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• Non-Abelian adiabatic gauge potentials 

• Synthetic SOC for ultracold atoms: 1D & 2D SOCs 

• Fundamentals of Spin-orbit coupling (SOC) 

• Other issues 

• Effect of synthetic SOC: Bosons 

• Effect of synthetic SOC: Fermions 



1. Fundamentals of spin-orbit coupling 

1.1 Spin-orbit coupling for electrons 

so B effH B  

E


Consider an electron moving in the electric 

field of an ion in the laboratory frame. The 

electric field experienced by the electron is 

+ − 

where 𝑉(𝑟 ) is the potential of the of the ion. 

Then, according to the special relativity theory, when transforming to the rest frame of 

the electron, we obtain an effective magnetic field by    

where V𝑒 = 𝑃/𝑚0 is the velocity of the electron, 𝑐 is the light speed, and 𝑚0 is the 

electron mass in the vacuum. Furthermore, the electron magnetic dipole moment 𝜇 𝐵 
couples to the magnetic field in the rest frame, yielding a spin-orbit coupling term:  

This is the Larmor spin-orbit term: 

𝜎 : the Pauli matrix 
on spin space. 

𝐵eff =
V𝑒

𝑐2 × 𝐸 

𝐻𝑠𝑜 =
ℏ

2𝑚0𝑐
2
𝜎 ∙ (𝜵𝑉 ×

𝑃

𝑚0
) 



which can be derived directly from the Dirac equation. We can see a few properties from 

the above formula: 

1) the spin-orbit term is inversely proportional to 2𝑚0𝑐
2~2.0MeV, which represents the 

large energy gap between electron band and positron band in the vacuum. Therefore, 

typically the spin-orbit interaction for electrons moving in free space is very small. 

2) The spin-orbit coupling exists with the presence of a potential gradient 𝜵𝑉 ≠ 0. 

3) The components of the spin, momentum, and electric field which couple to each 

other are perpendicular to each other: 

 

 

4) The spin-orbit term keeps time-reversal symmetry, and it can break the inversion 

symmetry if 𝑉 𝒓 ≠ 𝑉(−𝒓). Namely, under inversion transformation 

𝐻𝑠𝑜 =
ℏ

4𝑚0𝑐
2 𝜎 ∙ 𝜵𝑉 ×

𝑃

𝑚0
, 

Including the Thomas precession correction, we have finally 

𝜎 ⊥ 𝑃 ⊥ 𝛁𝑉 

𝜎 : spin 

𝑃: momentum of electron in free space 
𝛁𝑉: external field 

𝜎 → 𝜎 , 𝑃 → −𝑃, 𝛁𝑉 𝒓 → −𝛁𝑉(−𝒓). 

For quasi 2D electron gas, the 2D spin-orbit coupling can be induced by the inversion 
symmetry breaking (Rashba and Dresselhaus terms). 



In semiconductors, the spin-orbit coupling can be studied with 𝐤 ∙ 𝑝  theory. Electrons 

moving in the periodic lattice potential can be described as Bloch bands. For 

semiconductors, the Fermi energy is close to the band bottom, and the dispersion 

relation of the Bloch bands is parabolic, similar as the electron in the vacuum but with a 

different effective mass:  

1.2 Spin-orbit coupling in semiconductors 

𝑚0 → 𝑚eff 

In free space, the electron Hamiltonian with spin-orbit coupling 

𝐻 =
𝑃2

2𝑚0
+ 𝜆𝑠𝑜𝜵𝑉 ∙ 𝑃 × 𝜎 , 𝜆𝑠𝑜 ∝ 1/(𝑚0𝑐

2) 

Just like that the mass, 𝑚0, in vacuum describes the gap between electron and positron 

bands, the effective mass 𝑚eff  of electron in a semiconductor is proportional to the 
corresponding Bloch band gap, and can be much less than the mass in vacuum: 𝑚eff ≪ 𝑚0, 
which can lead to a large enhancement of spin-orbit coupling.  

𝐻 =
ℏ2𝑘2

2𝑚eff
+ 𝛼𝑠𝑜𝑒 𝑧 ∙ 𝒌 × 𝜎 , 

For quasi-2D electron gas, the Rashba spin-orbit coupling is induced by structure inversion 
asymmetry (SIA) (along z axis), which can be tuned by gate.  

