

Kinetic theory of shear thickening for inertial suspensions

Hisao Hayakawa (YITP, Kyoto Univ.) collaboration with Satoshi Takada (Univ. Tokyo), & Vicente Gárzo (Univ. Estremadura)

Rheolgy of disordered particles- suspensions, glassy and granular particles, June 18th-29th, 2018 (talk is held on June 21st).

Refs: HH and S. Takada, arXiv:1611.07295, HH et al, PRE**96**, 042903 (2017).

Contents

- Introduction of shear thickening
- Kinetic model
- Kinetic theory of discontinuous shear thickening (DST) for dilute suspensions
- From DST to continuous shear thickening (CST) at finite density
- Application to binary mixtures
- Discussions
- Conclusions

Contents



- Introduction of shear thickening
- Kinetic model
- Kinetic theory of discontinuous shear thickening (DST) for dilute suspensions
- From DST to continuous shear thickening (CST) at finite density
- Application to binary mixtures
- > Discussions
- Conclusions

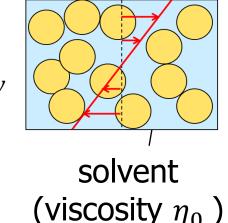
Shear thickening

• Shear thickening is the increment of the viscosity $\eta_s(\varphi) = \sigma(\varphi)/\dot{\gamma}$

against shear rate $\dot{\gamma}$.

- In particular, the discontinuous shear thickening (DST) has a drastic increase of the viscosity.
- Industrial applications to protective vest and traction control (break suspension)

 $\dot{\gamma} = \partial v_x / \partial y$



http://youtube-video-download.info/video/EhdgkziFhrY

Discontinuous shear thickening (DST)

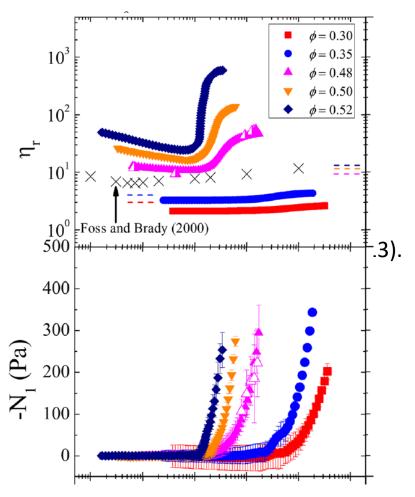
DST attracts much attention from physicists.

For DST in dense systems

 Mutual friction to stabilize percolaition is important
 M.Otsuki & H. Hayakawa, PRE 83, 051301 (2011)
 R. Seto et al., PRL 111, 218301 (2013).

DST in experiments

 Normal stress difference is important.
 C. D. Cwalina & N.J. Wagner, J. Rheol. 58, 949 (2014)



Ň

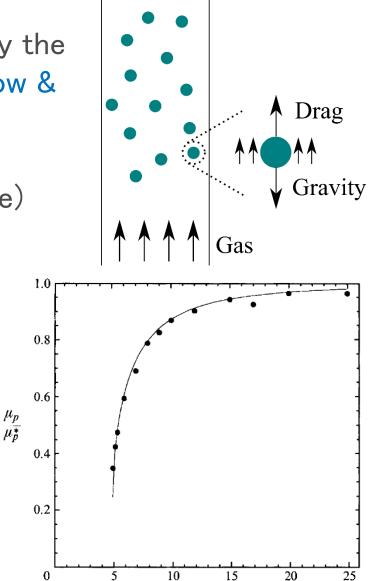
Gas-solid suspensions

- Inertial suspensions
- Homogenous state is relialized by the balance between injecting gas flow & gravity.
- Relatively dilute system (theoretical treatment is available) without percolation picture

Previous (theoretical) study

Tsao and Koch, JFM **296**, 211 (1995) analyzed dilute gas-solid suspensions without thermal noise.

 Quenched-Ignited transition (DST-like transition for temperature but not for viscosity)



St

6

Contents

Introduction of shear thickening

Kinetic model

- Kinetic theory of discontinuous shear thickening (DST) for dilute suspensions
- From DST to continuous shear thickening (CST) at finite density
- Application to binary mixtures
- > Discussions
- Conclusions

Langevin model

 Suspensions are influenced by collisions and dag as well as thermal activation:

$$\frac{d\boldsymbol{p}_i}{dt} = -\zeta \boldsymbol{p}_i + \boldsymbol{F}_i^{(\text{imp})} + m\boldsymbol{\xi}_i,$$

• where the noise satisfies

 $\langle \boldsymbol{\xi}_i(t) \rangle = 0, \quad \langle \xi_{i,\alpha}(t) \xi_{j,\beta}(t') \rangle = 2\zeta T_{\mathrm{ex}} \delta_{ij} \delta_{\alpha\beta} \delta(t-t').$

• Here, we have introduced the peculiar momentum $m{p}_i\equiv m(m{v}_i-\dot{\gamma}ym{e}_x)=m\,m{V}_i$

Assumptions behind the Langevin 瑟 model

- We assume that the drag force from the fluid is proportional to the fluid velocity.
 - Stokesian flow is assumed for relatively small grains.
- The drag coefficient is only determined by the average density of suspensions.

– This is a mean field model $\zeta = \zeta_0 R(\varphi)$.

• Noise plays an important role for low shear regime to recover a thermal equilibrium state.

