &= -P_{\alpha} * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \hat{\psi} * P_{\beta} * P_{\alpha} * \frac{1}{1 + \hat{\psi} * A^{(\alpha+\beta)}} * \hat{\psi} * P_{\beta} \\ &= -\Psi^{(\alpha,\beta)} * \Psi^{(\alpha,\beta)} \,. \end{split}$$

Note 1. $\lambda \hat{\psi}$ is also BRST invariant and nilpotent. $\rightarrow \Psi^{(\alpha,\beta)}$ can naturally include 1-parameter. <u>Note 2.</u>

In general, for
$$\Psi^{(\alpha,\beta)}(\psi) \equiv P_{\alpha} * \frac{1}{1+\psi * A^{(\alpha+\beta)}} * \psi * P_{\beta}$$

we have $Q_{B}\Psi^{(\alpha,\beta)}(\psi) + \Psi^{(\alpha,\beta)}(\psi) * \Psi^{(\alpha,\beta)}(\psi)$
 $= P_{\alpha} * \frac{1}{1+\psi * A^{(\alpha+\beta)}} * (Q_{B}\psi + \psi * \psi) * \frac{1}{1+A^{(\alpha+\beta)} * \psi} * P_{\beta}.$

We can regard $\psi \mapsto \Psi^{(\alpha,\beta)}(\psi) = P_{\alpha} * \frac{1}{1 + \psi * A^{(\alpha+\beta)}} * \psi * P_{\beta}$

as a map from a solution to another solution:

$$egin{aligned} Q_{
m B}\psi+\psi*\psi&=0\
ightarrow & Q_{
m B}\Psi^{(lpha,eta)}(\psi)+\Psi^{(lpha,eta)}(\psi)*\Psi^{(lpha,eta)}(\psi)&=0 \end{aligned}$$

Composition of maps forms a commutative monoid:

 $egin{aligned} \Psi^{(lpha,eta)}(\Psi^{(lpha',eta')}(\psi)) &= \Psi^{(lpha+lpha',eta+eta')}(\psi), \quad (lpha,eta,lpha',eta'\geq 0) \ \Psi^{(0,0)}(\psi) &= \psi \,. \end{aligned}$

• Example of BRST invariant and nilpotent $\hat{\psi}$

$$egin{aligned} \hat{\psi} &= \lambda_{
m s} \hat{\psi}_{
m s} + \lambda_{
m m} \hat{\psi}_{
m m}\,, \ \hat{\psi}_{
m s} &= Q_{
m B} \hat{\Lambda}_{0}\,, \quad \hat{\Lambda}_{0} \equiv U_{1}^{\dagger} U_{1} B_{1}^{L} c_{1} |0
angle\,, \ \hat{\psi}_{
m m} &= U_{1}^{\dagger} U_{1} c J(0) |0
angle\,. \end{aligned}$$

where $J(z) = \zeta_a J^a(z)$ is "nonsingular" matter primary of dimension 1:

$$\zeta_a \zeta_b g^{ab} = 0 \,, \qquad J^a(y) J^b(z) \sim rac{g^{ab}}{(y-z)^2} + rac{1}{y-z} i f^{ab}_{c} J^c(z) + \cdots \,.$$

In particular,	$\lambda_{ m s}=0$	$ \Longrightarrow $	marginal solution
	$\lambda_{ m m}=0$		tachyon solution

Due to the nonsingular condition for the current, we find nilpotency :

12

 $c\zeta_a J^a(\epsilon) \, c\zeta_b J^b(0) \sim 0$

Marginal solution

From a BRST invariant, nilpotent $\hat{\psi}_{
m m} = U_1^\dagger U_1 c J(0) |0
angle$ which satisfies

