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Introduction

In our previous work, we have investigated
the tachyon vacuum solution in marginally
deformed background using K’Bc algebra.
[T. Takahashi’s talk]

Here, we will extend it to the case of SSFT.

Identity-based marginal solution in SSFT
[I.K.-Takahashi (2005)]

KBc — GKBcy |Erler (2010)]
K’Bc — G’K’Bey [This talk]
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|dentity-based marginal solution in

Berkovits’ WZW-like SSFT

e In [[.K.-T.Takahashi(2005)], we have constructed a type
of marginal solution in WZW-like SSFT:
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|dentity-based marginal solution in

modified cubic SSFT

e A solution is obtained from &, = -—vV2(F,)I

U, =e PoQgpe® ==l QpU,;+P;x¥; =0
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OPEs of supercurrent

e Component fields of supercurrent satisty

1 1 1
YUY (2) ~ QP T )Y0(E) ~ (2,
Yy — 2

Yy — <

1 1 1
ﬂab : fachC(Z)’
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TR ~ oy

Qab — Qba’ fabcﬂcd + faCiQCb — O,
fabc — bac’ abddee + j_-bcdfa,cti9 + fcadfbde — 0.

Y?*(z), J*(z) are primary fields and have dimension 1/2 and 1, respectively.

T(z) = Qup:(J*J+00"Y%): (2) + %Qadﬂbe fe (T Py 4p® @O T — JP9) ) (2),

G(2) = 2Qu :J9Y":(2) + %Qadﬁbefdeczwa:@bbwczz (2),



BRST operator around the solution

e Expanding around the solution in the action of the
modified cubic SSFT, the BRST operator becomes:

1
Q' =Q+ [Py, -} = Qs — V(F,) gﬂabC(Fan)

VAN = f i T FE(IE) + 7t (), O = f 57 F()el2)
* L, G are deformed in the matter sector.
1
L, ={Q" b} =L, — — Z Fordi_ o+ Q%Y Fon rFou,
k:EZ 8 keZ
G, =[Q,8] =Gr— —= ZFam .

keZ F,, = %d_aei(nﬂ)apa(eia)
’ 27



NS action without GSO projection in

modified cubic SSFT

e String fields have Chan-Paton factor as in the table:

Grassmann worldsheet
parity(e) spinor(F)

S|¥| = %«\If QY + %«\IIS» even even 1

/ \ odd even 03
U= Wios+ U oy  Q=Quos  oven  odd o
GSO(+) GSO(-) odd odd 01

(A) = ~Tr (o5(I]Y_A)) Y_» =Y (§)Y(—i), Y(2)=c(2)d'(v(2)).

2 Picture changing operator with picture number (-2)

e NS action: CP factor

Q(2T) = (QP)¥ + (-1)* Ve (Qw),
(DT = (—1)E@)FF(@)((V)+FT)) (JP)),
(QC-+)) =o.



GKBcy string fields in SSFT

e KBc with CP factor

T 0y 1
K = EKfI, B = EBfIag, c= ;c(l)Iag

* Gy G=Gploy, v= \/—;’7(1)10'2
/ [Erler(2010)]

1
gL—_(g+g)
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GKBcy algebra

* KBc algebra in SSFT
Bc+c¢cB=1, BK=KB, B*=0, c*=0,
QBzK, QKz(), Qc:c[{c—'y2

1 [Erler(2010)]
* Gyie*=K,| @G =0, @y=coy— (9,

By+~vB =0, ¢cy+~vc=0

° O bc=2in, 57:—%&;, 5G = 2K, 6K =0, 6B =0

50 = G® — (—)F PG = (Go1)®, 0B =K® — ®K — gchb
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G’K’Bcy algebra

* K’Bc algebra in SSFT
Bc+cB =1, BK' = K'B, BZZO, (32:07
Q’B:K', Q,K’ZO, QA,C:CK,C—"Yz:cKc—fyz




Solutions using G’K’Bcey

e NS action without GSO projection around the solution ¥ jo3:
1 A 1
S'[®] = S[® + V03] — S[Pyo3] = _ (2 Q'P) + [ (&%)

e Equation of motion: (:2' $ L P2 — 0

o A class of solutions to EOM (a version of [Erler(2010)])

/ K/ / .
2y = VT (e e+ BY) VF = VF (o1 2 Bet Q(B)) VF

1— f°

(G = fo(K') + f1(K")G’ :a function of G’

