Role of surface roughness and friction in the rheology of dense colloidal suspensions

Lilian C. Hsiao

Department of Chemical and Biomolecular Engineering North Carolina State University e-mail: lilian_hsiao@ncsu.edu

NC STATE UNIVERSITY

Colloids vs non-Brownian particles

Nanoparticles	Colloids	Granular materials	
< 100 nm	100 nm – 10 µm	> 10 µm	SIZE
Thermal			
motion *	Negligible inertia		

Flow properties and connections to microstructure

Confocal rheometer for visualization and rheology

Image acquisition from confocal microscopy

Post-processing

Space-time information

Characterizing structure and dynamics from images

Microstructure

Translational and

Rheology and dynamics of colloidal glasses

Effect of surface anisotropy on dense suspensions

Roughness breaks fore-aft symmetry in simple shear

Experiments with non-Brownian PMMA ($\varphi = 0.05$) in Couette cell

- Roughness brings Stokes flow irreversibility and symmetry breaking

Blanc et al. Phys Rev Lett (2011)

Smart & Leighton (1993), Gallier et al. (2014), Wilson & Davis (2002), Da Cunha & Hinch (1996), Sierou & Brady (2002)

Particle roughness and shear thickening

Synthesis of PHSA-PMMA rough colloids

Free-radical dispersion polymerization

Increasing crosslinker concentration, Increasing roughness

Colloidal particles of varying roughness

PHSA-stabilized PMMA colloids, $2a_{eff} = 1.9$ to 2.5 µm, Size polydispersity = 3-4%

Extracting RMS roughness from AFM measurements

Geometry	$2a_{\rm eff}$ (µm)	$(\mathbf{B}(\psi=0)/a_{\rm eff}^{2})^{1/2}$	Range of φ
Smooth	$2.27 \ \mu m \pm 5\%$	0.026 ± 0.003	0.30 to 0.55
	$1.60 \ \mu m \pm 4\%$		
Slightly rough	$2.55 \ \mu\text{m} \pm 2\%$	0.040 ± 0.002	0.45 to 0.55
Rough	$1.95 \ \mu m \pm 5\%$		
	$2.06 \mu m \pm 4\%$	0.075 + 0.005	0.30 to 0.55
	$2.47 \mu m \pm 5\%$	0.075 ± 0.005	
	$1.91 \mu m \pm 5\%$		
Very rough	$2.78\ \mu m\pm6\%$	0.082 ± 0.003	0.45 to 0.50

Calculation of the volume fraction

Effective size from AFM/SEM, particle counting from 3D confocal microscopy

Steady state viscosity and first normal stresses

Hysteretic flow curves for frictional particles

Hsiao et al. Phys Rev Lett (2017)

Fitting the high-shear viscosity to the Eilers model

Hsiao et al. Phys Rev Lett (2017)

Effect of roughness on excluded volume

- 1. When RMS roughness increases, lubrication becomes less effective in keeping particles apart
- 2. It takes less force to push them into contact

Comparison with DPD simulations

State diagrams for rough colloids in shear flow

Engineering approach: Assume particle is a sphere.

But

What is the microscopic reason?

+ = Newtonian flow • weak thickening • strong thickening • dilatant $(N_1 > 0)$

Measuring the 3D rotational dynamics of colloids

Inert Janus tracers to track rotational dynamics

Mean-squared angular displacement $\left\langle \Delta \vec{\varphi}^{2}(\Delta t) \right\rangle = \left\langle \left[\vec{\varphi}(t + \Delta t) - \vec{\varphi}(t) \right]^{2} \right\rangle$

Hsiao et al. Soft Matter (2017)

Accounting for repulsion in colloidal suspensions

Hsiao et al. Soft Matter (2017)

Hindered rotational dynamics from surface geometry

Hsiao et al. Soft Matter (2017)

Rheological properties of colloidal glasses

Courtesy: Alan Jacob

Viscoelastic comparison

Creep shear rate showing transient fluidization

Comparisons between smooth and rough colloids

Strain recovery after creep cessation

Testing nonlocal theories in dense suspensions

$$\mu(I,J,\phi) = \frac{\sigma_{xy}(J,\phi)}{P(J,\phi)}, I = \frac{2a\dot{\gamma}}{\sqrt{P/\rho_P}}, J = \frac{\eta_f \dot{\gamma}}{P}$$

Henann & Kamrin nonlocal theory

Bouzid et al. nonlocal theory

Measuring a correlation length scale

 $\xi (\phi, \mu, \dot{\gamma})$

Whitaker & Hsiao et al. Submitted (2018).

Are local rigid clusters responsible for rheology? Can we determine the length scale ξ as a function of φ ? Can we measure long-range velocity correlations?

Testing force tiling concepts in suspensions

J. Morris & B. Chakraborty et al. arXiv.

A state diagram for suspensions and granular flows

Summary

- Roughness introduces friction because it is difficult for particles to undergo full rotation
- Shifts maximum packing (based on viscosity divergence) to lower ϕ
- Causes glassy behavior at values of ϕ that is normally that of a fluid
- We may soon be able to test theories of µ(I, J) rheology in colloidal suspensions

Society of Rheology 2019 Raleigh, N.C. • Oct. 20-25, 2019

NC STATE

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Local Arrangements Committee: Saad Khan Lilian Hsiao Michael Rubinstein