The Dresselhaus spin-orbit coupling is due to bulk inversion asymmetry (BIA): 

𝐻 =
ℏ2𝑘2

2𝑚eff
+ 𝛽𝑠𝑜 𝑘𝑥𝜎𝑥 − 𝑘𝑦𝜎𝑦 , 

𝛼𝑠𝑜 ∝ 𝛻𝑧𝑉 𝒓  ≠ 0. 



For a system with both the Rashba and Dresselhaus spin-orbit couplings, 

𝐻 =
ℏ2𝑘2

2𝑚eff
+ 𝛼𝑠𝑜𝑒 𝑧 ∙ 𝒌 × 𝜎 + 𝛽𝑠𝑜 𝑘𝑥𝜎𝑥 − 𝑘𝑦𝜎𝑦 , 

When 𝛼𝑠𝑜 = 𝛽𝑠𝑜, we have 

𝐻 =
ℏ2𝑘2

2𝑚eff
+ 𝛼𝑠𝑜 𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥 + 𝛽𝑠𝑜 𝑘𝑥𝜎𝑥 − 𝑘𝑦𝜎𝑦 , 

=
ℏ2𝑘2

2𝑚eff
+ 𝛼𝑠𝑜𝑘𝑥(𝜎𝑥 + 𝜎𝑦) − 𝑘𝑦(𝜎𝑥 + 𝜎𝑦), 

=
ℏ2𝑘2

2𝑚eff
+ 𝛼𝑠𝑜(𝑘𝑥 − 𝑘𝑦)(𝜎𝑥 + 𝜎𝑦), 

=
ℏ2𝑘2

2𝑚eff
+ 𝛼𝑠𝑜𝑘−𝜎+, 

which renders effectively a 1D spin-orbit coupled system. The spin-orbit coupling firstly realized 
in cold atom experiments is of the above form, namely, the 1D spin-orbit coupling (with equal 
Rashba and Dresselhaus amplitudes). 



1.3 Why study spin-orbit coupling? 

Effective Hamiltonian with a Rashba spin-orbit coupling term can be written as 

Murakami et al Science 2003; J. Sinova et al, PRL 2004. 
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non-magnetic 

𝐻 =
ℏ2𝑘2

2𝑚eff
+ 𝛼𝑠𝑜 𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥 + 𝑉(𝒓) 

=
1

2𝑚eff
ℏ𝑘 − 𝐴 𝜎 + 𝑉 𝒓 + 𝑐𝑜𝑛𝑠𝑡. 

[ , ]
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c
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The SU(2) non-Abelian spin-dependent gauge potential: 𝐴 𝜎 =
𝑚eff𝛼𝑠𝑜

ℏ
(−𝜎𝑦𝑒 𝑥 + 𝜎𝑥𝑒 𝑦) , which is 

associated a spin-dependent magnetic field, obtained through                                             :      

𝐵 =
𝑚eff

2 𝛼𝑠𝑜
2

ℏ3

𝑒

𝑐
𝜎𝑧𝑒 𝑧 

When electrons are accelerated by electric field, their spins will be tilted to out-of-plane (𝑒 𝑧) 
direction. The above formula implies that electron having nonzero spin polarization experiences 
an effective magnetic field along +z or –z direction depending on its polarization direction. Thus 
spin-up and spin-down electrons are deflected to opposite sides. This leads to a spin Hall effect. 

1. Spintronics 



When there is a Zeeman term, the Hamiltonian gives: 

𝐻 =
ℏ2𝑘2

2𝑚eff
+ 𝛼𝑠𝑜 𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥 + M┴𝜎𝑧 + 𝑉(𝒓) 

In this case the electron having opposite spin polarization along z axis are still deflected to the 
opposite sides. However, the population of spin-up and spin-down electrons are different due to 
the Zeeman term. Thus the electron accumulation on one side (spin-up in the following figure) is 
more than that in the other side (spin-down), which gives rise to a transverse electric field. This 
leads to the anomalous Hall effect. 