Note: G,Z p— K,



Tachyon vacuum and half-brane solution

in the marginally deformed background

e We consider two examples: £ 1 111G

TI1+ K 1+iG 1+ K

® Tachyon vacuum solution: (a version of [Erler-Schnabl(2009), Gorbachev(2010)])

1

b =
' VIF K

(C+Q'(BC)) AT

e Half-brane solution: (a version of [Erler(2010)])

1

B, —
= /I1i

(—z’cG’Bc + Q’(Bc)) e



Vacuum energy for tachyon vacuum

solution

e The action is evaluated as: §Bp] = — iyt e Ly
a 6" 1+K 1+K'
1 o :
® . . — dt e_t(l_l_K )
We use an expression: 7 K /0
* K’is given by
K =K—J+ gCI, J%(2) = (cos £)"2J*(tan %) in the sliver frame

/ F,(tan(it + T))

T [ Az _
J = 5/_00 ULOUT@10),  fal®) = 2

d Qab
C = —Z(l + 2%)
CL 271 8

Fu)F(x) =2 [ T o () o (1)-



Expansion of the exponential

¢ The N-th order of J in the exponential can be computed as

e At lo (™)

1—uq 1—u;—uz---—un_1
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Extended Feynman’s formula
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Evaluation of the action

e y-ordered exponential:

t o0
{e—tK' — e3¢0, , T exp (% / du / dt’ £, (') (it + %u)) |0>J
—t — 00

e Computation of the CFT correlator:
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Result for tachyon vacuum solution

* Finally, we obtain - - . 2 "
S,[(I)T] — / dt/ ds e_t_s( + S) = —=
0 o

1272 272

e This value is the same as a D-brane tension. Namely, the
vacuum energy of ®ris the same as that of the tachyon

vacuum in the original theory. [Erler(2007), Gorbachev(2010]]

e Akey relation is the same as the bosonic case: [T.Takahashi’s talk]

( )

—TZC z = / N 70 2it’
e” 2% ( exp / du/ dt fo(t")J*( T +u) =1
—2 —° mat

. J




Vacuum energy for half-brane solution

e Noting the structure of the CP factor, we have
1
S'[®u] = - (~ A1 + Az),
A; = (cG'Be, Q' (cG'Bc)), As; = (cG'BeG’, Q' (cG'Bc)G’)

, 1 —t—s —tK’ —sK’
(P, ¥) :«(I)l—I—K’ 1—|—K’»_/ dt/ ds e (Pe Pe )

e Thanks to the J-independence of the matter sector, computations
are almost the same as [Erler(2010)] using G’K’Bcy algebra.

e The result is the same as that of the undeformed background:

3 24 9 24 , 1
A= — — —, A= — — — » SNy = ——
YT o2 ga *T ox2 g4 [ H] A2

a half of a D brane tension



Gauge invariant overlaps for the

solutions

Definition: (D)y = %TI’(O'g (I|V(2)|®))

V(t) = c(i)e(—1)0(v(2))0(v(—2)) Vin (2, —2)
Vi (2, Z) : a matter primary field with dim (1/2,1/2)

Note: (DT = (_1)(e(<I>)+F(<I>))(e(‘I')+F(‘I'))«\pq)»v,
(Q'(---)Mv = 0.

In the same way as [Erler(2010)], we can evaluate the gauge
invariant overlaps for the solutions using G’K’Bcy algebra:

(Brhv = (ee™ Py (Brrhv = (e Yo



Evaluation of the gauge invariant

overlap

e Performing calculation in the ghost sector, we have more explicit
expression in the sliver frame:

(Pr)v = 2((‘I’H>>v
e 2€ > ¥ [/
- Jim & <exp ( / du / dt’fa(t’)J"'(Zit’—l—u)) Vo (iM, —iM)>

e If there is no correlation between J and Vy,, the value is the same as
the original theory thanks to the J-independence formula.

Ex. J~0X? Vi ~p%°

mat

e However, generally, the above gauge invariant overlap may depend
on the current J.