Simulation of Langevin equation

PHYSICAL REVIEW E 86, 026709 (2012)

Event-driven Langevin simulations of hard spheres

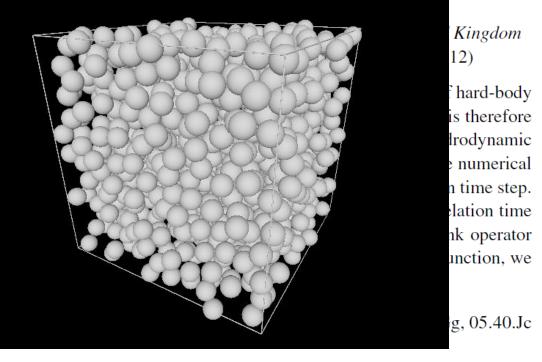
A. Scala

ISC-CNR Dipartimento di Fisica, Sapienza Università di Roma Piazzale Moro 5, 00185 Roma, Italy,

IMT Alti Studi London Institute of Mathematical S (Received 8 March 2012; rev

The blossoming of interest in colle systems. In particular, hard spheres h necessary to study the complex dyna interactions, the simplest model is th integration of the Langevin equation This is not the case for hard-body sy of the noise and the time scale of th associated with the Langevin dynam introduce and test two algorithms for

DOI: 10.1103/PhysRevE.86.026709



Boltzmann-Enskog equation

 Langevin model is equivalent to the kinetic equation (moderately dense case)

$$\left(\frac{\partial}{\partial t} - \sqrt[4]{V_y}\frac{\partial}{\partial V_x}\right)f(\boldsymbol{r}, \boldsymbol{V}, t) = \left(\zeta\frac{\partial}{\partial \boldsymbol{V}} \cdot \left(\left\{\boldsymbol{V} + \frac{T_{\text{ex}}}{m}\frac{\partial}{\partial \boldsymbol{V}}\right\}f(\boldsymbol{r}, \boldsymbol{V}, t)\right) + J_E(\boldsymbol{r}, \boldsymbol{V}|f|\right)$$

• We adopt Boltzmann-Enskog equation friction from back ground

$$\begin{split} J_E(\mathbf{r}, \mathbf{V}_1 | f^{(2)}) &= \sigma^{d-1} \int d\mathbf{v}_2 \int d\hat{\sigma} \Theta(\mathbf{v}_{12} \cdot \hat{\sigma}) (\mathbf{v}_{12} \cdot \hat{\sigma}) \left\{ \frac{f^{(2)}(\mathbf{r}, \mathbf{r} - \boldsymbol{\sigma}, \mathbf{v}_1^{**}, \mathbf{v}_2^{**}; t)}{e^2} - f^{(2)}(\mathbf{r}, \mathbf{r} + \boldsymbol{\sigma}, \mathbf{v}_1, \mathbf{v}_2; t) \right\}, \\ &= \sigma^{d-1} \chi \int d\mathbf{v}_2 \int d\hat{\sigma} \Theta(\mathbf{v}_{12} \cdot \hat{\sigma}) (\mathbf{v}_{12} \cdot \hat{\sigma}) [\frac{f(\mathbf{V}_1^{**}, t) f(\mathbf{V}_2^{**} + \dot{\gamma} \sigma \hat{\sigma}_y \mathbf{e}_x, t)}{e^2} - f(\mathbf{V}_1, t) f(\mathbf{V}_2 - \dot{\gamma} \hat{\sigma}_y \mathbf{e}_x, t)] \end{split}$$

Decoupling (Enskog equation)

The coefficient of restitution

Contents



- Introduction of shear thickening
- Kinetic model
- Kinetic theory of discontinuous shear thickening (DST) for dilute suspensions
- From DST to continuous shear thickening (CST) at finite density
- Application to binary mixtures
- > Discussions
- Conclusions

Stress equation for dilute suspensions

$$\frac{\partial}{\partial t}P^k_{\alpha\beta} + \dot{\gamma}(\delta_{\alpha x}P^k_{y\beta} + \delta_{\beta x}P^k_{y\alpha}) = -2\zeta(P^k_{\alpha\beta} - nT_{\rm ex}\delta_{\alpha\beta}) - \Lambda^E_{\alpha\beta},$$

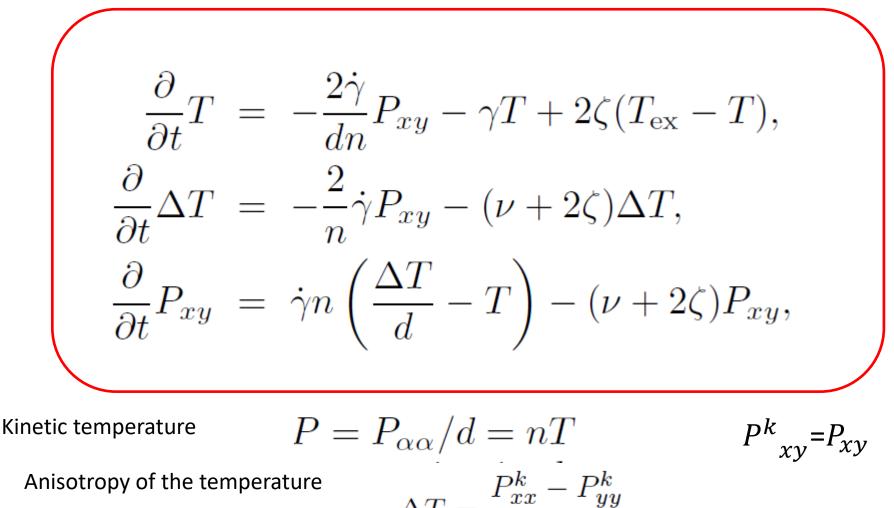
$$P_{\alpha\beta}^{k}(\boldsymbol{r},t) = m \int d\boldsymbol{v} V_{\alpha} V_{\beta} f(\boldsymbol{V},t), \quad \Lambda_{\alpha\beta}^{E} \equiv -m \int d\boldsymbol{V} V_{\alpha} V_{\beta} J_{E}(\boldsymbol{V}|f,f).$$