ρH=R0B┴ +4π RsM┴ 

I 

_ 
FSO 

FSO 

_ _ _ 

majority 

minority 

V 

M⊥ 

Applications: spintronic devices; spin-current injection and  spin-

accumulation modulation 

Hall resistance (Nagaosa, Sinova, etal. Rev. Mod. Phys. 2010) 



2. Topological insulator 

A. 2D Topological insulator B. 3D Topological insulator 

SO effect: band inversion and topological phase transition 

HgTe 

CdTe CdTe 

H1 

E1 

2D HgTe: E1 and H1 bands inverted 

c 

SOC strength (eV) 

Bi 

Se 

3D: Band inversion in Bi2Se3  

E 
(e

V
) 

0 

trivial topological 

Hasan, Kane, Rev. Mod. Phys. 2010; Qi, Zhang, Rev. Mod. Phys. 2011 



ℰ𝐹 ℰ𝐹 

3. Topological superconductor/superfluid 

A. Intrinsic topological SC 

B. Heterostructures: s-wave SC + spin-orbit coupling 
                                     (+Zeeman term) 

SO effect: drive s-wave pairing into p-wave order 

1D case 2D case 

ℰ𝐹 

ℰ𝑘  

𝑘𝑥 𝑘𝑦 

Non-Abelian Majorana quasiparticles 

J. Alicea, Rep. Prog. Phys. 75 076501 (2012). 

𝛾 = 𝛾† 

http://www.futura-sciences.com/uploads/RTEmagicP_Majorana_DP_txdam28291_ee23bd.jpg


Why study spin-orbit coupling for cold atoms? 

Compare cold atoms with solid state systems:  

Motivation: Challenges in solids. New opportunities in cold atoms. 

1. Simple and cleaning:                                     Exact models, no disorder, …                          
2. Fully controllable:                                           𝑁,𝑈, 𝜇, 𝐽, 𝑡, 𝜔, Ω, …… 
3. Dimensionality:                                              1d, 2d, 3d, … 
4. Lattice configuratons:                                     square, honeycomb, kagome, …  
3. May go beyond condensed matter physics:   Large spin, high-orbital band, … 
…… 

1. Have to be in extremely low temperature                          
2. Atom loss, short life time, heating 
3. Neutral particles: sometime difficult in manipulation and detection 

• Advantages 

• Disadvantages 

Everything can be controlled! 

Everything needs to be controlled! 



Creation of synthetic magnetic fields: 
 
1. D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003). 
2. G. Juzeliunas and P. Ohberg, Phys. Rev. Lett., 93, 033602 (2004). 
 
Creation of spin-dependent gauge potentials and spin-orbit coupling: 
 
1. X.-J. Liu, H. Jing, X. Liu, and M.-L. Ge, Eur. Phys. J. D, 37, 261 (2005 online);  
       arXiv:quant-ph/0410096 (2014). 
 
(quantum) spin Hall effect for cold atoms: 
 
1. X.-J. Liu, X. Liu, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett. 98, 026602 (2007),  
       arXiv:cond-mat/0603083 (2016). 
2.   S.-L. Zhu, H. Fu, C.-J. Wu, S.-C. Zhang, and L.-M. Duan, Phys. Rev. Lett. 97, 240401 (2006). 
 
Non-Abelian gauge potentials/spin-orbit couplings: 

 
1. K. Osterloh, M. Baig, L. Santos, P. Zoller, M. Lewenstein, Phys. Rev. Lett. 95, 010403 (2005). 
2. J. Ruseckas, G. Juzeliunas, P. Ohberg, and M. Fleischhauer, Phys. Rev. Lett. 95, 010404 (2005). 

Early references for artificial gauge potentials and SOC 



2. Non-Abelian adiabatic gauge potential 
2.1 Generic idea: spin-orbit coupling for cold atoms can be generated by realizing synthetic 
spin-dependent/non-Abelian  gauge potentials. 
 
Consider a many-state quantum system which couples to external field, with the interacting 
Hamiltonian 𝐻𝑖𝑛𝑡(𝝀) depending on slowly varying parameter 𝝀 . The eigenstates of 𝐻𝑖𝑛𝑡(𝝀) are 
functions of 𝝀. In the case that the ground states of 𝐻𝑖𝑛𝑡(𝝀) have m-fold degeneracy, one can 
obtain a non-Abelian adiabatic gauge potential (Berry’s connection) which is generically a 
𝑚 × 𝑚 matrix. 

