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Introduction and Motivation

EMRI are example of unsolved two-body problem in GR

EMRI evolution involves Gravitational Self-Force (GSF)

SCO as point mass → lowest order geodesic motion on background
Acceleration causes radiation, small µ affects geometry locally
Radiation/field acts back (locally)
Corrects motion–conservative and

nonconservative effects

Field is divergent locally
Has “singular” and “regular” parts
Regularization finds finite Self-Force

Dirac (1938), DeWitt and Brehme (1960), Mino, Sasaki & Tanaka
(1997) and Quinn & Wald (1997)

EMRIs are potential promising source of GWs for eLISA, NGO, etc.
(e.g. Gair)
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Calculational Accuracy Requirements

Example: ε = µ/M = 10−6, ∆Φ/Φ . 10−8 - 10−7

(metric size) O(1) O(10−6) O(10−12)

| | |
Metric : gµν + 1pµν + 2pµν + · · ·

| |

Self − force : 1fµ + 2fµ + · · ·
| |

(self − force size) O(1) O(10−6) O(10−12)

Must calculate 1st order � O(10−8 - 10−7) numerical accuracy

Required accuracy =⇒ compute metric in frequency domain (FD)
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Schwarzschild Metric Perturbations in Lorenz Gauge

SF regularization parameters traditionally calculated in Lorenz gauge;
therefore efforts to calculate retarded field have mostly used Lorenz
gauge

Perturbed field equations are:

2p̄µν + 2Rµανβ p̄
αβ = −16πTµν

along with Lorenz gauge condition

∇β p̄αβ = 0

where p̄ is the trace-reversed metric perturbation

p̄αβ = pαβ −
1

2
gαβ p

see Akcay (2011); Warburton, et. al. (2012); talks at Capra 15
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Metric perturbation amplitudes

Decompose the metric in tensor spherical harmonics (notation from
Martel and Poisson, 2005)

pαβ =


ptt ptr | ptθ ptφ
∗ prr | prθ prφ
− − + − −
∗ ∗ | pθθ pθφ
∗ ∗ | ∗ pφφ



pαβ =
∑
l,m

 hlmab Y
lm | jlma Y lmB + hlma Xlm

B

− − + − − − − − − − −
∗ | r2

(
KlmΩABY

lm +GlmY lmAB
)

+ hlm2 Xlm
AB


Odd Parity: Even Parity:

Harmonics: Xlm
A , Xlm

AB Y lm, Y lmA , Y lmAB ,ΩABY
lm

Amplitudes: ht, hr, h2 htt, htr, hrr, jt, jr,K,G
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Source Terms

Decompose stress-energy tensor as well to obtain source terms:

Even-parity:

Qab = 8π

∫
T abȲ lm dΩ, Qa =

16πr2

l(l + 1)

∫
T aBȲ lmB dΩ

Q[ = 8πr2
∫
TABΩABȲ

lm dΩ, Q] =
32πr4

(l − 1)l(l + 1)(l + 2)

∫
TABȲ lmAB dΩ

Odd-parity:

P a =
16πr2

l(l + 1)

∫
T aBX̄lm

B dΩ, P =
16πr4

(l − 1)l(l + 1)(l + 2)

∫
TABX̄lm

AB dΩ

Source terms have form

F (t, r) ≡ f(t)δ[r − rp(t)]

Forseth Capra 16, University College Dublin Slide 6/30



Even-parity Equations, Frequency Domain

− f

[
Q̃

rr
+ f

(
Q̃

[
+ fQ̃

tt
)]

= ω
2
h̃tt +

d2h̃tt

dr∗2
+

2(r − 4M)

r2

dh̃tt

dr∗
−

4iMωf

r2
h̃tr +

2M(3M − 2r)f2

r4
h̃rr

+

 2M2

r4
− l(l + 1)

f

r2

 h̃tt +
4Mf2

r3
K̃

2fQ̃
tr

= ω
2
h̃tr +

d2h̃tr

dr∗2
+

2f

r

dh̃tr

dr∗
−

2iMω

fr2
h̃tt −

2iMωf

r2
h̃rr

−

 4M2

r4
+ [l(l + 1) + 2]

f

r2

 h̃tr +
2l(l + 1)f

r3
j̃t

1

f

(
fQ̃

[ − f
2
Q̃

tt − Q̃
rr
)

= ω
2
h̃rr +

d2h̃rr

dr∗2
+

2

r

dh̃rr

dr∗
−

4iMω

fr2
h̃tr +

[ 2M

r4
(4r − 7M)