To get a closure we adopt Grad's 13 moment method

$$f(\mathbf{V}) = f_{eq}(\mathbf{V}) \left[1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta} \right]$$

$$f_{eq}(\mathbf{V}) = n \left(\frac{m}{2nT}\right)^{d/2} \exp\left(-\frac{mV^2}{2T}\right); \quad \Pi_{\alpha\beta} \equiv \frac{P_{\alpha\beta}^k}{nT} - \delta_{\alpha\beta}$$
$$T = \frac{1}{dn} \int d\mathbf{V} \mathbf{V}^2 f(\mathbf{V})$$

A set of dynamic equations: dilute gases



June 21st, 208

Kinetic theory of shear thickenin \mathbb{R}

14

Some relations in the steady stat (dilute case) emperature ratio (normal stress difference) $\frac{\Delta T}{T} = \frac{d(\gamma^*\sqrt{\theta} + 2(1 - \theta^{-1}))}{\nu^*\sqrt{\theta} + 2}$ Temperature ratio • Stress $P_{xy}^* = -\frac{d\theta}{2\gamma^*} \left\{ \gamma^* \sqrt{\theta} + 2(1-\theta^{-1}) \right\}$ • Shear rate $\dot{\gamma}^* = (\nu^* \sqrt{\theta} + 2) \sqrt{\frac{d[\gamma^* \sqrt{\theta} + 2(1 - \theta^{-1})]}{2[(\nu^* - \gamma^*)\sqrt{\theta} + 2\theta^{-1}]}}$

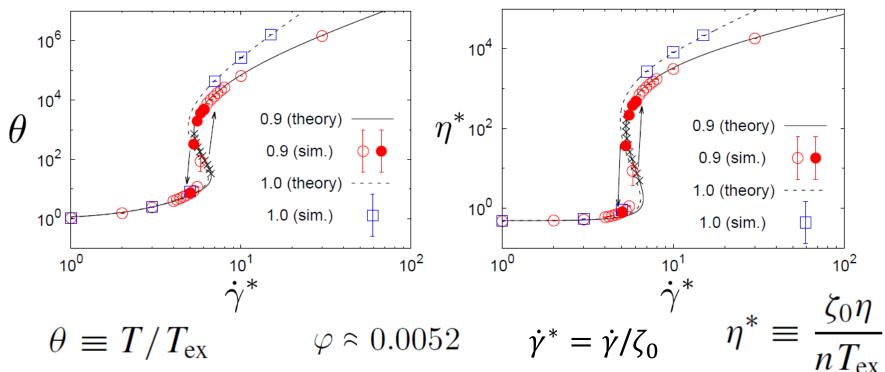
- $\eta^* = \frac{\theta\{(\nu^* \gamma^*)\sqrt{\theta + 2\theta^{-1}}\}}{(\nu^*\sqrt{\theta} + 2)^2}$ • Viscosity

 $\theta \equiv T/T_{\text{ex}}$ $\nu^* = \frac{\nu}{\sqrt{T_{\text{ex}}}}, \quad \gamma^* = \frac{\gamma}{\sqrt{T_{x}}}, \quad \dot{\gamma}^* = \frac{\gamma}{\zeta_0 \sqrt{T_{\text{ex}}}}$

lune 21st, 208

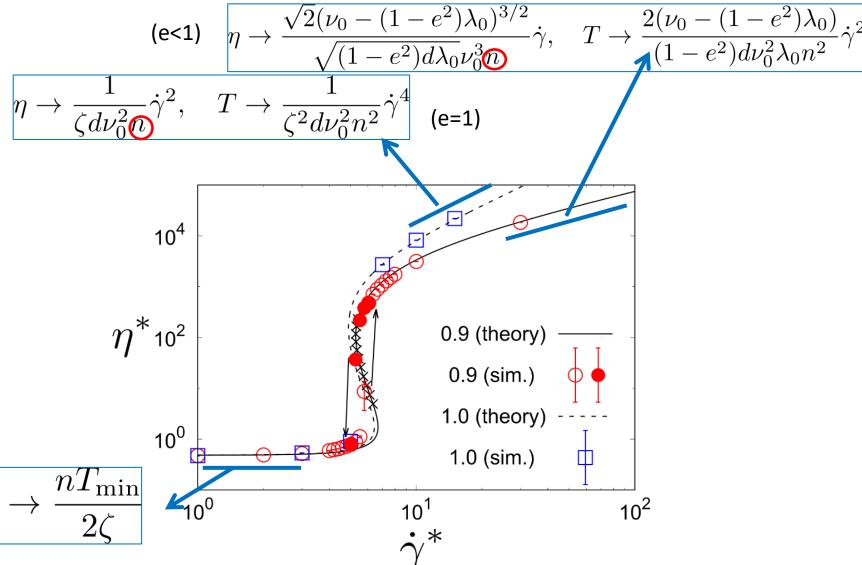
DST in dilute suspensions

Flow curves for various restitution constant =>Perfect agreement between the theory & simulation



