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Introduction and Motivation

o EMRI are example of unsolved two-body problem in GR

e EMRI evolution involves Gravitational Self-Force (GSF)

SCO as point mass — lowest order geodesic motion on background
Acceleration causes radiation, small p affects geometry locally
Radiation/field acts back (locally)
Corrects motion—conservative and
nonconservative effects

Field is divergent locally
Has “singular” and “regular” parts
Regularization finds finite Self-Force

Dirac (1938), DeWitt and Brehme (1960), Mino, Sasaki & Tanaka
(1997) and Quinn & Wald (1997)

o EMRISs are potential promising source of GWs for eLISA, NGO, etc.
(e.g. Gair)

Forseth

Capra 16, University College Dublin

Slide 2/30



Calculational Accuracy Requirements

Example: € = u/M =10"¢, A®/® <107%-1077

(metric size) O(1) 0(107°) O(10712)
| | |
Metric : ng + lp;,”/ + 2puu +
| |
Self — force : 1fu + afu +
| |
(self — force size) O(1) 0(1079) 0(10712)

o Must calculate 1st order < O(107® - 10~7) numerical accuracy

@ Required accuracy = compute metric in frequency domain (FD)
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Schwarzschild Metric Perturbations in Lorenz Gauge

o SF regularization parameters traditionally calculated in Lorenz gauge;
therefore efforts to calculate retarded field have mostly used Lorenz
gauge

o Perturbed field equations are:

Opuw + 2Rpuawpp™” = —167T,,
along with Lorenz gauge condition
vﬁﬁag =0
where p is the trace-reversed metric perturbation

_ 1
Pap = Pap — 59&5 p

o see Akcay (2011); Warburton, et. al. (2012); talks at Capra 15
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Metric perturbation amplitudes

@ Decompose the metric in tensor spherical harmonics (notation from
Martel and Poisson, 2005)

Ptt  DPir | Pto Dty
* pre | DPro Dre
DPap = - - + = -
* * | poo  Pog
* x| % pge
hap Y™ | Ja"YE" + hd" X5
I
Lm * | P (K" QapY'"™ + G"YLR) + h X

Odd Parity: Even Parity:
Harmonics: X xhm yim vim viR QapY!™
Amplitudes: ht, by, ho hit, hiry Pery 3ty Jry K, G
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Source Terms

@ Decompose stress-energy tensor as well to obtain source terms:
o Even-parity:

ab abxr-lm a 167{_7'2 / aB~xr-lm
— Ty (9} = T7Y, Q
Q 87r/ dQ, Q a+1) B d
Q" = 8mr? / TABQuEY'™ dQ, QF = 32mr / TABYI™ 40
’ -1+ 1)(1+2)

@ Odd-parity:

16712 B ol 167t / AB o1
Pt = T°Xg" dQ P = T° X' dQ
I(1+1) / B (=D +1)(1+2) AB

@ Source terms have form

F(t,r) = f({)d[r — rp(t)]
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Even-parity Equations, Frequency Domain

27 z ) 2
- _ . _ d2hyy  2(r — AM) dhyy  4iMwf 2M(3M — 2r) 2 _
— 1@ s (@ 4 5QM)] = WP + + s Fep + 3
dry2 r2 dry r2 rd
2M2 F]. aM f2 =
_ 1y
T3 w+ )7‘2 het + —3
27 T . .
~ . d“hy 2f dhy 2iMw 2iMwf _
2fON = wlhyp 4 — g 2T - -
dry?2 r o odry fr2

am? £ - 20+ 1) f -
|\ a PR 2 Rk ———

T

rr

1 - - - _ d2h 2 dh 4iMw _ 2M
7(fQ|77f2Qtt7Q7‘r) Y rr 2dhpr 4d wh”+[ (4r — 7M)
f dry?2 r drs fr2 rd
1. 2M(3M — 2r) _ A+ 1) F. A(r—3M)
— [+ 10+ )] T—z}hrw et gt e R
. d%j,  2M dj; 2iMwf _ f AMT . 2f2 _
£2Qt = WP+ -5 - Jr— 5 [0+ 1) = —|Fe+ =R
dry2 r2 dry r2 r2 r r