 $({\cal B}_0 - {\cal B}_0^\dagger) \hat{\psi}_{
m m} = 0$, we can generate a solution

$$\Psi^{(lpha,eta)} \;\;=\;\; \sum_{k=0}^\infty (-1)^k \lambda_\mathrm{m}^{k+1} P_lpha st (\hat{\psi}_\mathrm{m} st A^{(lpha+eta)})^k st \hat{\psi}_\mathrm{m} st P_eta = \sum_{n=1}^\infty \lambda_\mathrm{m}^n \psi_{\mathrm{m},n}\,,$$

$$\begin{split} \psi_{\mathrm{m},1} &= U_{\alpha+\beta+1}^{\dagger}U_{\alpha+\beta+1}\tilde{c}\tilde{J}(\frac{\pi}{4}(\beta-\alpha))|0\rangle, \\ \psi_{\mathrm{m},k+1} &= \left(-\frac{\pi}{2}\right)^{k}\int_{0}^{\alpha+\beta}dr_{1}\cdots\int_{0}^{\alpha+\beta}dr_{k}U_{\alpha+\beta+1+\sum_{l=1}^{k}r_{l}}^{\dagger}U_{\alpha+\beta+1+\sum_{l=1}^{k}r_{l}}\prod_{m=0}^{k}\tilde{J}\left(\frac{\pi}{4}(\beta-\alpha-\sum_{l=1}^{m}r_{l}+\sum_{l=m+1}^{k}r_{l})\right) \\ &\times\left[-\frac{1}{\pi}\hat{\mathcal{B}}\tilde{c}(\frac{\pi}{4}(\beta-\alpha+\sum_{l=1}^{k}r_{l}))\tilde{c}(\frac{\pi}{4}(\beta-\alpha-\sum_{l=1}^{k}r_{l}))+\frac{1}{2}\left(\tilde{c}(\frac{\pi}{4}(\beta-\alpha+\sum_{l=1}^{k}r_{l}))+\tilde{c}(\frac{\pi}{4}(\beta-\alpha-\sum_{l=1}^{k}r_{l}))\right)\right]|0\rangle. \end{split}$$

Tachyon solution

From a BRST invariant, nilpotent $\hat{\psi}_{s} = Q_{B}U_{1}^{\dagger}U_{1}B_{1}^{L}c_{1}|0\rangle$ which satisfies $(\mathcal{B}_0 - \mathcal{B}_0^{\dagger})\hat{\psi}_s = 0$, we can generate a solution:

$$\Psi^{(\alpha,\beta)} = \sum_{k=0}^{\infty} (-1)^k \lambda_{\mathrm{s}}^{k+1} P_{\alpha} * \hat{\psi}_{\mathrm{s}} * (A^{(\alpha+\beta)} * \hat{\psi}_{\mathrm{s}})^k * P_{\beta} = \sum_{n=1}^{\infty} \lambda_{\mathrm{s}}^n \psi_{\mathrm{s},n} .$$

Each term is computed as

$$\begin{split} \psi_{\mathrm{s},n} &= P_{\alpha} * (Q_{\mathrm{B}} \hat{\Lambda}_{0}) * P_{\beta} * (P_{\alpha} * \hat{\Lambda}_{0} * P_{\beta} - I)^{n-1} = -\sum_{l=0}^{n-1} \frac{(-1)^{n-1-l}(n-1)!}{l!(n-1-l)!} \partial_{t} \psi_{t,l}^{(\alpha,\beta)}|_{t=0} \,, \\ \psi_{t,n}^{(\alpha,\beta)} &= \frac{2}{\pi} U_{n(\alpha+\beta)+t+\alpha+\beta+1}^{\dagger} U_{n(\alpha+\beta)+t+\alpha+\beta+1} \bigg[\\ &-\frac{1}{\pi} \hat{\mathcal{B}} \tilde{c} (\frac{\pi}{4} (\beta - \alpha + t + n(\alpha + \beta))) \tilde{c} (\frac{\pi}{4} (\beta - \alpha - t - n(\alpha + \beta))) \\ &+ \frac{1}{2} \bigg\{ \tilde{c} (\frac{\pi}{4} (\beta - \alpha + t + n(\alpha + \beta))) + \tilde{c} (\frac{\pi}{4} (\beta - \alpha - t - n(\alpha + \beta))) \bigg\} \bigg] |0\rangle \,. \end{split}$$