− [4 + l(l + 1)]
f

r2

]
h̃rr +

2M(3M − 2r)

f2r4
h̃tt +

4l(l + 1)f

r3
j̃r +

4(r − 3M)

r3
K̃

f
2
Q̃

t
= ω

2
j̃t +

d2 j̃t

dr∗2
−

2M

r2

dj̃t

dr∗
−

2iMωf

r2
j̃r −

f

r2

[
l(l + 1) −

4M

r

]
j̃t +

2f2

r
h̃tr
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Even-parity Equations, Frequency Domain (cont’d)

− Q̃
r

= ω
2
j̃r +

d2 j̃r

dr∗2
+

2M

r2

dj̃r

dr∗
−

2iMω

fr2
j̃t −

f

r2
[l(l + 1) + 4f] j̃r +

2f2

r
h̃rr

−
2f

r
K̃ +

[l(l + 1) − 2] f

r
G̃

Q̃
rr − f

2
Q̃

tt
= ω

2
K̃ +

d2K̃

dr∗2
+

2f

r

dK̃

dr∗
−

f

r2

[
l(l + 1) + 2 −

8M

r

]
K̃ +

2M

r3
h̃tt −

2f2(3M − r)

r3
h̃rr

−
2l(l + 1)f

r3
j̃r

−
f

r2
Q̃

]
= ω

2
G̃ +

d2G̃

dr∗2
+

2f

r

dG̃

dr∗
−

f

r2
[l(l + 1) − 2] G̃ +

4f2

r3
j̃r

Even-parity is a set of seven coupled 2nd-order equations

Therefore, the system is 14th-order
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Odd-parity Equations, Frequency Domain

f
2
P̃

t
= ω

2
h̃t +

d2h̃t

dr∗2
+
f [4M − l(1 + l)r]

r3
h̃t −

2M

r2

(
dh̃t

dr∗
+iωfh̃r

)

−P̃ r
= ω

2
h̃r +

d2h̃r

dr∗2
+
f
(
l2 + l− 2

)
r3

h̃2 +
f
[
8M −

(
4 + l + l2

)
r
]

r3
h̃r

+
2M

fr2

(
f
dh̃r

dr∗
−iωh̃t

)

−2fP̃ = ω
2
h̃2 +

d2h̃2

dr∗2
−
f
[
8M +

(
−4 + l + l2

)
r
]

r3
h̃2 +

4f2h̃r

r

−
2
[
6M2 + (f − 5)Mr + r2

]
fr3

dh̃2

dr∗

Odd-parity is a set of three coupled 2nd-order equations

Therefore, the system is 6th-order

Forseth Capra 16, University College Dublin Slide 9/30



Homogeneous Solutions, Boundary Conditions

Equations are source-free outside libration region

To find particular solution, we’ll need a complete set of independent
homogeneous solutions (for method of variation of parameters)

For even-parity, we need 7 causal downgoing homogeneous solutions
and 7 causal outgoing homogeneous solutions

For odd-parity, 3 causal downgoing and 3 causal outgoing solutions
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Algorithmic Roadmap

Use geodesic motion for point particle; compute source terms

Find complete set of causal homogeneous solutions

Use method of variation of parameters to normalize homogeneous
solutions

Use method of extended homogeneous solutions (EHS) (Barack, Ori,
Sago 2008) to return to the time domain

Check constraints

Check accuracy of modes

Use quad-precision (EF), use constrained equations (TO)

Compute first-order self-force
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Variation of Parameters

Integrate 6 homogeneous odd-parity solutions and 14 homogeneous
even-parity solutions through the libration region

General particular solutions have the form (odd-parity, even-parity):

H̃ = c+0 (r)H̃+
0 + c+1 (r)H̃+

1 + · · ·+ c−0 (r)H̃−0 + c−1 (r)H̃−1 + · · ·

J̃ = d+0 (r)J̃+
0 + d+1 (r)J̃+

1 + · · ·+ d−0 (r)J̃−0 + d−1 (r)J̃−1 + · · ·

where each of the H̃±i , J̃±i is a vector of metric amplitudes for the ith

outgoing (+) or downgoing (-) homogeneous solution:

J̃±i =



h̃tt
h̃tr
h̃rr
j̃t
j̃r
K̃

G̃



±

i

(even) H̃±i =

h̃th̃r
h̃2

±
i

(odd)

and i runs from 0 to 6 for even and 0 to 2 for odd-parity
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Variation of Parameters

