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INTRODUCTION

1999-
There are various attempts to prove Sen’s conjecture 
using Witten’s open string field theory:

→ Equation of motion

Numerical solutions using level truncation “approximation,”
Analytic solutions using the identity state,
… 3



Schnabl’s solution for tachyon condensation 
Adv.Theor.Math.Phys.10(2006)433[hep-th/0511286]
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Perturbative vacuum

Non-perturbative vacuum

D25-brane vanishes.
No open strings.



No BRST cohomology around Schnabl’s solution  
proved by Ellwood-Schnabl JHEP02(2007)096[hep-th/0606142]
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In fact, using the above,



In 2007, new solutions for deformations by nonsingular 
marginal operator

Schnabl, hep-th/0701248; Kiermaier-Okawa-Rastelli-Zwiebach,hep-th/0701249

Solutions to the EOM:
Extension of Schnabl/KORZ’s marginal solutions to 

Berkovits’ superstring field theory
Erler, JHEP07(2007)050[arXiv:0704.0930]; Okawa, arXiv:0704.0936, arXiv:0704.3612

Solutions to the EOM:

These solutions are all generated from simple solutions 
based on the identity state.

I.K.-Y.Michishita, PTP118(2007)347[arXiv:0706.0409]

(Furthermore, we can generalize the above solutions.) 6



Different type of new solutions for deformations by 
marginal operator: 

Fuchs-Kroyter-Potting, arXiv:0704.2222 (bosonic SFT)
Fuchs-Kroyter, arXiv:0706.0717 (super SFT)

Kiermaier-Okawa, arXiv:0707.4472 (bosonic SFT), 
arXiv:0708.3394 (super SFT)

→  Okawa’s talk in “String field theory 07” (Oct. 6, RIKEN)
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Generalization



Action:

String field:

BRST operator :
(Kato-Ogawa)

WITTEN’S BOSONIC STRING FIELD THEORY
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Inner product (BPZ):
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The Kinetic term is computed as

Reflector: 
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Star product: 

3-string vertex: 



The interaction term is given  by the delta functional:
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Equation of moiton:

The action            has gauge invariance.
Gauge transformation (infinitesimal):

Gauge transformation (finite)
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In principle, we can compute the star product 
using explicit oscillator representation:
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Neumann coefficients are explicitly given by:
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Note: The Neumann matrices are essentially constructed by

There are some nonlinear relations among them.

However, it seems quite difficult to solve the EOM explicitly
using the above.



Using the LPP (LeClair-Peskin-Preitshopf) 
prescription, the reflector and the 3-string vertex 
are obtained by CFT correlator.
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Conventionally, they are defined on UHP. 
The conformal maps from half unit disk to UHP are given by:



SLIVER FRAME
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From UHP to semi-infinite cylinder

Primary field
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In the sliver frame, new oscillators can be written by linear 
combinations of the conventional ones. For example,

We define:
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we have a “simple” star product formula：

In the case of no insertion, a commutative algebra 
for wedge states is reproduced.

Using,

is the identity state.
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Star product



SCHNABL’S SOLUTION FOR TACHYON
CONDENSATION

Noting
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generate an algebra with the star product and derivation       .

※ -levels（eigenvalue） of the above states are
, respectively.

※The star product of  terms with -levels yields terms with      -level
such as                                .
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Ansatz for solutions with ghost number 1:

Similarly to the conventional Siegel gauge condition： , 
we impose the Schnabl gauge condition：

Furthermore, we impose twist symmetry:
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In the case  p, p+q: odd, we take the coefficients as

which is compatible with the gauge condition, and substitute the ansatz
to the EOM. Its coefficient for                     implies

→  a differential equation for the generating function:



Solutuion to the diff. eq.：

23

“Candidate” for the solution to EOM

Bernoulli number

polylogarithmic function
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We have checked several hundred terms of the EOM 
other than                       using Mathematica.

However, it seems to be difficult to prove all terms directly.