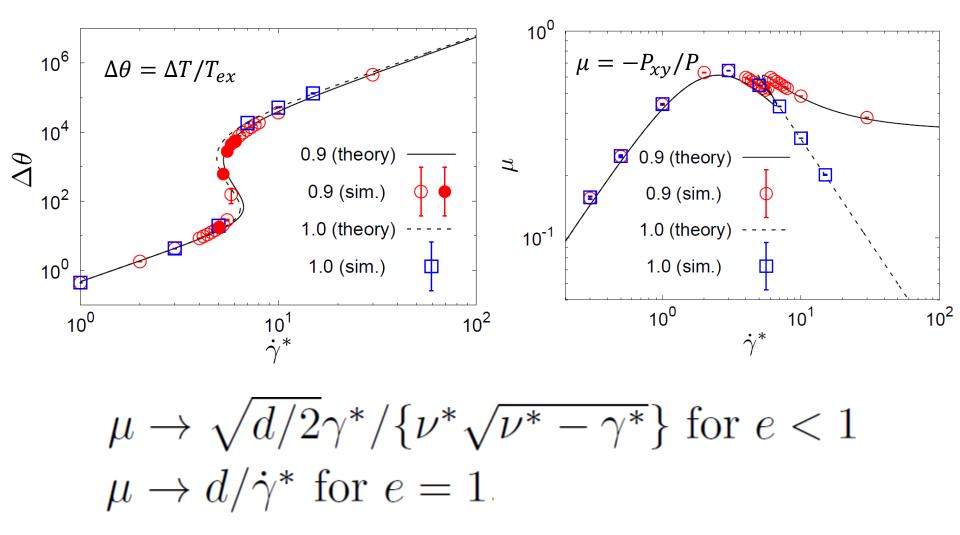
The lines are the analytic expressions of steady equations and the data are obtained from the Langevin simulation.

High and low shear limits



Kinetic theory of shear thickening

Normal stress difference and shear ratio



Contents

- Introduction of shear thickening
- Kinetic model
- Kinetic theory of discontinuous shear thickening (DST) for dilute suspensions
- From DST to continuous shear thickening (CST) at finite density
- Application to binary mixtures
- > Discussions
- Conclusions

Extension to finite density

- We can apply Grad's method to moderately dense suspensions.
- The collisional stress involves an additional contribution.
 - It is known that Enskog theory gives precise results for $\varphi < 0.5.$
- The treatment of the shear rate in the collisional stress is difficult.
- => This does not appear in Chapman-Enskog theory.

Stress equation for moderately dense gas

$$\frac{\partial}{\partial t}P^k_{\alpha\beta} + \dot{\gamma}(\delta_{\alpha x}P_{y\beta} + \delta_{\beta x}P_{y\alpha}) = -2\zeta(P^k_{\alpha\beta} - nT_{\rm ex}\delta_{\alpha\beta}) - \overline{\Lambda}^E_{\alpha\beta}$$

$$\overline{\Lambda}_{\alpha\beta}^{E} = \frac{1+e}{4} m \sigma^{d-1} \int d\boldsymbol{v}_{1} \int d\boldsymbol{v}_{2} \int d\hat{\boldsymbol{\sigma}} \Theta(\hat{\boldsymbol{\sigma}} \cdot \boldsymbol{v}_{12}) (\hat{\boldsymbol{\sigma}} \cdot \boldsymbol{v}_{12})^{2} \{ (v_{12,\alpha} \hat{\sigma}_{\beta} + \hat{\sigma}_{\alpha} v_{12,\beta}) f_{2}(\boldsymbol{r}, \boldsymbol{v}_{1}, \boldsymbol{r} + \boldsymbol{\sigma}, \boldsymbol{v}_{2}; t) \}$$
$$-(1+e) (\hat{\boldsymbol{\sigma}} \cdot \boldsymbol{v}_{12}) \hat{\sigma}_{\alpha} \hat{\sigma}_{\beta} f_{2}(\boldsymbol{r}, \boldsymbol{v}_{1}, \boldsymbol{r} + \boldsymbol{\sigma}, \boldsymbol{v}_{2}; t) \}$$

$$= g_0 nT \{ \nu \Pi^k_{\alpha\beta} + \gamma \delta_{\alpha\beta} \\ -\dot{\gamma} A_d(e,\varphi) [b_d(e)(\delta_{\alpha x} \delta_{\beta y} + \delta_{\alpha y} \delta_{\beta x}) + c_d(e)(\Pi^k_{\alpha x} \delta_{\beta y} + \Pi^k_{\alpha y} \delta_{\beta x} + \Pi^k_{\beta x} \delta_{\alpha y} + \Pi^k_{\beta y} \delta_{\alpha x}) - 6(1+e)\delta_{\alpha\beta} \Pi^k_{xy}] \}$$

$$\nu = \frac{\sqrt{2\pi^{(d-1)/2}}n\sigma^{d-1}v_T(1+e)(2d+3-3e)}{d(d+2)\Gamma(\frac{d}{2})},$$

$$\gamma = \frac{\sqrt{2\pi^{(d-1)/2}}n\sigma^{d-1}v_T(1-e^2)}{d\Gamma(\frac{d}{2})}$$