𝐻 = 𝐻0 + 𝐻𝐼(𝝀) 

|𝜒1(𝝀)  |𝜒2(𝝀)  |𝜒𝑚(𝝀)  

In the ground state manifold: 
𝑨𝑗𝑙(𝝀) = 𝑖ℏ 𝜒𝑗(𝝀)|𝛁𝝀|𝜒𝑙(𝝀) , 

𝑖ℏ𝛁𝒓 → 𝑖ℏ𝛁𝒓 + 𝑨(𝒓) Wilczek and Zee, (1984) 

m× 𝑚 matrix  

For spin-orbit coupling:  𝝀 = 𝒓, 



For a N-state quantum system, the wave function can be generically described as 

We can define the N-component vector by 

which is governed by the Schrodinger equation under rotating wave approximation: 

where V(r) is trapping potential. Assume that the interacting Hamiltonian is slowly dependent on 

the position r. we diagonalize the interacting Hamiltonian by a position dependent unitary 

transformation: 

This gives the N eigenbases: 

With the eigenenergies 

𝑘 = 1,2, … , 𝑁 

Unitary transformation For a review: X.-J. Liu et al., Front. Phys. China, 3, 113 (2008). 



Note that after diagonalizing the interacting Hamiltonian, the kinetic part generically becomes 
off-diagonal. The new wave function Φ satisfies 

The above equations can be simplified by introducing a non-Abelian gauge potential 

which is an 𝑁 × 𝑁 matrix. We obtain 

𝑨(𝒓) is called SU(N) Berry’s connection, and the associated Berry’s curvature reads 

The corresponding artificial magnetic field magnetic field is given by 



Adiabatic condition 

Note that we have not considered any approximation, and in this stage the non-Abelian gauge 
potential is a pure gauge. We can verify that  

which can be become nonzero after introducing the adiabatic condition. We consider below two 
situations. 

1) Abelian gauge potential 

When all the N eigenstates of the interacting Hamiltonian are non-degenerate,  and under the 
following condition: 

The transitions between two different eigenstates are negligible, namely, we can apply the 
adiabatic condition. Then we ignore the off-diagonal terms of the gauge potential and obtain 

This implies that under the adiabatic condition we reduce the symmetry of the gauge by 

𝑆𝑈 𝑁 → 𝑈 1 × 𝑈 1 …× 𝑈(1) 



The Schrodinger equation under the adiabatic condition reads 

where the scalar potential is obtained by 

Now the U(1) Berry’s curvature is given by 

which is generically nonzero. The nonzero Berry’s curvature can lead to nontrivial Berry’s phase. 

c

e
A dr

c
  

If the parameter is position: 

Similar as the AB phase. 



1) non-Abelian gauge potential 

If the ground state subspace has a m-fold degeneracy. Then the adiabatic condition is expressed 
as 

where 𝑖 = 1,2, … ,𝑚 and 𝑗 = 𝑚 + 1,𝑚 + 2,… ,N. 

Similarly, for the wave function of the ground state subspace:                                                         , 
we have  

In this case we reduce the symmetry of the gauge by 𝑆𝑈 𝑁 → 𝑈 𝑚 ×… 

If m=2, |𝜙1  and |𝜙2  consist of a pseudo-spin ½ system. The U(2) adiabatic gauge takes the form 

Spin-orbit coupling 1 2 3x y zA A A A    



The atoms coupled to three laser fields, with interacting 
Hamiltonian: 

3. 1. Four-level tripod system 

𝜒1 𝝀  = cos 𝜃𝑒−𝑖𝑆1 𝑟 1 − sin 𝜃 𝑒−𝑖𝑆2 𝑟 |2  

𝜒2 𝝀  = cos𝜙[sin 𝜃 𝑒−𝑖𝑆1 𝑟 1 + cos𝜃 𝑒−𝑖𝑆2 𝑟 |2 ] − sin𝜙𝑒−𝑖𝑆3 𝑟 |3  

Ruseckas et al., PRL (2005); Stanescu, Zhang, and Galitski, 
PRL  (2007). 

which has degenerate two dark states: 

The tripod system is experimentally challenging! 

The two darks states consist of a pseudospin-1/2 system, for which a U(2) non-Abelian gauge 
potential can be obtained.  