Plug into equations, demand that (odd-parity example:)∑
k

c+k
′H̃+

k + c−k
′H̃−k = 0

May then show that
Wc′ = Z̃

where W is the Wronskian matrix of homogeneous solutions and
derivatives, and

c =

(
c+i
c−i

)
Z̃ =

(
0

Z̃i

)
for Z̃’s the Fourier amplitudes of the source terms
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Variation of Parameters
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For odd-parity this looks like:

h̃ +
t 0 h̃ +

t 1 h̃ +
t 2 h̃ −t 0 h̃ −t 1 h̃ −t 2

h̃ +
r 0 h̃ +

r 1 h̃ +
r 2 h̃ −r 0 h̃ −r 1 h̃ −r 2

h̃ +
2 0 h̃ +

2 1 h̃ +
2 2 h̃ −2 0 h̃ −2 1 h̃ −2 2

∂rh̃
+
t 0 ∂rh̃

+
t 1 ∂rh̃

+
t 2 ∂rh̃

−
t 0 ∂rh̃

−
t 1 ∂rh̃

−
t 2

∂rh̃
+
r 0 ∂rh̃

+
r 1 ∂rh̃

+
r 2 ∂rh̃

−
r 0 ∂rh̃

−
r 1 ∂rh̃

−
r 2

∂rh̃
+

2 0 ∂rh̃
+

2 1 ∂rh̃
+

2 2 ∂rh̃
−

2 0 ∂rh̃
−

2 1 ∂rh̃
−

2 2





∂rc
+
0

∂rc
+
1

∂rc
+
2

∂rc
−
0

∂rc
−
1

∂rc
−
2


=



0

0

0

Z̃t

Z̃r

Z̃2



Solve via Cramer’s rule:

c +
j (r) =

∫ r

rmin

dr′
det
(
Wj+

)
det (W)

, c −j (r) =

∫ rmax

r

dr′
det
(
Wj−)

det (W)



EHS for a System of Equations

Extend Barack, Ori, and Sago’s (2008) EHS method to a system of coupled
equations

Homogeneous solutions are normalized by the constants

C±i =

∫ rmax

rmin

dr′
det
(
Wi±)

det (W)

The normalized homogeneous solutions are

H̃lmn±(r) =
∑
i

Clmn±i H̃±i (r)

Define time-domain homogeneous solutions

H±lm(t, r) ≡
∑
n

H̃lmn±(r)e−iωmnt

For any t and r the actual solution to the inhomogeneous equation is

HEHS
lm (t, r) ≡ H+

lm(t, r)θ [r − rp(t)] +H−lm(t, r)θ [rp(t)− r]
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Example Lorenz Gauge Solution (Odd-Parity)
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l = 2, m = 1, p = 8.75455, e = 0.764124, t = 93.58

n = −40 to + 40

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

5 10 15 20 25 30 35 40

r

h21t
Im
[
h21t
]

Re
[
h21t
]

rp(t)
rmin rmax



Lorenz Gauge: Constrained vs. Unconstrained

The Lorenz gauge condition yields one odd-parity constraint:

0 = (l + 2)(l − 1)fh̃2 − 4(r −M)fh̃r − 2r2
(
f∂r∗ h̃r + iωh̃t

)
and three even-parity constraints:

0 = 2l(l + 1)f j̃t + 4f(M − r)h̃tr − r2
[
2f∂r∗ h̃tr + iω

(
f2h̃rr + 2fK̃ + h̃tt

)]

0 = 4(r −M)fh̃rr +
4Mr

f
∂r∗K̃ − 4frK̃ − 2l(l + 1)f j̃r

+ r2
[
f∂r∗ h̃rr − f

(
iωfh̃rr + 2iωK̃ + 2∂r∗ h̃tr

)]

0 = fr3
[
(l + 2)(l − 1)G̃+ fh̃rr

]
+ 4(M − r)rf j̃r − r3

(
h̃tt + 2f∂r∗ j̃r

)
− 2iωr3j̃t
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Lorenz Gauge: Unconstrained Approach

The space of homogeneous solutions to the unconstrained system is larger
than the space of gauge-constrained solutions

An arbitrary causal homogeneous solution will not necessarily “know”
about gauge conditions

But the source does!