Then, we can re-sum the above as

$$\Psi^{(lpha,eta)} \;=\; -\sum_{l=0}^\infty \lambda_S^{l+1} \partial_t \psi^{(lpha,eta)}_{t,l}|_{t=0}\,.$$

Here, expansion parameter is redefined as

$$\lambda_S \equiv rac{\lambda_{
m s}}{\lambda_{
m s}+1}\,.$$

The solution can be rewritten as $\Psi^{(\alpha,\beta)} = e^{\frac{\pi}{4}(\beta-\alpha)K_1}(\alpha+\beta)^{\frac{D}{2}}\Psi^{(1/2,1/2)},$

where $K_1 = L_1 + L_{-1}$, $D = \mathcal{L}_0 - \mathcal{L}_0^{\dagger}$ are BPZ odd and derivations w.r.t. *****,

and $\Psi^{(1/2,1/2)}$ is the Schnabl's solution for tachyon condensation at

 $\lambda_S = 1 \hspace{0.2cm} \leftrightarrow \hspace{0.2cm} \lambda_{
m s} = \infty$.

By regularizing it as
$$\Psi^{(\alpha,\beta)}|_{\lambda_S=1} = \lim_{N \to \infty} \left(\frac{1}{\alpha+\beta} \psi^{(\alpha,\beta)}_{t=0,N} - \sum_{n=0}^N \partial_t \psi^{(\alpha,\beta)}_{t,n}|_{t=0} \right),$$

the new BRST operator around the solution $Q'_{\rm B}$ satisfies $Q'_{\rm B}A^{(\alpha+\beta)} \equiv Q_{\rm B}A^{(\alpha+\beta)} + \Psi^{(\alpha,\beta)}|_{\lambda_S=1} * A^{(\alpha+\beta)} + A^{(\alpha+\beta)} * \Psi^{(\alpha,\beta)}|_{\lambda_S=1} = I$,

which implies vanishing cohomology and

$$S[\Psi^{(lpha,eta)}|_{\lambda_S=1}]/V_{26} \;\;=\;\; rac{1}{2\pi^2 g^2} = T_{25}.$$

This result is (α, β) -independent.

 $-rac{S[\Psi]}{V_{26}}$

<u>Note</u>

We can evaluate the action as

$$S[\Psi^{(lpha,eta)}]/V_{26} = 0 \quad (|\lambda_S| < 1) \, .$$

In fact, the solution can be rewritten as pure gauge form by evaluating the infinite summation formally

$$\Psi^{(lpha,eta)} = Q_{
m B}(\lambda_S P_lpha * \hat{\Lambda}_0 * P_eta) * rac{1}{1 - \lambda_S P_lpha * \hat{\Lambda}_0 * P_eta}$$

Berkovits' WZW-type super SFT

The action for the NS sector is $S_{NS}[\Phi] = -\frac{1}{g^2} \int_0^1 dt \langle\!\langle (\eta_0 \Phi) (e^{-t\Phi} Q_B e^{t\Phi}) \rangle\!\rangle.$

String field Φ : ghost number 0, picture number 0, Grassmann even, expressed by matter and ghosts b, c, ϕ, ξ, η ($\beta = e^{-\phi}\partial\xi, \gamma = \eta e^{\phi}$):

 $Q_{\rm B} = \oint rac{dz}{2\pi i} (c(T^{
m m} - rac{1}{2}(\partial\phi)^2 - \partial^2\phi + \partial\xi\eta) + bc\partial c + \eta e^{\phi}G^{
m m} - \eta\partial\eta e^{2\phi}b)(z),$

 $\eta_0 = \oint rac{dz}{2\pi i} \eta(z).$

Equation of motion: $\eta_0(e^{-\Phi}Q_{
m B}e^{\Phi})=0 ~~\leftrightarrow~~ Q_{
m B}(e^{\Phi}\eta_0e^{-\Phi})=0$

Gauge transformation: $\delta e^{\Phi} = \Xi_1 * e^{\Phi} + e^{\Phi} * \Xi_2$, $Q_B \Xi_1 = 0$, $\eta_0 \Xi_2 = 0$.

