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◆ Athermal particles: particles that are large enough to be free 
from Brownian motions

◆ Large colloidal particles, emulsions, foams, granular materials etc

◆ Jamming transition = Viscosity divergence of athermal
particles at the critical densitiy ~ random close packing density.

Plastic beads in water

~ 1mm

Jamming transition

[Boyer et al. 2011]



Glass vs Jamming

◆ Glass transition = Viscosity divergence of thermal particles

◆ Small colloidal particles, atoms, molecules etc

◆ Viscosity increases following Vogel-Fulcher law

◆ Relaxation time increases as the viscosity increases (Green-
Kubo formula)

◆ Jamming transition = Viscosity divergence of athermal particles

◆ Large colloidal particles, foams, grains etc

◆ Viscosity diverges following the power-law 

◆ Relaxation time do NOT increase near the transition

→ I will explain these points.



[Olsson-Teitel 2007, Ikeda et al. 2012 etc.]

Jamming: Simple model 

◆ Athermal soft particles in solvent

◆ Inter-particle interaction

◆ Overdamp equation of motion

Viscous dissipation

Inter-particle interaction
γ = shear rate

.ξ = damping coefficient
.

* Energy penalty when overlapping
* Finite range, repulsive
contacts between particles are well-defined

Overlap length 
between particles



◆ Control parameter

◆ Packing density         (or pressure)

◆ Shear rate        (or shear stress)     

◆ Phase diagram at low shear rate limit
◆ Low density:  

◆ Newtonian flow
◆ Particles are just touching each other

◆ High density: 
◆ Yielding of solid
◆ Particles are overlapping

◆ Critical density:
◆Marginally stable solid
◆ Number of contacts per particle becomes isostatic

Jamming: Phase diagram

[O’Hern 2003, Olsson-Teitel 2007]



Jamming: Viscosity

◆ Newtonian viscosity (at low shear rate)

◆ Power-law divergence

◆ Exponent changes near the transition: 1.7 → 2.6
[Lerner et al. 2012, Kawasaki et al. 2015]



Jamming: Dynamics

◆Mean-square displacement (at low shear rate, Newtonian regime)

◆ Jamming transition do not slow down the dynamics. 

Thermal particles 
(glass transition)

Athermal particles 
(jamming transition)

High 
density

High 
density

[Heussinger et al. 2010, Ikeda et al. 2012]



Jamming: Dynamics

◆Mean-square displacement (at low shear rate, Newtonian regime)

◆ Jamming transition do not slow down the dynamics. 

◆ Jamming even “speeds up” the short-time ballistic 
dynamics!

Thermal particles 
(glass transition)

Athermal particles 
(jamming transition)

High 
density

High 
density

[Heussinger et al. 2010, Ikeda et al. 2012]



◆ However in several settings, slowing down near the jamming 
have been observed

◆ Prepare particles configuration by the steepest descent without shear

◆ Apply an infinitesimally small step strain. 

◆ Then, the system is relaxed by overdamped dynamics without shear and 
the relaxation of the stress is studied

[Hatano 2010]

Relaxation time 
diverges at the 
jamming transition

Slowing down (1)
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◆ However in several settings, slowing down near the jamming 
have been observed

◆ Perform overdamped dynamics with shear

◆ Stop the shear. Then, the system is relaxed by overdamped dynamics 
without shear, and the relaxation of the pressure is studied

◆ Viscosity and relaxation time diverges with the same power-law

[Olsson 2014]

Slowing down (2)



?? Speed up near the jamming in steady-state, 
while slowing down in some cases ??

This work: Comprehensive study of the 
“dynamics” of the system near the jamming 
transition. And connect the “dynamics” to “the 
viscosity divergence”. 

◆ Relaxation dynamics near the jamming in the 
simplest setting

This work



◆ Put particles randomly in a box. 
Focus only on the unjammed phase: 

◆ Inter-particles interaction is 

◆ Then study the relaxation dynamics 
(No shear)

Setting



◆ Relaxation dynamics of the potential energy

◆ Power-law*exponential: 

◆ Relaxation time      diverges at

Relaxation dymamics



Contact number

◆ Relaxation dynamics of contact number

◆ Contact number = average number of overlapping particles per particle

◆ Power-law region： z decreases (contacts are broken)

◆ Exponential region： z converges into a constant

◆ Relaxation without changing the contact network of particles

Potential E

Contact number z



◆ Potential energy landscape at 

Particles 
coordinates

E

* Zero-energy 
configurations
* Particles are separated 
by finite distance, so the 
contact number is zero

* Zero energy 
configurations
* Particles are just 
touching, so the 
contact number is 
finite

* Finite energy 
configurations
* Particles are overlapping
* The contact network is 
the same as      state

Exponential 
decay

What’s going on?
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粒子座標

粒子間に有限の
重なりのある状態

Relaxation time should 

be determined by this 

curvature

→ Look into the eigen-

value of the Hessian 

of the dynamical 

matrix at the final 

configuration



◆ For each     , many final configurations are obtained from 
many initial configurations

◆ Obtain the Hessian of each final configuration

◆ Diagonalize the Hessian, obtain the eigenvalues          ,  
calculate the vibrational density of states:

◆We ignore the 3N*(6-z) zero modes, because we consider the 
relaxation from finite energy configurations

◆ Average              over obtained final configurations 

Eigenvalues



◆ ：Flat density of states

◆ ：There is one anomalously soft mode

◆ This mode is one isolated mode for one configuration

Eigenvalues



◆ Plot the relaxation time against              for each configuration

One configuration has only one extremely soft mode.

Exponential relaxation is the relaxation along this mode.

Coordinate

E

Exponential 
relaxation

Relaxation time vs 



Critical behavior

◆ The terminal contact number vs density

◆ The terminal contact number linearly approaches the 
isostatic value, 6. 



Critical behavior

◆ The terminal contact number vs

◆ Lowest frequency:

◆ Relaxation time：



◆ The terminal relaxation is 
exponential, and takes place without 
changing the contact network.

◆ Each unjammed configuration has 
one anomalously soft mode. The 
terminal relaxation is the relaxation 
along this mode.

◆ The relaxation time (= inverse of 
the eigenvalue of the anomalously soft 
mode) diverges as 

Summary