3. Theoretical models and Experiments 

The parameters are defined through 



X.-J. Liu, M. F. Borunda, X. Liu, and J. Sinova, PRL, 102, 046402 (2009); arXiv: 0808.4137. 

3. 2.  A minimal scheme: 𝜦 system 

When Δ is much larger than the optical dipole transition 
strength: |Δ|2 ≫ |Ω1|

2 + |Ω2|
2, the above Hamiltonian has 

two nearly degenerate ground states: 

𝜒1 𝝀  = 𝑒𝑖𝑆2 𝑟 cos 𝜃 𝑔↑ − sin 𝜃 𝑒𝑖𝑆1 𝑟 |𝑔↓  

𝜒2 𝝀  ≈ 𝑒𝑖𝑆2 𝑟 sin 𝜃 𝑔↑ + cos 𝜃 𝑒𝑖𝑆1 𝑟 |𝑔↓  

The atoms are coupled to two laser fields with a detuning 
Δ. The interacting Hamiltonian reads Δ 

|𝑒  

Ω1~𝑒𝑖𝑆1 𝑟  
Ω2~𝑒𝑖𝑆2 𝑟  

1D spin-orbit coupling 
via Λ system.  

𝐻𝐼 = ℏΔ − (ℏΩ1|𝑔↑  𝑔↓| +ℏΩ2|𝑔↑  |𝑔↓| + ℎ. 𝑐. ) 

|𝑔↓  
|𝑔↑  

which also consist of a pseudospin-1/2 system. Actually, the physical picture of this result is 
simple. Under the condition: |Δ|2 ≫ |Ω1|

2 + |Ω2|
2, the single-photon transitions from ground 

states to the excited state is greatly suppressed, while the two-photon transition from one 
ground state (e.g. |𝑔↑ ) to another ground state (e.g. |𝑔↓ ) can happen. This effectively leads to a 
two-state (|𝑔↑  and |𝑔↓ ) system with Raman coupling induced by two-photon process. As a 
result, we can obtain adiabatic gauge potential in this pseudospin-1/2 system. 

The optical dipole transition Rabi-frequencies: 

Ω1 = 𝑔↑|𝒅1𝐹 ∙ 𝑬1|𝑒 ,    Ω2 = 𝑔↓|𝒅1𝐹 ∙ 𝑬2|𝑒  



Ω1~𝑒𝑖𝑘0𝑥 
Ω2~𝑒−𝑖𝑘0𝑥 

we obtain the 1D (equal Rashba-Dresselhaus) spin-orbit coupling 

For the simplest situation, we can consider the following 
configuration for the laser fields: 

Ω1 = |Ω0|𝑒
𝑖𝑘0𝑥,        Ω2 = |Ω0|𝑒

−𝑖𝑘0𝑥 

As described previous, when |Δ|2 ≫ |Ω1|
2 + |Ω2|

2 
we can adiabatically remove the excited state and 
obtain the effective Hamiltonian in two ground states 

Δ 

|𝑒  

|𝑔↓  
|𝑔↑  

𝛿 

𝐻eff =

𝑘𝑥
2

2𝑚
+

𝛿

2
,  Ω𝑅𝑒𝑖2𝑘0𝑥

Ω𝑅𝑒
−𝑖2𝑘0𝑥,

𝑘𝑥
2

2𝑚
−

𝛿

2

 

𝛿 is a small two-photon detuning. Using the following transformation 

𝐻0 = 𝑈𝐻eff𝑈
† =

(𝑘𝑥 + 𝑘0𝜎𝑧)
2

2𝑚
+

𝛿

2
𝜎𝑧 + Ω𝑅𝜎𝑥 

  Ω𝑅=
|Ω1Ω2|

Δ 
 

The Raman coupling strength: 



Momentum shift Spin flip transition 

Illustration of 1D SO coupling:  

1D spin-orbit coupling plus Zeeman coupling 

𝐻0 =
𝑝𝑥
2

2𝑚
+

𝑝𝑦
2

2𝑚
+

𝑝𝑧
2

2𝑚
+

𝑘0

𝑚
𝑝𝑥𝜎𝑧 +

Ω𝑅

2
𝜎𝑥 

2𝑘0 

|𝐹,𝑚𝐹
′   

|𝐹,𝑚𝐹  

Ω1~𝑒𝑖𝑘0𝑥 Ω2~𝑒−𝑖𝑘0𝑥 

|𝑔↓  |𝑔↑  

Picture of the snthetic spin-orbit coupling generated by two-photon Raman process 

Effects of the Raman coupling:    
 
(I) 2𝑘0 momentum transfer;  (II) spin-flip transition. 