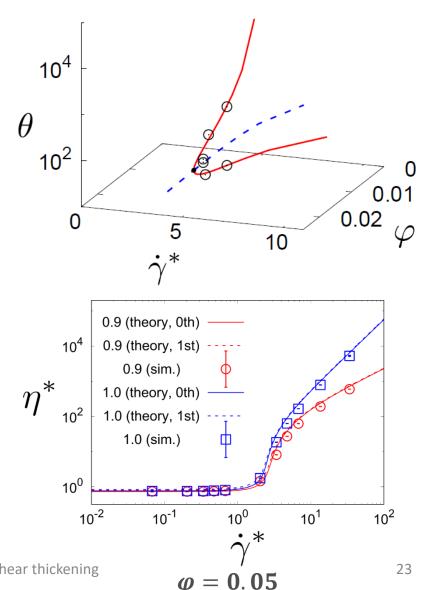
$$A_d(e,\varphi) = \frac{2^{d-2}}{(d+2)(d+4)}\varphi(1+e), \quad b_d(e) = (d+4)(1-3e), \quad c_d(e) = 2(d+1-3e).$$

Stress equations under Grad's **Stress** approximation

$$\begin{split} \frac{d}{dt}T &= -\frac{2\dot{\gamma}}{dn}\mathcal{C}_{d}(e,\phi)P_{xy}^{k} - \frac{2\dot{\gamma}}{dn}P_{xy}^{c} + 2\zeta(T_{ex} - T) - \chi\gamma T, \\ \frac{d}{dt}\Delta T &= -\frac{2}{n}\dot{\gamma}P_{xy} - (\nu\chi + 2\zeta)\Delta T, \\ \frac{d}{dt}\delta T &= -\frac{2}{n}\dot{\gamma}(\mathcal{E}_{d}(e,\phi)P_{xy}^{k} + P_{xy}^{c}) - (\nu\chi + 2\zeta)\delta T, \\ \frac{d}{dt}P_{xy}^{k} &= \dot{\gamma}n\left(\frac{d-1}{d}\mathcal{D}_{d}(e,\phi)\Delta T - \frac{d-2}{d}\mathcal{E}_{d}(e,\phi)\delta T - \mathcal{C}_{d}(e,\phi)T\right) \\ -\dot{\gamma}P_{yy}^{c} - (\nu\chi + 2\zeta)P_{xy}^{k}, \end{split}$$
$$\Delta T &\equiv \frac{P_{xx}^{k} - P_{yy}^{k}}{n}, \quad \delta T \equiv \frac{P_{xx}^{k} - P_{zz}^{k}}{n} \quad P_{xy} = P_{xy}^{k} + P_{xy}^{c}$$

From DST to CST

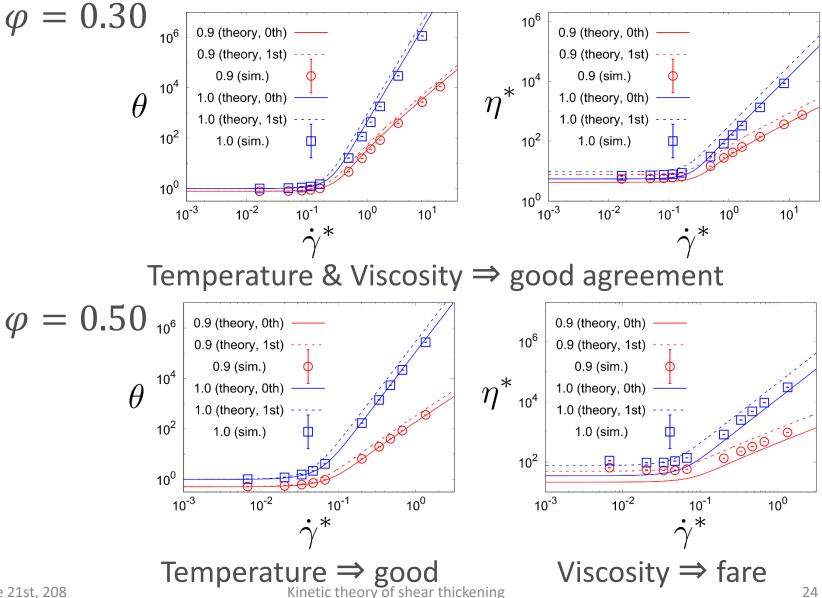
- DST becomes CST if the density becomes finite.
- We plot the line of $\partial \dot{\gamma} / \partial \theta = 0$, where the red one is $\partial^2 \dot{\gamma} / \partial \theta^2 > 0$.
- It is analogous to the first order transition.