Forseth Capra 16, University College Dublin

Slide 7/30



Even-parity Equations, Frequency Domain (cont’d)

- _ d2j 2M dj, 2iMw f _ 2f2 _
— Q" =W+ Gt — S U0+ D +4fir + ——hrr
dry2 2 dry fr2 r2 r
2f _ N+ 1)—2]f .
L U Bl B
r r
- _ _ d2K  2f dK 8M] . 2M _ 2f2(3M — r) _
Q" — £20M = WK + AR T hagny e M kg 2y, TG0,
dry2 r odrs r2 r r3 r3
2l(l+1)fﬁ
- J
7‘3 "
F o . d2G  2f 4G f _ o af2
- ot =w?e+ S - SR+ 26+~
X -

2 dry 2 r drs r

o Even-parity is a set of seven coupled 2"%-order equations
@ Therefore, the system is 14"-order
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Odd-parity Equations, Frequency Domain

27 _ ~
P T PR LY ET L S L TR
dr.? 73

. - d?h, 12 4+1-2)- 8M — (4+14+12)7] -
—PT =W, + ;+f( 3 )h2+f[ (3 )r]h1.
dr, T s

N 2M f dh, P
— — —iw
fr2 dr., t

d?h M+ (—4+1412 - 2h,
_pr_wthr h2 F[8M + (—4+1+ )r]h2+4fh

72 r3 r
[GM2 —5)Mr+r2] dhs
fr3 dr.

@ Odd-parity is a set of three coupled 2"%-order equations

@ Therefore, the system is 6 -order
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Homogeneous Solutions, Boundary Conditions

T — —00 Te —> 00

—— —eee
o Equations are source-free outside libration region

o To find particular solution, we’ll need a complete set of independent
homogeneous solutions (for method of variation of parameters)

e For even-parity, we need 7 causal downgoing homogeneous solutions
and 7 causal outgoing homogeneous solutions

o For odd-parity, 3 causal downgoing and 3 causal outgoing solutions
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Algorithmic Roadmap

o Use geodesic motion for point particle; compute source terms
o Find complete set of causal homogeneous solutions

o Use method of variation of parameters to normalize homogeneous
solutions

e Use method of extended homogeneous solutions (EHS) (Barack, Ori,
Sago 2008) to return to the time domain

@ Check constraints

o Check accuracy of modes
o Use quad-precision (EF), use constrained equations (TO)

o Compute first-order self-force
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Variation of Parameters

@ Integrate 6 homogeneous odd-parity solutions and 14 homogeneous
even-parity solutions through the libration region

@ General particular solutions have the form (odd-parity, even-parity):

H= car(r)”l:[g + cf(r)?—lf +-4c (r)”l:[g + cf(r)?—lf + -
T =di (T +df (T +-+dy (n) Ty +dy (NIT +-

where each of the HE, J* is a vector of metric amplitudes for the i*"

outgoing (+) or downgoing (-) homogeneous solution:

= +

hi

htr
| B ) e\
JE=1| 7 (even) HE = b (odd)

jf ha i

K

G

and 4 runs from 0 to 6 for even and 0 to 2 for odd-parity
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Variation of Parameters

o Plug into equations, demand that (odd-parity example:)
ST HE o Hy =0
k

o May then show that R
Wce' =7

where W is the Wronskian matrix of homogeneous solutions and

derivatives, and
+
c= <Cl>
¢

2= (2)

for Z’s the Fourier amplitudes of the source terms
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Variation of Parameters

For odd-parity this looks like:

Btg hei ﬁt; Eta Et; Bt; Orcd 0
R ORShG ho o ha by dect 0
S T 7 S P R s Bt 0
orhy  Ovh,y  Ovhy  Ovhyy  Ovhyy Ovhy; drcy | 4
Orhh O Ok Ochy Ok Ochy ey 7,
Ochyh  Onhyt Ochsh  Ochyy Oihyy Orhy; drcy Z

Solve via Cramer’s rule:

~m o det (W) _o e det (W)
c*(r)—/ dr “det OV) c; (r)—/r dr' ——=

Tmin
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EHS for a System of Equations

o Extend Barack, Ori, and Sago’s (2008) EHS method to a system of coupled
equations

@ Homogeneous solutions are normalized by the constants

-/ g det V)

+
Ci det (OV)

k3

min
@ The normalized homogeneous solutions are

Himn ™ (r) = > CIM HE (r)

@ Define time-domain homogeneous solutions

Hio, (t,7) Z“rumn e tomnt

@ For any t and r the actual solution to the inhomogeneous equation is

M (8,7) = Hib, (£,7)0 [ = 1 ()] + Hip (8,7)0 [ (8) — 7]
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Example Lorenz Gauge Solution (Odd-Parity)
=2, m=1, p=8.75455, e = 0.764124, t = 93.58

n = —40 to + 40

0.1
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—0.2
n3t
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—0.5

Forseth
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r
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Lorenz Gauge: Constrained vs. Unconstrained

@ The Lorenz gauge condition yields one odd-parity constraint:
0=(+2)(I —1)fhs — A(r — M) fhy — 2 (f@r* B 4 iwﬁt)
and three even-parity constraints:

0= 20 + 1) fje + Af (M — 1)her — 12 [2far* hir + iw (fQim +2fK + ﬁtt)]

0 = d(r — M) fhrr + %a”f( —4frR — 2+ V) fjr

42 [ FOn hon — f (iw Fhor + 2iwK + 20,. fm)]

0=fr’ [(z 1)1 -G+ fﬁw] L AM — ) fe — 1 (ﬁtt + 2fa”};) — 2iwr®j,
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Lorenz Gauge: Unconstrained Approach

@ The space of homogeneous solutions to the unconstrained system is larger
than the space of gauge-constrained solutions

@ An arbitrary causal homogeneous solution will not necessarily “know”
about gauge conditions

@ But the source does!

@ Integration through the source region constrains the normalized particular
solution so that the gauge condition is satisfied
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Example: Unconstrained Odd-Parity as r, — 400

Asymptotic analysis led to choice of boundary conditions for
three independent, outgoing homog. solutions:

hy 1\ 1\ 0\
HE=|h | = -1, Hf=1]e“™, HI=[0] "™
h2 0 0 T

Hy
Hy
+
My
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Example: Unconstrained Odd-Parity as r, — 400

Asymptotic analysis led to choice of boundary conditions for
three independent, outgoing homog. solutions:

he 1 1 0
HE=|h | = -1, Hf=1]e“™, HI=[0] "™
h2 0 0 T
° 7—[;‘ lies in space of 24 i
gauge-adhering solutions 0 /2D space of
gauge-adhering
solutions
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Example: Unconstrained Odd-Parity as r, — 400

Asymptotic analysis led to choice of boundary conditions for
three independent, outgoing homog. solutions:

he 1\ 1\ 0\
Ha— — hr — 1 ezwr*’ Hi‘— — 1 ezwr*7 H;— — 0 elwr*
h2 0 0 T

° 7—[3‘ lies in space of
gauge-adhering solutions .-~~~ 2D space of
’ gauge-adhering

. 4 solutions
o As it turns out, so does H

(we chose wisely!)
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Example: Unconstrained Odd-Parity as r, — 400