Using the wedge states $|r = \alpha + 1\rangle = P_{\alpha}$ as in bosonic SFT, we have

 $Q_{\mathrm{B}}P_{lpha}=0\,,\quad\eta_{0}P_{lpha}=0\,,\quad P_{lpha}*P_{eta}=P_{lpha+eta}\,,\quad P_{lpha=0}=I.$

Corresponding to the wedge states, we have constructed $\hat{A}^{(\gamma)}$:

$$\hat{A}^{(\gamma)} = \int_{0}^{\gamma} d\alpha \log\left(\frac{\alpha}{\gamma}\right) \left(\frac{\pi}{2}J_{1}^{--L} + \alpha\frac{\pi^{2}}{4}\tilde{G}_{1}^{-L}B_{1}^{L}\right) P_{\alpha},$$
such as $\eta_{0}\hat{A}^{(\gamma)} = -\frac{\pi}{2}\int_{0}^{\gamma} d\alpha B_{1}^{L}P_{\alpha}, \quad Q_{B}\hat{A}^{(\gamma)} = -\frac{\pi}{2}\int_{0}^{\gamma} d\alpha \tilde{G}_{1}^{-L}P_{\alpha}, \quad \eta_{0}Q_{B}\hat{A}^{(\gamma)} = I - P_{\gamma}.$

$$J^{--}(z) = \xi b(z), \quad \tilde{G}^{-} = [Q_{B}, J^{--}(z)] \implies J_{1}^{--L}, \quad \tilde{G}_{1}^{-L} \quad \text{are defined in the same way as } B_{1}^{L}.$$

Then, we find that

$$\begin{split} \Phi_{(1)}^{(\alpha,\beta)}(\phi) &= \log(1+P_{\alpha}*f_{(1)}*P_{\beta}), \qquad f_{(1)} = \frac{1}{1+(e^{\phi}\eta_{0}e^{-\phi})Q_{\mathrm{B}}\hat{A}^{(\alpha+\beta)}}(e^{\phi}-1), \\ \Phi_{(2)}^{(\alpha,\beta)}(\phi) &= \log(1+P_{\alpha}*f_{(2)}*P_{\beta}), \qquad f_{(2)} = (e^{\phi}-1)\frac{1}{1-\eta_{0}\hat{A}^{(\alpha+\beta)}(e^{-\phi}Q_{\mathrm{B}}e^{\phi})}, \\ \Phi_{(3)}^{(\alpha,\beta)}(\phi) &= -\log(1-P_{\alpha}*f_{(3)}*P_{\beta}), \qquad f_{(3)} = \frac{1}{1-(e^{-\phi}Q_{\mathrm{B}}e^{\phi})\eta_{0}\hat{A}^{(\alpha+\beta)}}(1-e^{-\phi}), \\ \Phi_{(4)}^{(\alpha,\beta)}(\phi) &= -\log(1-P_{\alpha}*f_{(4)}*P_{\beta}), \qquad f_{(4)} = (1-e^{-\phi})\frac{1}{1+Q_{\mathrm{B}}\hat{A}^{(\alpha+\beta)}(e^{\phi}\eta_{0}e^{-\phi})}, \end{split}$$

map solutions to other solutions because

$$e^{\Phi_{(1)}^{(lpha,eta)}}\eta_0 e^{-\Phi_{(1)}^{(lpha,eta)}} = e^{\Phi_{(4)}^{(lpha,eta)}}\eta_0 e^{-\Phi_{(4)}^{(lpha,eta)}} = P_lpha rac{1}{1+(e^\phi\eta_0 e^{-\phi})Q_{
m B}\hat{A}^{(lpha+eta)}}(e^\phi\eta_0 e^{-\phi})P_eta,
onumber ,
on$$

18

If $\hat{\phi}$ satisfies $\eta_0 Q_B \hat{\phi} = 0$, $\hat{\phi} * \hat{\phi} = 0$, $\hat{\phi} * \eta_0 \hat{\phi} = 0$, $\hat{\phi} * Q_B \hat{\phi} = 0$, $\hat{\phi}$ is a solution: $\eta_0 (e^{-\hat{\phi}} Q_B e^{\hat{\phi}}) = 0$.

$$\implies \Phi_{(i)}^{(\alpha,\beta)}(\hat{\phi})$$
, $(i=1,2,3,4)$ are also solutions.