Phase shift for the solutions in the

gauge invariant overlap

e [.etus consider the case:

J = 0X"® Vi (i, —i) = ezko X () g—3ko X®(—1)
(kg)? = 2/a’ : on-shell condition

e The result of explicit computation is

271

«(I)T»V = 2<<(I)H>>V — i exp (’Lﬂ'kg\/g ﬁF(Z))

Cy. 271

Phase factor due to the deformed background



Field redefinition induced by an identity-

based marginal solution

e Let us consider the identity-based marginal solution W;

corresponding to J(z,0) = ¥°(2) + 6 0X°(z)

vV 2a/
e The BRST operator around it can be rewritten as  [I.K.-Takahashi(2005)]

Q'—ezx/_X(F)Q e 2\/_X(F) X(F):%%F(z)X”(z)

e Jtinduces a field redefinition:

X (F)I

X (F)I

<I>—62\/_X(F)<I>’—ex/_ x P’ x e v

XL(F) = /C ;%F(z)Xg(z)

¢ The action can be rewritten as

S[8] = _(BQB) + (@) = (& Q¥) + (7)) = 5[3



Gauge invariant overlap and field

redefinition

* We consider a gauge invariant overlap with
Vin (2, —1) = €%k9X9(i)e—%k9X9(_i)

e In this case, we find

(I1V (i) ox (0] exp (— > (1) (ad)?

90,5,

iZi\/za’(—l)"k o )

n=1

e Using the above, the gauge invariant overlap is evaluated as

(@) = S Tr(@adI[V() e/ X O|8) = exp (inValke [ SZF () ) (@)

This is the same phase factor as that of two solutions
around the deformed background corresponding to the
bosonic case in [Katsumata-Takahashi-Zeze(2004)].



Concluding remarks |

We have constructed some solutions of the theory around an identity-
based marginal solution Wj in cubic SSFT using G’K’Bcy algebra.

Around Wy, the BRST operator is deformed: Qg — Q’
Correspondingly, string fields are deformed: G, K — G’, K’
GKBcy and G’K’Bcy have the same algebraic structure.

We have explicitly computed vacuum energies for tachyon vacuum
®rand half-brane ®y solutions in G’K’Bcy algebra and it turned out
that they are the same as those of the original theory.

It implies vanishing vacuum energy for the identity-based marginal
solution Wj as in the bosonic case although it seems to be difficult to
evaluate it directly.



Concluding remarks |l

We also evaluated the gauge invariant overlap for those solutions and
found the relation: (@4 )y = 2(® i)y which is the same as that
of the undeformed background.

If we take a closed tachyon vertex of Dirichlet type for the gauge
invariant overlap for ®rand ®y, the phase factor appears according
to the marginal deformation.

The phase shift is consistent with the value due to a field redefinition
induced by the identity-based marginal solution W7.

These results just correspond to the bosonic ones [T.Takahashi’s talk].

[t may be interesting to investigate the algebra in the theory around
the identity-based universal solution in SSFT, which has a homotopy
operator, constructed in [Inatomi-I.K.-Takahashi(2011)] in SSFT.



Comment on level truncation

e Level truncation of the Erler-Schnabl solution in bosonic SFT (evaluation of

kinetic term: Erler-Schnabl, including cubic term: Arroyo-I1.K.(2011-2012))
L | E Espl|7 EspBl|T E Ep |§§g Epp |§§/§
0 || —0.85247 | —0.85247 | —0.85247 | —0.654908 | —0.654908 | —0.654908
2 || —0.914146 | —0.85247 | —0.85247 | —1.33686 | —1.38342 | —1.38798
4 || —1.03467 | —0.787834 | —0.871988 || —0.532599 | —0.421667 | —0.358173
6 || —0.930637 | —0.787834 | —0.871988 || —1.55434 | —1.19306 | —1.08516
8 || —1.06335 | —0.992052 | —0.983242 | —0.167462 | —1.14097 | —1.00745
10 || —0.904984 | —0.992052 | —0.983242 || —1.87271 | —0.919443 | —1.07258
12 || —1.10973 | —0.992013 | —0.984516 | —0.166042 | —0.850702 | —1.05767*
14 || —0.841643 | —0.992013 | —0.984516 || —1.83972 | —0.972165 | —0.933839**
16 || —1.20564 | —0.99608 | —0.993936 || +1.83619 | —1.00666 | —0.92572*
18 || —0.709632 | —0.99608 | —0.993933 || —4.22806 | —1.01865 | —0.981341%*
20 || —1.39169 | —0.999595 | —0.993687 || —1.1971 | —1.02464 | —1.01792*
22 || —0.449641 | —0.999595 | —0.993574 || —0.188021 | —0.994601 | —1.00019%*
24 | —1.75829 | —0.997321 | —0.995001 | +12.4404 | —0.997754 | —1.01338**
26 || +0.0590993 | —0.997321 | —0.993171 || —24.5744 | —0.999148 | —1.02392**
28 || —2.46306 | —0.99769 | —0.993253 ~
30 || +1.03342 | —0.99769 | —0.0807s7 | (L3L) truncation  E = 27°F = —27°S[Q]

P: Pade approximation, PB: Pade-Borel approximation



