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Jamming transition

€ Athermal particles: particles that are large enough to be free
from Brownian motions

@ Large colloidal particles, emulsions, foams, granular materials etc

€ Jamming transition = Viscosity divergence of athermal
particles at the critical densitiy ~ random close packing density.
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Glass vs Jamming

@ Glass transition = Viscosity divergence of thermal particles
€ Small colloidal particles, atoms, molecules etc
@ Viscosity increases following Vogel-Fulcher law

€ Relaxation time increases as the viscosity increases (Green-
Kubo formula)

€ Jamming transition = Viscosity divergence of athermal particles
@ Large colloidal particles, foams, grains etc
@ Viscosity diverges following the power-law
@ Relaxation time do NOT increase near the transition
= | will explain these points.



Jamming: Simple model

€ Athermal soft particles in solvent

@ Inter-particle interaction
N D 5 — 1—§ (r <o) Overlap length
(1) = € 0 (r > o) between particles

* Energy penalty when overlapping
* Finite range, repulsive
contacts between particles are well-defined

€ Overdamp equation of motion

ori . .\ _ Ov(|7i — 75])

Viscous dissipation J T

¢ = damping coefficient

Inter-particle interaction <€

Y = shear rate
[Olsson-Teitel 2007, Ikeda et al. 2012 etc.]



Jamming: Phase diagram

@ Control parameter
@ Packing density ¢ (or pressure)

@ Shear rate 7y (or shear stress)

€ Phase diagram at low shear rate limit

@ Low density: ¢ < ¢ — > (O
@ Newtonian flow w3 ~ 0.64

@ Particles are just touching each other

& High density: ¢ > ¢j
@ Yielding of solid
@ Particles are overlapping

@ Critical density: ¢ = ¢j
€ Marginally stable solid
€ Number of contacts per particle becomes isostatic

2z = 2d (: 6) [0’Hern 2003, Olsson-Teitel 2007]



Jamming: Viscosity

€ Newtonian viscosity (at low shear rate)
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€ Power-law divergence
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@ Exponent changes near the transition: 1.7 = 2.6

[Lerner et al. 2012, Kawasaki et al. 2015]



Jamming: Dynamics

€ Mean-square displacement (at low shear rate, Newtonian regime)
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€ Jamming transition do not slow down the dynamics.

[Heussinger et al. 2010, lkeda et al. 2012]



Jamming: Dynamics

€ Mean-square displacement (at low shear rate, Newtonian regime)
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€ Jamming transition do not slow down the dynamics.

€ Jamming even “speeds up” the short-time ballistic
dynamiCS! [Heussinger et al. 2010, Ikeda et al. 2012]



Slowing down (1)

€ However in several settings, slowing down near the jamming
have been observed
@ Prepare particles configuration by the steepest descent without shear

@ Apply an infinitesimally small step strain.

@ Then, the system is relaxed by overdamped dynamics without shear and
the relaxation of the stress is studied
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Slowing down (2)

€ However in several settings, slowing down near the jamming
have been observed
@ Perform overdamped dynamics with shear

@ Stop the shear. Then, the system is relaxed by overdamped dynamics
without shear, and the relaxation of the pressure is studied
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@ Viscosity and relaxation time diverges with the same power-law
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[Olsson 2014]



This work

?? Speed up near the jamming in steady-state,
while slowing down in some cases ??

This work: Comprehensive study of the
“dynamics” of the system near the jamming
transition. And connect the “dynamics” to “the
viscosity divergence”.

€ Relaxation dynamics near the jamming in the
simplest setting



Setting

@ Put particles randomly in a box.
Focus only on the unjammed phase:

Y < @]

@ Inter-particles interaction is

w=fier vz

0 (r > o)

@ Then study the relaxation dynamics
(No shear)
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Relaxation dymamics

€ Relaxation dynamics of the potential energy
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@ Power-law*exponential: E(t) ~ t ! exp(—t/7)
@ Relaxation time 7 diverges at ¢ — 3



Contact number

@ Relaxation dynamics of contact number 2

@ Contact number = average number of overlapping particles per particle
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€ Power-law region: z decreases (contacts are broken)
@ Exponential region: z converges into a constant

€ Relaxation without changing the contact network of particles



@ Potential energy landscape at ¢ < ¢;
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* Finite energy
configurations

* Particles are overlapping
* The contact network is
the same as @ state



What’s going on?

@ Potential energy landscape at ¢ < ¢y
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A P Relaxation time should
/ / be determined by this
curvature
* Zero-energy * Zero energy
configurations configurations - Look into the eigen-
* Particles are separated * Particles are just value of the Hessian

by finite dlstancg, so the touching, so the_ of the dynamical
contact number is zero contact number is

- matrix at the final
finite

configuration



Eigenvalues

@ For each ¥, many final configurations are obtained from
many initial configurations

@ Obtain the Hessian of each final configuration

92V
M = V = —
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@ Diagonalize the Hessian, obtain the eigenvalues{ .},
calculate the vibrational density of states:

w)E%ZcS(w—wa) Wa = VAo

€ We ignore the 3N*(6-z) zero modes, because we consider the
relaxation from finite energy configurations

@ Average D(w) over obtained final configurations



Eigenvalues

® w > w, Flat density of states
€ W = Wnin :There is one anomalously soft mode

@ This mode is one isolated mode for one configuration



Relaxation time vs wWmin

@ Plot the relaxation time against Wmin for each configuration
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One configuration has only one extremely soft mode.
Exponential relaxation is the relaxation along this mode.



Critical behavior

@ The terminal contact number vs density
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@ The terminal contact number linearly approaches the
isostatic value, 6.
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Critical behavior

@® The terminal contact number vs Win

Az=6-—12

@ Lowest frequency: . oc Azt x (o) —
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@ Relaxationtime: 7~ (p3 — ) %°



Summary

@ The terminal relaxation is ol

exponential, and takes place without

changing the contact network. U el

€ Each unjammed configuration has

one anomalously soft mode. The - a— o

terminal relaxation is the relaxation
along this mode.
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