(I)  (II)  



3.3 Realize a 𝜦-type system with cold atoms 

Candidate: 87Rb  

𝐹 = 1 

52𝑆1/2 

52𝑃1/2 

52𝑃3/2 

𝐷1 
𝐷2 

𝐹 =2 

𝐹 = 1 

𝐹 = 2 

𝐹 = 0 

𝐹 = 2 

𝐹 = 3 

𝐹 = 1 

Δ 

|𝑚𝐹 = 0  
|𝑚𝐹 = +1  

Ω1~𝑒𝑖𝑆1 𝑟  

Ω2~𝑒𝑖𝑆2 𝑟  

Note that the ground state corresponds to 

𝐹 = 1, which has 3 degenerate states. To 

separate a 𝛬-type system from other states, 

one can apply a magnetic field to induce a 

energy shift in the ground states. The energy 

shift is nonlinear, hence when two of the 

three ground states are coupled in two-

photon resonance, they are detuned from the 

third state. Thus a 𝛬-type system is resulted. 

52𝑃1/2 

𝛿 

|𝑚𝐹 = −1  

When 𝛿 ≫ |Ω1,2|, the coupling to the state 
|𝑚𝐹 = −1  can be neglected, and then a 
pseudo spin-1/2 system is achieved. 

Level diagram: 



Cancellation of  Raman couplings through D1 and D2 lines. 

in the above formula 𝐸𝑠 represents the frequency difference between D1 and D2 lines (i.e. the 
fine structure splitting of excited states), Ω1𝐹,𝐷1 is the Rabi-frequency of the laser induced 
transition from the ground state |𝑚𝐹 = +1  to an excited state of quantum number 𝐹 in the D1 
line, and similar for other related notations.   

Note that the net Raman coupling is obtained by taking into account the contributions through 

both the D1 and D2 lines. The total Raman coupling between two ground states |𝑚𝐹 = +1  and 

|𝑚𝐹 = 0  is given by 

Ω𝑅 =  
Ω2𝐹,𝐷1

∗ Ω1𝐹,𝐷1

Δ
𝐹

+  
Ω2𝐹,𝐷2

∗ Ω1𝐹,𝐷2

Δ + 𝐸𝑠
𝐹

. 

 Ω2𝐹,𝐷1
∗ Ω1𝐹,𝐷1 +  Ω2𝐹,𝐷2

∗ Ω1𝐹,𝐷2

𝐹𝐹

=  ↓ |𝒅2𝐹 ∙ 𝑬2|𝑒𝐹,𝐷𝑗 𝑒𝐹,𝐷𝑗|𝒅1𝐹 ∙ 𝑬1| ↑

𝐹,𝑗=1,2

 

We can show that (denote |𝑒𝐹,𝐷𝑗  as an excited state corresponding to D𝑗 (j=1,2) line): 

= ↓ |(𝒅2𝐹 ∙ 𝑬2)(𝒅1𝐹 ∙ 𝑬1)| ↑  

= 0 

In the second line we have used the identity 

 |𝑒𝐹,𝐷𝑗  𝑒𝐹,𝐷𝑗|

𝐹;𝑗=1,2

= 1. 



Thus the couplings through the D1 and D2 lines contribute oppositely to the Raman transition. 

We obtain that 

Ω𝑅 =  
𝐸𝑠

Δ(Δ + 𝐸𝑠)
𝐹

Ω2𝐹,𝐷1
∗ Ω1𝐹,𝐷1 

Ω𝑅 ∝
|Ω1Ω2|

Δ2 ∝
1

τlife

𝐸𝑠

Γ
 

When Δ ≫ 𝐸𝑠, we have 

where the life time is given via 
1

τlife
~

|Ω𝑗|
2

Δ2 Γ, and Γ is the decaying rate. In this regime, both Ω𝑅 

and 𝜏life can be enhanced by properly increasing Δ and Rabi-frequencies |Ω| accordingly. 