Asymptotic analysis led to choice of boundary conditions for
three independent, outgoing homog. solutions:

he 1\ 1\ 0\
Ha— — hr — 1 ezwr*’ Hi‘— — 1 ezwr*7 H;— — 0 elwr*
h2 0 0 T

° 7—[3‘ lies in space of
gauge-adhering solutions .-~~~ 2D space of
’ gauge-adhering

. 4 solutions
o As it turns out, so does H

e So Hg and H5 want to satisfy LG condition, H{" does not
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Satisfaction of the Lorenz Gauge Condition
(I,m,n) = (2,1,0), p=7.50478, e = 0.188917

D s s s —

Homog. Sol'n 1
Homog. Sol'n 2
Homog. Sol'n 0
Particular Sol'n

|
)

|
N
T

0O + % X

[
—
o

Log1o (LG condition rel. error)
[
— |
2o o

\
—_
IS

[
_
o

100 200 300 400 500 600 700 800 900 1000
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LG Condition and the Particular Solution

@ So what happens to the second homogeneous solution?

Forseth Capra 16, University College Dublin Slide 24/30



LG Condition and the Particular Solution

@ So what happens to the second homogeneous solution?

o Well, it is nulled out by the source integration
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LG Condition and the Particular Solution

@ So what happens to the second homogeneous solution?
o Well, it is nulled out by the source integration

e For (I,m,n) = (2,1,0), p="7.50478, e = 0.188917, EHS
normalization coefficients are:

|CiH| = 4.06024242465630790 e — 02

|C| = 0.00000000000000006 e — 02
|CF| = 4.03688409448409460 e — 02
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LG Condition and the Particular Solution

@ So what happens to the second homogeneous solution?
o Well, it is nulled out by the source integration

e For (I,m,n) = (2,1,0), p="7.50478, e = 0.188917, EHS
normalization coefficients are:

G| = 4.06024242465630790 e — 02
|C5| = 0.00000000000000006 ¢ — 02
|CF| = 4.03688409448409460 e — 02

o Note: quad precision
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Satisfaction of Gauge Condition vs. Integration

Precision (I,m,n) = (2,1,0), p = 7.50478, e = 0.188917

-2

™

S 4
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3 61

=)

2 -87

=

E

5 -10

S 12

=

% —14

—

—16
100 200 300 400 500 600 700 800 900 1000

Note: quad precision r
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Near-static Modes and Ill-Conditioned Wronskian

@ Two-fold frequency spectrum:
Wmn = My + ndy
@ Values of m and n can conspire to bring the frequency near zero, especially

for larger values of semi-latus rectum p

@ For such modes, matrix inversion of the Wronskian becomes numerically
inaccurate

@ Runtimes increase, but more importantly we lose digits of accuracy!
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[1l-Conditioning of the Wronskian

11

—_
o

LOglO [)\max]
O = N Wk 0ty N 0 ©

Forseth

Max Condition Number vs. Frequency
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Agreement with Regge-Wheeler Code

How does the double precision Lorenz gauge code compare
with Regge-Wheeler for near-static modes? (p==8.75455,
e=0.764124)

L0g10|01—{w - C&H
|
—
o

13 |

—14 1 1 1 1 1 1 1 1
—0.08-0.06—0.04—0.02 0 0.02 0.04 0.06 0.08 0.1

Note: double precision Wmn
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Agreement with Regge-Wheeler Code

@ Now, how about the quad precision Lorenz gauge code?

o Comparing our Regge-Wheeler code with our quad precision Lorenz
code for two of the worst-case modes:

e For (2,2,-3):
|Chw — CEl=1x10""

e For (3,1,-2):
IOty — C| =5 x 10712
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Conclusions

o Demonstrated extension of EHS method to coupled system of
equations

@ Solved directly for metric perturbation in Lorenz gauge, unconstrained

o Problem is more subtle than it seems: gauge constraints, near-static
modes

o May “brute-force” through static modes problem with high precision
code

e Quad code is slow!
e Call as routine from double precision code when needed
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