YUKAWA INSTITUTE FOR

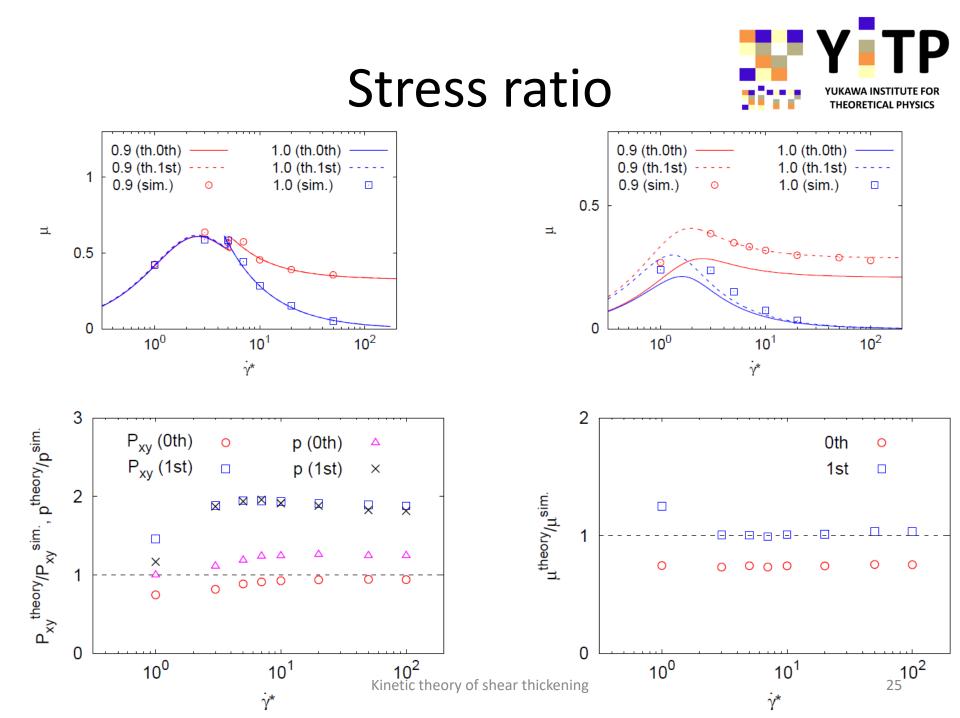
Kinetic theory of shear thickening

Moderately dense cases

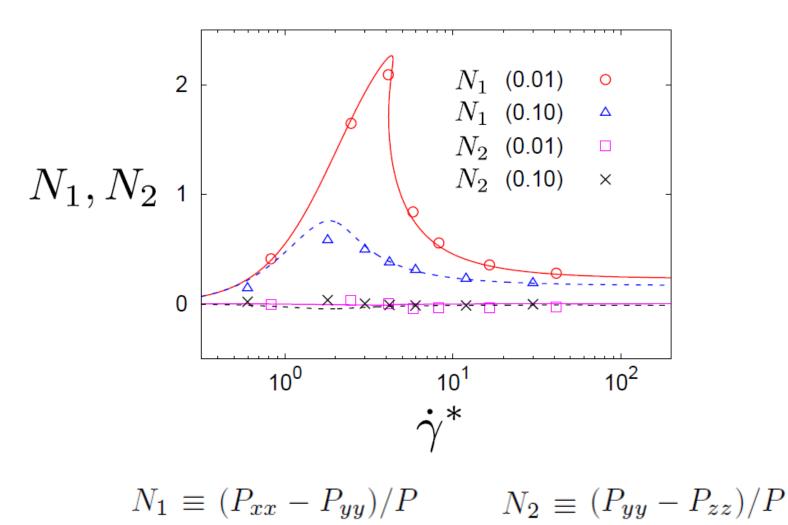


June 21st, 208

THEORETICAL PL



Normal stress differences



June 21st, 208

Contents

- Introduction of shear thickening
- Kinetic model
- Kinetic theory of discontinuous shear thickening (DST) for dilute suspensions
- From DST to continuous shear thickening (CST) at finite density
- Application to binary mixtures
- > Discussions
- Conclusions

Motivation for study of binary mixtures

- To avoid crystallization for dense systems
- To discuss shear thinning for low shear regime
- To clarify the role of mutual diffusion between two spieces
- To extend the simple kinetic theory for monodisperse systems to the complicated(?) kinetic theory for binary mixtures

Some examples of simulation for moderately dense systems

- Bidisperse system
- Number of particles: $N = N_1 + N_2, N_1 = N_2 = 500$
- Diameter:

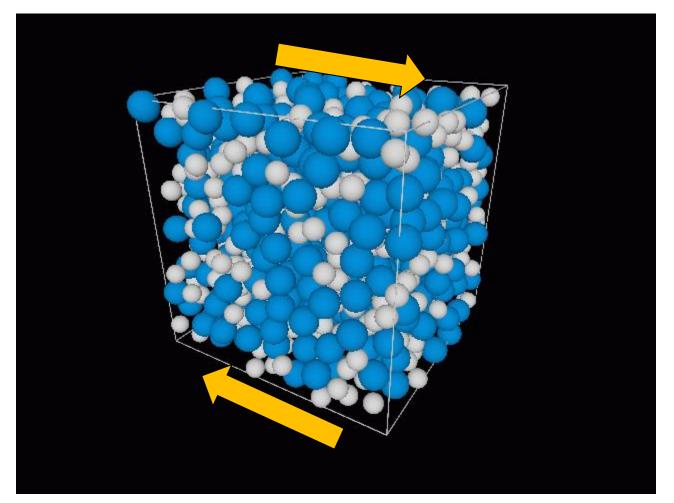
$$d_1: d_2 = 1: 1.4, d_1 = d, d_2 = 1.4d$$