EOM can be checked using a different expression:
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Expanding it with respect to    , we have 

pure gauge form → (trivial) solution to the EOM!
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However, if and only if , we have

→ Euler-Maclaurin expansion

In the last equation, N is a “regularization.”

The first term goes to zero by     -level truncation. (→ Phantom)



By ignoring the first term, we can show the EOM 
using the identity:

However, the first term (phantom) cannot be 
ignored when one evaluates the potential height. 
It gives finite contribution! 28



→ should be zero!?

Evaluation of the action

29

Based on 

we have



Naively, the quadratic term of the action can be evaluated as
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Similarly, the cubic term of the action is



31
The lower triangle part gives zero.

In the case            , 
this part cannot be ignored.
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In the case            , using

the action is numerically calculated as follows:
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The large N limit can be evaluated analytically:

Similarly, with                              ,  we can show

In the above sense,

：tachyon vacuum

：pure gauge



SCHNABL / KORZ’S MARGINAL SOLUTION

A map from solution to solution

Suppose                     such as

and associated               such as

then

gives a map form solution to solution.
34



Because       is a derivation, we have a relation:
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Therefore,

⇒

• Explicit example of                and         :



In order to solve the EOM using 
a solution       : is necessary.

Instead, we impose stronger conditions:

which imply that        is a solution.

From this simple solution     , we can generate
complicated solutions by                    .
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Example of BRST-invariant and nilpotent string field:

37

Here, is nonsingular marginal operator:

Ex.)

Light-cone direction

Rolling tachyon



MARGINAL SOLUTION
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In the case 
Schnabl / KORZ’s solution



TACHYON SOLUTION (REVISITED)
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Let us consider a solution generated from a BRST-inv and nilpotent          :

Each terms can be rewritten as：



Note:
are BPZ odd, commutative with and derivations. 40

Exchanging the order of double sum, we have

Here,we have redefined the parameter：

Furthermore, we can compute as

Schnabl’s solution
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Using this relation and property of       , we conclude

Note:

Formally, the solution has pure gauge form:



String  feild :  #ghost 0, #picture 0, Grassmann even, 
written by 

EXTENSION TO SUPERSTRING FIELD THEORY
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Berkovits’ WZW-type superstring field theory (NS sector)：



n-string vertex  is given by CFT correlator in the 
large Hilbert space.
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EOM:

Gauge tr.:

We can use the same techniques (the sliver frame, 
star product formula, wedge states,…) as the bosonic case.
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We have found a map from solution to solution
similarly to the bosonic case.

and associated         which satisfies

Suppose                 such as



give maps from solution to solution. 45

Then,



Explicit example of                and        :

We can check the EOM by using relations: 

46are defined in the same way as       .



In particular,                      : Erler / Okawa’s solution

To solve the EOM using
a solution      :                             is necessary.

Instead, we impose stronger conditions

which implies is a solution. For example,
(light-cone direction)

From  a simple solution        , we can generate 
more complicated solution by
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SUMMARY AND FUTURE DIRECTIONS

Since Schnabl’s construction of tachyon solution 
(2005), there have been new developments in open 
string field theories.

In this year, new marginal solutions using 
nonsingular (super)current are constructed in both 
bosonic and super string field theory.

They are all generated from simple solutions by 
maps from solution to solution.

For more general (super)currents, new marginal 
solutions are constructed. 48



How about other solutions?
For example, we can generate  new “regular” 
solutions from Takahashi-Tanimoto / Kishimoto-
Takahashi’s solution (bosonic/super), which are 
based on the identity state, using maps from 
solution to solution.

How about gauge equivalence among solutions?

Physical meaning of obtained solutions? BRST 
cohomology around them?

We should define “regularity” of string fields 
because some formal treatments might be 
dangerous.
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Using path-order forms with respect to the star product, 
“maps from solution to solution” can be rewritten as gauge 
transformations. 
In the case of our explicit examples,

ON GAUGE EQUIVALENCE

50

Based on the identity stateBased on wedge states
without the identity state

bosonic:

super:

This may imply the gauge transformations are singular.
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