Improving Uniform Plastic Shear Deformation in a Disordered Bidisperse Mixture by Incorporating a Disperse Ordered Phase

<u>Guo-Jie Jason Gao¹</u>, Yun-Jiang Wang^{2,3}, Shigenobu Ogata^{4,5}

- 1. Dept. of Mathematical and Systems Engineering, Shizuoka University,
- 2. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences,
- 3. School of Engineering Science, University of Chinese Academy of Sciences,
- 4. Department of Mechanical Science and Bioengineering, Osaka University,
- 5. Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University.

Which matters more - configurational or strength heterogeneity?

Why an Inhomogeneous Configuration Is More Ductile?

stronger shear localization

Idea: An inhomogeneous configuration allows the system to deform more uniformly, which leads to reduced shear localization and therefore better ductility.

weaker shear localization

How to construct a mesoscopic inhomogeneous configuration?

A Disordered Bidisperse Mixture w/ a Disperse Ordered Phase

Modeling Tool (1)

A polycrystal model with a tunable crystallinity (Onuki et al. 06', 07' 10')

Persistent Crystallinity under Shear Deformation

Modeling Tool (2)

Giving each phase different strength by using the n-6 Lennard-Jones potential (*P. Ginart et al. 11'*)

Tunable Mechanical Strength

How to Prepare a homogeneous Configuration?

C = 0.5, $N_{tot} = 1000$, T = 0.2

Most particles tend to have disordered neighbors.

How to Prepare an Inhomogeneous Configuration?

 $C = 0.1, N_{tot} = 1000, T = 0.2$

Ordered (disordered) particles tend to have ordered (disordered) neighbors.

Quasistatic Shear Deformation

Quasistatic Shear Deformation

gamma (strain) = 0.02

gamma (strain) = 0.02

inhomogeneous

homogeneous

An Inhomogeneous Configuration Deforms Most Uniformly

 L_{σ} : deviation from the affined deformation.

$$\Delta = L_y / 10$$

Verifying the Trend at Near-Zero Temperature

Increasing number of trials does not change the trend.

Why an Inhomogeneous Configuration Deforms More Uniformly?

Von Mises shear stress

Why an Inhomogeneous Configuration Deforms More Uniformly?

Summary and Future Work

- We propose a disordered bidisperse mixture having:
 1) a disperse ordered phase;
 2) different strengths between different phases.
- Our mesoscopic model qualitatively shows that an inhomogeneous composition deforms more uniformly than a homogeneous one, which presumably leads to weaker shear localization/banding and therefore improves the ductility.
- Examining a hard ordered phase embedded in a soft disordered matrix and exploring the optimal ordered/disordered area ratio that gives the best deformation uniformity.

Acknowledgement Startup funding, Shizuoka University, Japan.