• Restitution coefficient:

$$e_{11} = e_{22} = e_{12} \equiv e$$

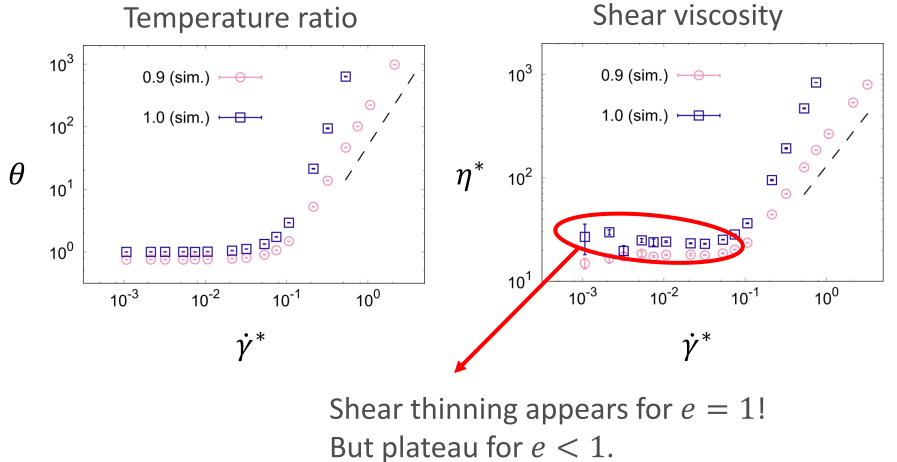
The notations are same as those in our previous paper. (All quantities are nondimensionalized in terms of m, d, ζ .)

Simulation movie ($\boldsymbol{\varphi} = \mathbf{0.4}, \boldsymbol{e} = \mathbf{0.9}$)



Small particles: gray Large particles: blue

Results: moderately dense case $\varphi = 0.40$



Some simulation for dilute cases

- Bidisperse system
- Number of particles:

$$N = N_1 + N_2, N_1 = N_2 = 500$$

- Diameter: 1:1.1, 1:1.4, 1:2, and 1:3 ex.) $d_1: d_2 = 1: 1.4 \Rightarrow d_1 = d, d_2 = 1.4d_3$ mass ratio: $\frac{m_2}{m_1} = \left(\frac{d_2}{d_1}\right)^3$
- Restitution coefficient:

$$e_{11} = e_{22} = e_{12} \equiv e = 0.9$$

• System size: $L = 39.4d (d_2 = 1.1d),$ $L = 46.1d (d_2 = 1.4d),$ $L = 61.8d (d_2 = 2d),$ $L = 90.2d (d_2 = 3d).$

• Packing fraction

$$\varphi = \frac{N_1 \frac{\pi}{6} d_1^3 + N_2 \frac{\pi}{6} d_2^3}{L^3} = 0.01$$

Dimensionless parameters

• All quantities are nondimensionalized by mass $m=m_1$, diameter $d=d_1$, and drag coefficient ζ $T_{\rm ex}=0.01md^2\zeta^2$

Shear rate:
$$\dot{\gamma}^* = \frac{\dot{\gamma}}{\zeta}$$

Temperature: $\theta_i = \frac{T_i}{T_{ex}}$
Stress tensor: $P^{k*} = \frac{P}{nT_{ex}}$
Viscosity: $\eta^* = \frac{\eta\zeta}{nT_{ex}}$

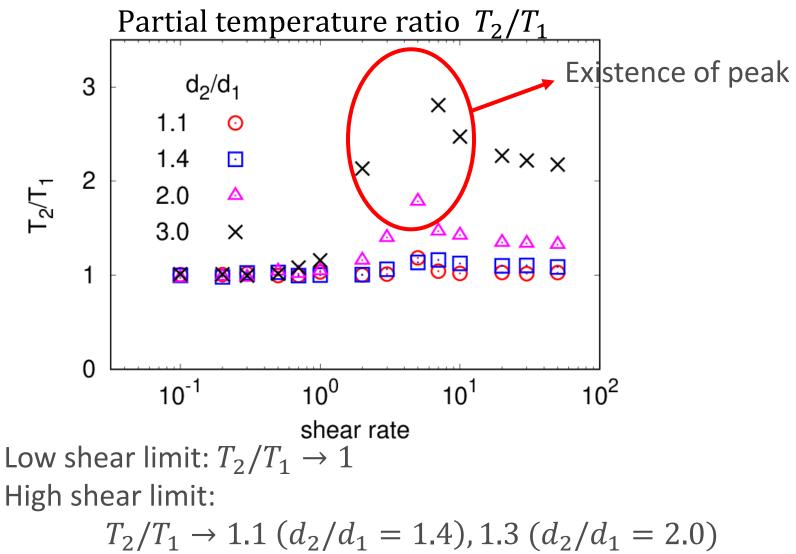
Same as

H. Hayakawa and S. Takada, arXiv:1611.07295 and

H. Hayakawa, S. Takada, and V. Garzó, Phys. Rev. E **96**, 042903 (2017)

Kinetic theory of shear thickening

Partial temperature ratio



Kinetic theory of shear thickening

Current status of theory

- We are focusing on dilute situations.
- We have precisely evaluated collision integrals.
- The theoretical treatment for the temperature ratio seems to work for not-large size ratios, but has some troubles for large size ratios (V. Garzo).
- Flow curves are insensitive to the size dispersion.
- Perhaps, we will report the results in details in near future.