Ω𝑅 ∝
|Ω1Ω2|

Δ
∝

1

τlife

Δ

Γ
, 

When Δ < 𝐸𝑠, we have 

In this regime, the Raman coupling strength Ω𝑅 and life time 𝜏life cannot be enhanced at the 
same time by increasing Δ and Rabi-frequencies |Ω|. Thus we have the following conclusions:  

1) To induce an appreciable Raman coupling strength 𝑉𝑅,  the detuning Δ cannot be much 
larger than fine structure splitting 𝐸𝑠 of the excited states.  

2) A large enough life time 𝜏life, however, requires that  Δ should be much larger than |Ω|.  
3) For Alkali atoms, The proper parameter regime is that Δ ≲ 𝐸𝑠. 
4) The atomic candidates with large fine structure splitting 𝐸𝑠 are preferred for the generation 

of spin-orbit coupling. 

87Rb: good  40K: marginal  6Li: strong heating  

𝐸𝑠 ∼ 7.1THz 𝐸𝑠 ∼ 1.8THz 𝐸𝑠 ∼ 10GHz 

Alkali-earth atoms (Yb) 

𝐸𝑠 > 100THz 



3.4 Experimental realization of 1D SOC 

40K fermions:  
J. Zhang group, PRL. 109, 095301 (2012).    

6Li fermions: M. Zwierlein group, PRL 109, 
095301 (2012). 

87Rb boson: I. Spielman group, 2011 
  Shuai Chen, Jianwei Pan group, 2012 
  P. Engels’ group, Washington State U.  
  Y. P. Chen, Puedue U  
40K fermion: J. Zhang group, 2012 
 6Li fermion: M. Zwierlein group, 2012. 
 161Dy fermion: Lev, 2016; 
 173Yb fermion: G.-B. Jo & XJL etal, 2016; ….  



4. Effect of the 1D spin-orbit coupling 

The spin-orbit coupled Hamiltonian: 

The single-particle spectra: single-well vs double-well dispersion relation (X. -J. Liu, M. F. 
Borunda, X. Liu, and J. Sinova, PRL 102, 046402 (2009)). 

𝐻0 =
(𝑘𝑥 + 𝑘0𝜎𝑧)

2

2𝑚
+

𝛿

2
𝜎𝑧 +

Ω𝑅

2
𝜎𝑥 

Ω𝑐 = 2𝐸𝑅 = 𝑘0
2/𝑚 Ω𝑅 < Ω𝑐 Ω𝑅 > Ω𝑐 

𝑘𝑥 

𝐸𝑘𝑥 

𝑘𝑥 

𝐸𝑘𝑥 

4.1 Fermions with the Fermi energy 𝝁𝑭 = 𝟎. Time-of-flight expansion by switching off trap: 

Ω𝑅 < Ω𝑐 Ω𝑅 > Ω𝑐 

X. -J. Liu, etal, PRL 102, 046402 (2009) 

𝛿 = 0 



4.2 Bosons: magnetized phase vs strip phase (supersolid) 

Refs: Wang, Gao, Jian & Zhai, PRL 105, 160403 (2010); C. -J. Wu, Mondragon-Shem, & Zhou, Chin. Phys. Lett. 
28, 097102 (2011); Ho & Zhang, PRL, 107, 150403 (2011); Y. Li, Pitaevskii, & Stringari, PRL 108, 225301 
(2012).  

The bosonic system is very different from the fermions with spin-orbit coupling. At low 
temperature the bosons are condensed in the state with total energy being minimized. Due to 
the nontrivial band structure induced by spin-orbit coupling, the ground states of the interacting 
bosons can be nontrivial. 

The results are illustrated in the following figure: 

Ω𝑅 



The ground state of the present bosonic system can be determined by variation method. The 
wave function of the BEC is taken as: 

Where 𝐶1,2 and 𝑘 are variation parameters, and 𝜃 is defined through   

ℎ0 =
𝑝𝑦
2+𝑝𝑧

2

2𝑚
+

(𝑘𝑥+𝑘0𝜎𝑧)
2

2𝑚
+

Ω𝑅

2
𝜎𝑥， 

The total Hamiltonian:  

The atomic densities of the spin-up and spin-down components: 

𝑔𝑎 < 𝑔𝑠 = (𝑔↑↑ + 𝑔↓↓)/2 



How to minimize the energy (Jeffrey C. F. Poon and XJL, PRA 93, 063420 (2016))?  