Example of $\hat{\phi}$ using nonsingular matter supercurrent:

$$\mathrm{J}^a(z, heta)=\psi^a(z)+ heta J^a(z)$$

$$\hat{\phi}=\zeta_a U_1^\dagger U_1 c \xi e^{-\phi} \psi^a(0) |0
angle\,, \quad \zeta_a \zeta_b \Omega^{ab}=0\,,$$

where we suppose

$$egin{array}{lll} \psi^a(y)\psi^b(z) &\sim & (y-z)^{-1}\Omega^{ab}\,,\ J^a(y)\psi^b(z) &\sim & (y-z)^{-1}if^{ab}_{c}\psi^c(z)\,,\ J^a(y)J^b(z) &\sim & (y-z)^{-2}\Omega^{ab}+(y-z)^{-1}if^{ab}_{c}J^c(z)\,. \end{array}$$

More explicitly, on the flat background, we can take

$$\mathrm{J}^{\mu}(z, heta)=\psi^{\mu}(z)+ heta i\partial X^{\mu}(z),~~\zeta_{\mu}\zeta_{
u}\eta^{\mu
u}=0\,.$$

Gauge transformations

Using path-ordering, we found

$$egin{aligned} \Psi^{(lpha,eta)} &= V^{(lpha,eta)-1} st \psi st V^{(lpha,eta)} + V^{(lpha,eta)-1} st Q_{\mathrm{B}} st V^{(lpha,eta)}, \ V^{(lpha,eta)} &= \mathrm{P} \exp \int_{0}^{1} dt G^{(lpha,eta)}(t)\,, \end{aligned}$$

 $G^{(lpha,eta)}(t) \;\equiv\; rac{-\pi}{2} igg(lpha (B_1^L P_{tlpha}) * rac{1}{1+\psi * A^{(t(lpha+eta))}} * \psi * P_{teta} + eta P_{tlpha} * rac{1}{1+\psi * A^{(t(lpha+eta))}} * \psi * B_1^R P_{teta} igg),$

for bosonic SFT.

(In the case $\ lpha=eta$, this form coincides with Ellwood's one.)

In this sense,

 $\Psi^{(lpha,eta)}\sim$

Without the identity state, including Schnabl's marginal and scalar solutions

Based on the identity state, BRST inv. and nilpotent

• Similarly, in super SFT, we have found

$$e^{\Phi_{(3)}^{(\alpha,\beta)}} = W_{1} * e^{\phi} * W_{2}, \quad Q_{B}W_{1} = 0, \quad \eta_{0}W_{2} = 0,$$

$$W_{1} \equiv P' \exp \int_{0}^{1} dtG_{1}^{(\alpha,\beta)}(t), \quad W_{2} \equiv P \exp \int_{0}^{1} dtG_{2}^{(\alpha,\beta)}(t),$$

$$G_{1}^{(\alpha,\beta)}(t) \equiv \frac{\pi}{2} \left[-\alpha K_{1}^{L}I + (\alpha + \beta)Q_{B}B_{1}^{R} \left(P_{t\alpha} \frac{1}{1 - Q_{B}((e^{\phi} - 1)\eta_{0}\hat{A}^{(t(\alpha+\beta))})}(e^{\phi} - 1)P_{t\beta} \right) \right],$$