Contents

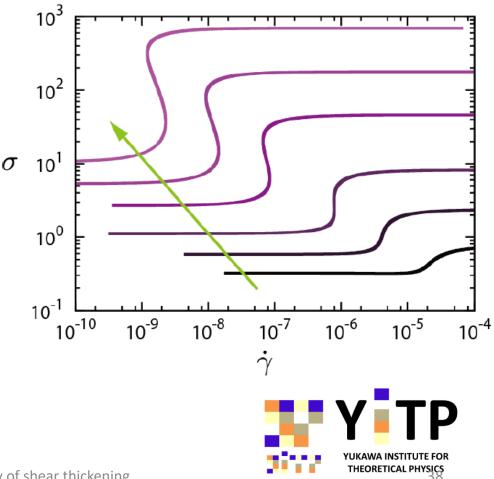
- Introduction of shear thickening
- Kinetic model
- Kinetic theory of discontinuous shear thickening (DST) for dilute suspensions
- From DST to continuous shear thickening (CST) at finite density
- Application to binary mixtures
- Discussions
- Conclusions

Effect of hydrodynamic interactions; shear thickening model

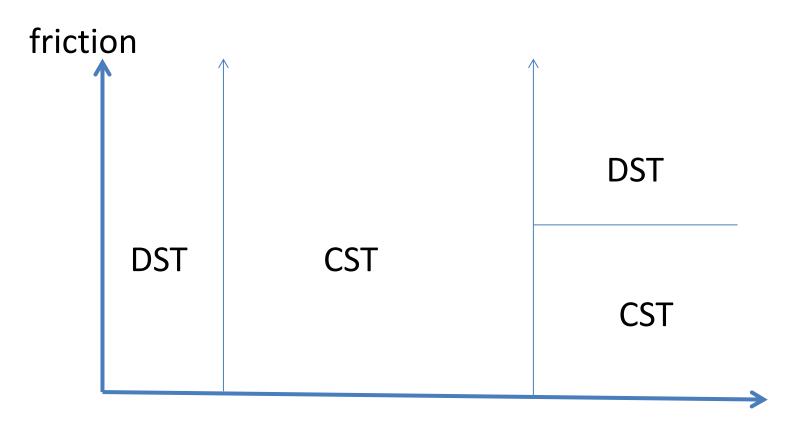
- The hydrodynamic interactions play crucial roles in moderately dense suspensions.
- It is difficult to analyze the serious model of hydrodynamically interacting suspensions.
- Nevertheless, it is easy to implement the hydrodynamic effect as a mean field by changing the drag coefficient.

Effect of mutual friction in dense systems

- The mutual friction plays an important role for dense systems.
- Kuniyasu Saitoh & HH are developing the kinetic theory of dense frictional dry granular systems.
- Listen to Kuni's talk.



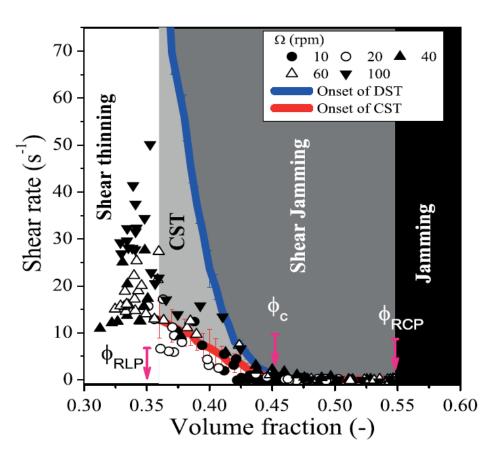
Conceptual phase diagram



density

Shear jammed state and DST

- DST for high density system is related to the shear jammed (SJ) state.
 - SJ may be a protocol dependent state for frictional grains.
- (Right) Bertland et al, PRL 114, 098301 (2015) but it is under debate.
- This is a current hot subject in this field.



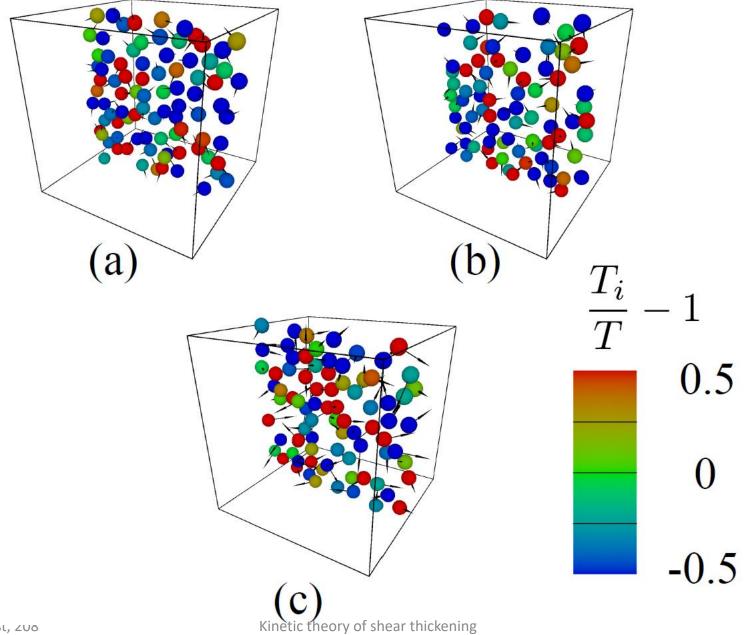
Contents

- Introduction of shear thickening
- Kinetic model
- Kinetic theory of discontinuous shear thickening (DST) for dilute suspensions
- From DST to continuous shear thickening (CST) at finite density
- > Discussions
- Conclusions

Conclusions for shear thickening

- We develop a simple kinetic theory for shear thickening.
- Discontinuous shear thickening (DST) can be reproduced for arbitrary T_{ex} and dilute situations.
- Normal stress difference is important.
- All of the theoretical results perfectly agree with simulation results for dilute cases.
- We also develop Enskog theory for moderately dense suspensions and find the existence a transition from DST to CST.
- See Hayakawa et al, PRE **96**, 042903(2017).

• Thank you for your attention.



Configurations