Integration through the source region constrains the normalized particular
solution so that the gauge condition is satisfied
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Example: Unconstrained Odd-Parity as r∗ → +∞
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Asymptotic analysis led to choice of boundary conditions for
three independent, outgoing homog. solutions:

H+
0 =

hthr
h2

 =

 1
−1
0

 eiωr∗ , H+
1 =

1
1
0

 eiωr∗ , H+
2 =

0
0
r

 eiωr∗

H+
0

H+
1

H+
2



Example: Unconstrained Odd-Parity as r∗ → +∞
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Asymptotic analysis led to choice of boundary conditions for
three independent, outgoing homog. solutions:

H+
0 =

hthr
h2

 =

 1
−1
0

 eiωr∗ , H+
1 =

1
1
0

 eiωr∗ , H+
2 =

0
0
r

 eiωr∗

H+
0

H+
1

H+
2

H+
2 lies in space of

gauge-adhering solutions 2D space of
gauge-adhering
solutions



Example: Unconstrained Odd-Parity as r∗ → +∞
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Asymptotic analysis led to choice of boundary conditions for
three independent, outgoing homog. solutions:

H+
0 =

hthr
h2

 =

 1
−1
0

 eiωr∗ , H+
1 =

1
1
0

 eiωr∗ , H+
2 =

0
0
r

 eiωr∗

H+
0

H+
1

H+
2

H+
2 lies in space of

gauge-adhering solutions

As it turns out, so does H+
0

(we chose wisely!)

2D space of
gauge-adhering
solutions



Example: Unconstrained Odd-Parity as r∗ → +∞
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Asymptotic analysis led to choice of boundary conditions for
three independent, outgoing homog. solutions:

H+
0 =

hthr
h2

 =

 1
−1
0

 eiωr∗ , H+
1 =

1
1
0

 eiωr∗ , H+
2 =

0
0
r

 eiωr∗

H+
0

H+
1

H+
2

H+
2 lies in space of

gauge-adhering solutions

As it turns out, so does H+
0

So H+
0 and H+

2 want to satisfy LG condition, H+
1 does not

2D space of
gauge-adhering
solutions



Satisfaction of the Lorenz Gauge Condition
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(l,m, n) = (2, 1, 0), p = 7.50478, e = 0.188917

−16

−14

−12

−10

−8

−6

−4

−2

0

100 200 300 400 500 600 700 800 900 1000

L
og

1
0

(L
G

co
n

d
it

io
n

re
l.

er
ro

r)

r

Homog. Sol’n 1
Homog. Sol’n 2
Homog. Sol’n 0
Particular Sol’n



LG Condition and the Particular Solution

So what happens to the second homogeneous solution?

Well, it is nulled out by the source integration

For (l,m, n) = (2, 1, 0), p = 7.50478, e = 0.188917, EHS
normalization coefficients are:

|C+
0 | = 4.06024242465630790 e− 02

|C+
1 | = 0.00000000000000006 e− 02

|C+
2 | = 4.03688409448409460 e− 02

Note: quad precision
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Satisfaction of Gauge Condition vs. Integration
Precision
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(l,m, n) = (2, 1, 0), p = 7.50478, e = 0.188917
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Near-static Modes and Ill-Conditioned Wronskian

Two-fold frequency spectrum:

ωmn = mΩφ + nΩr

Values of m and n can conspire to bring the frequency near zero, especially
for larger values of semi-latus rectum p

For such modes, matrix inversion of the Wronskian becomes numerically
inaccurate

Runtimes increase, but more importantly we lose digits of accuracy!
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Ill-Conditioning of the Wronskian
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Max Condition Number vs. Frequency

0

1

2

3

4

5

6

7

8

9

10

11

−0.4 −0.2 0 0.2 0.4

L
og

1
0
[λ

m
a
x
]

ωmn



Agreement with Regge-Wheeler Code

Forseth Capra 16, University College Dublin Slide 28/30

How does the double precision Lorenz gauge code compare
with Regge-Wheeler for near-static modes? (p=8.75455,
e=0.764124)
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Agreement with Regge-Wheeler Code

Now, how about the quad precision Lorenz gauge code?

Comparing our Regge-Wheeler code with our quad precision Lorenz
code for two of the worst-case modes:

For (2,2,-3):
|C+

RW − C
+
G | = 1× 10−15

For (3,1,-2):
|C+

RW − C
+
G | = 5× 10−12
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Conclusions

Demonstrated extension of EHS method to coupled system of
equations

Solved directly for metric perturbation in Lorenz gauge, unconstrained

Problem is more subtle than it seems: gauge constraints, near-static
modes

May “brute-force” through static modes problem with high precision
code

Quad code is slow!
Call as routine from double precision code when needed
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