$$G_{2}^{(\alpha,\beta)}(t) \equiv \frac{\pi}{2} \left[\alpha K_{1}^{L}I + (\alpha + \beta)B_{1}^{R} \left(P_{t\alpha}(e^{-\phi}Q_{B}e^{\phi}) \frac{1}{1 - \eta_{0}\hat{A}^{(t(\alpha+\beta))}(e^{-\phi}Q_{B}e^{\phi})}P_{t\beta} \right) \right],$$

$$e^{\Phi_{(1)}^{(\alpha,\beta)}} = W_{3} * e^{\phi} * W_{4}, \quad Q_{B}W_{3} = 0, \quad \eta_{0}W_{4} = 0,$$

$$W_{3} \equiv P' \exp \int_{0}^{1} dtG_{4}^{(\alpha,\beta)}(t), \quad W_{4} \equiv P \exp \int_{0}^{1} dtG_{3}^{(\alpha,\beta)}(t),$$

$$G_{3}^{(\alpha,\beta)}(t) \equiv \frac{\pi}{2} \left[\alpha K_{1}^{L}I - (\alpha + \beta)\eta_{0}\tilde{G}_{1}^{-R} \left(P_{t\alpha} \frac{1}{1 - \eta_{0}((1 - e^{-\phi})Q_{B}\hat{A}^{(t(\alpha+\beta))})}(1 - e^{-\phi})P_{t\beta} \right) \right],$$

$$e^{\Phi_{(2)}^{(\alpha,\beta)}} = U_{23} * e^{\Phi_{(3)}^{(\alpha,\beta)}}, \quad e^{\Phi_{(1)}^{(\alpha,\beta)}} = e^{\Phi_{(4)}^{(\alpha,\beta)}} * V_{41},$$

$$U_{23} \equiv 1 - Q_{B} \left(P_{\alpha}(e^{\phi} - 1) \frac{1}{1 - \eta_{0}\hat{A}^{(\alpha+\beta)}(e^{-\phi}Q_{B}e^{\phi})} \eta_{0} \hat{A}^{(\alpha+\beta)}(1 - e^{-\phi})P_{\beta} \right),$$

$$V_{41} \equiv 1 + \eta_{0} \left(P_{\alpha}(1 - e^{-\phi}) \frac{1}{1 + Q_{B}\hat{A}^{(\alpha+\beta)}(e^{\phi}\eta_{0}e^{-\phi})} Q_{B}\hat{A}^{(\alpha+\beta)}(e^{\phi} - 1)P_{\beta} \right).$$

In this sense,

Without the identity state, including Erler / Okawa's marginal solutions Based on the identity state, $\eta_0 Q_{
m B} \hat{\phi} = 0, \ \hat{\phi} * \hat{\phi} = 0, \ \hat{\phi} * \eta_0 \hat{\phi} = 0, \ \hat{\phi} * Q_{
m B} \hat{\phi} = 0.$

Note:

The above gauge equivalence relations seem to be *formal* and might not be well-defined.

The gauge parameter string fields might become "singular," as well as Schnabl or Takahashi-Tanimoto's tachyon solution.

Future problems

• How about general (super)currents? Namely, $\zeta_a \zeta_b g^{ab} \neq 0$, $\zeta_a \zeta_b \Omega^{ab} \neq 0$.

C.f. [KORZ], [Fuchs-Kroyter-Potting], [Fuchs-Kroyter], [Kiermaier-Okawa]

In [Takahashi-Tanimoto, Kishimoto-Takahashi] some solutions based on the identity state for general (super)current were already constructed.

At least formally, $\Psi^{(\alpha,\beta)}(\Psi^{TT})$ and $\Phi^{(\alpha,\beta)}(\Phi^{KT})$ with $\alpha,\beta>0$

give solutions which are not based on the identity state! Zeze's talk!

So far, various computations seem to be rather formal.

• Definition of the "regularity" of string fields?

It is very important in order to investigate "regular solutions," gauge transformations among them and cohomology around them.

弦の場の理論 07

理研シンポジウム

弦の場の理論 07

10月6日(土),7日(日)

埼玉県和光市理化学研究所 大河内記念ホール

http://www.riken.jp/lab-www/theory/sft/