1. The kinetic energy is minimized at the single-particle band bottom.  
2. The interaction term favors an equal distribution of spin-up and spin-down atoms. 
3. If atoms are distributed in both left and right minima. A density modulation in the position 
space is resulted due to interference. This costs extra energy. 
4. Increasing the Zeeman term enhances the interference between two states at the single-
particle band bottom. 

with 

Experiment observation 

Shuai Chen and Jian-Wei Pan group, 
87Rb atoms, Nature Phys. 10, 31420 
(2014) 



A Question 

The magnetized phase has a double degeneracy, consisting of a many-particle two-state system. 
Can nontrivial dynamics be induced between such degenerate ground states by external 
perturbation? 

Magnetized phase A Magnetized phase B 

𝜓𝑅 𝜓𝐿 



Induced quantum dynamics for magnetized phases 

Start with a magnetized phase, and apply a perturbation to couple the two magnetized phases 

Time-dependent perturbation  

Ψ 𝑡 = [𝛼 𝑡 𝜓 𝑅
† + 𝛽(𝑡)𝜓 𝐿

†]𝑁|𝑣𝑎𝑐  

Evolution of the BEC with N particles 

𝛼 0 = 1, 𝛽 0 = 0. 
𝑉𝑐𝑟𝑖𝑡 

|𝛽2| <
1

2
 |𝛽2| =1 

Jeffrey C. F. Poon and XJL, PRA 93, 063420 (2016); arXiv: 1505.06687. 



4.3 BCS-BEC crossover 

Consider a model with a 3D Fermi system with 2D isotropic spin-orbit coupling: 

In the second quantization picture: 

with 

The contact interaction: 

The bare interaction 

J. P. Vyasanakere and V. B. Shenoy, PRB 83, 094515 (2011); M. Gong, S. Tewari, and C. Zhang, this 
issue, PRL 107, 195303 (2011); H. Hu, L. Jiang, X. -J. Liu, and H. Pu, PRL 107, 195304 (2011); Z-Q. 
Yu and H. Zhai, PRL 107, 195305 (2011). 



1) Two-body problem: bound state (“Rashbon”) due to SO coupling (J. P. Vyasanakere and V. B. 

Shenoy, PRB 83, 094515 (2011)), with the energy solved by  

This give a bound state as long as the SOC is nonzero. In the strong scattering regime, one has: 

2) Many-body problem: mean-field calculation for the order parameter 



Enhancement of SF order by SO coupling 

The enhancement of the SF order is a consequence of the enhancement of DOS by the SO 
coupling. 

M. Gong, S. Tewari, and C. Zhang, this issue, PRL 107, 195303 (2011); H. Hu, L. Jiang, X. -J. Liu, 
and H. Pu, PRL 107, 195304 (2011); Z-Q. Yu and H. Zhai, PRL 107, 195305 (2011). 



Other related issues of spin-orbit coupling 

• Synthetic spin-orbit coupling in optical lattices (next lecture). 

• Spin-orbit coupling through shaken lattice; SOC for high orbital bands in optical lattices. 

• Dynamical non-Abelian gauge potentials/fields 

Thank you for your attention! 

Review articles: X.-J. Liu et al., Front. Phys. China, 3, 113 (2008); J. Dalibard, F. Gerbier, G. 
Juzeliunas, P. Ohberg, Rev. Mod. Phys. 83, 1523 (2011); N Goldman, G Juzeliunas , P Ohberg and I 
B Spielman, Rep. Prog. Phys. 77 126401 (2014); X. Zhou, Y. Li, Z. Cai, and C. Wu, J. Phys. B: At. 
Mol. Opt. Phys. 46 , 134001 (2014); H. Zhai, Rep. Prog. Phys. 78, 026001 (2015). 

• Exotic magnetic phases with spin-orbit couplings. 

http://baike.sogou.com/PicBooklet.v?relateImageGroupIds=&lemmaId=355138&now=&type=1
http://www.ecologicalevolution.org/topics-in-tropical-asian-forestry-fall-2012/

