
Numerically exact formulation for Many-Body
Coulomb friction

Dominik Krengel, Hans-Georg Matuttis
Department of Mechanical Engineering and Intelligent Systems,
The Graduate School of the University of Electro-Communications

1



1. Dry/Solid/Coulomb friction at a single contact
– tangential contact force between particles
– Friction coefficient µ “ Op1q Ñ no “small perturbation”

0

velocity

friction force

dynamic friction
dissipative force

static friction
multi- valued
constraint force

dynamic friction
dissipative force

Dynamic friction: v ‰ 0
F fric “ ´µF Nsgnpvq

dissipative force in tangential
direction, “the easy part”

Static friction: v “ 0
´µF N ď F static ď µF N

non-dissipative constraint of
motion without relative
motion, “the hard part”

Purpose of this work: Solve the constraint problem “numerically
exact” for many-particle-problems for any given normal force F N and
coefficients of friction µ and arbitrary contact orientations
For this, we first have to discuss the theory of “numerically exact”
constraints for ordinary differential equations: Differential Algebraic
Equations (DAEs)
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2. Differential Algebraic Equations
What are Differential Algebraic Equations?

Ordinary Differential
Equation (ODE)
9y “ fpy, tq @y, t

`
algebraic constraints
bilateral: gpy0q “ 0
unilateral: gpy0q ď 0

ñ
Differential
Algebraic
Equation (DAE)

Ó

Dynamical evolution
of system

Ó

Only initial conditions
y0 consistent with gpy0q

“Differential Algebraic Equations are not ODEs”:

Examples in mechanics:
– Position of point pendulum Ñ constraint is pendulum length
– Value of static friction Ñ constraint is static Coulomb friction

: L. Petzold: SIAM J. Sci. Stat. Comput. 3 (1982) 367: inconsistent initial
conditions, error analysis,. . .
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2.1. Exemplified: Concept and Terminology
Point pendulum with rotation
around origin and length l

p0, 0q

p 9x, 9yq

px, yq

l

Bilateral constraint equation
DAE: differentiate as often as
necessary for further
independent equations

gpx, yq “ x ¨ x ´ l2 “ 0,
9gpx, yq “ x ¨ 9x “ 0,
:gpx, yq “ :x ¨ x ` 9x ¨ 9x “ 0.

Newton’s equation of motion m:x “

!

f

external forces

`

!

fr

constraint forces

Kinetic energy
´

f ` rf
¯

¨ x “ ´m 9x ¨ 9x “ 2 Tkin

Time derivative 9Tkin “ m :x ¨ 9x “ ´

´

f ` rf
¯

¨ 9x

D’Alembert principle:
no work by constraint forces Ñ rf ¨ 9x “ 0 Ñ x K 9x, rf K 9x

Lagrange parameter λ : rf “ λx, λ “
´f ¨ x ´ m 9x ¨ 9x

x ¨ x
no time evolution for λ, may vary non-smoothly
ñ Constraint force 9 kinetic energy,

external forces 9 1/pendulum length
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2.2. Drift away from the constraint
Numerical integration Ñ pendulum length diverges from
constraint manifold
Runge-Kutta based on weighted average of several
integration points
Integration based on constraint forces, not on constraint
itself (Integration may miss constraint manifold)

constraint
manifold

drift
´

lptq

lp0q
´ 1

¯
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Drift away from constraint manifold worse for Op4q than for Op2q
Not a problem of accuracy but of stability Ñ sign of stiff ODE
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2.3. Stiffness, time integrator and stabilization
Stiff ODEs: “problems for which explicit methods don’t work”:

Constraint problems always "stiff" ODEs
Issue: Not accuracy but stability Ñ solution related to exact solution
Second order BDF integrator Ñ stiffly stable Ñ minimal drift
Stabilize DAE-solution to limit drift away from constraint:

Baumgarte stabilization:
Constraint as linear oscillator 0 “ :g ` 2α 9g ` β2g
Ñ damped oscillation back onto constraint manifold
Difficult to find appropriate parameters α, β

Errors in position constraint εpxptqq less critical than
errors in velocity constraint εpvptqq « εpxptq{τq

Stabilization by Projection‹

Projection on velocity vp “ pv ¨ etqet

: E. Hairer, G. Wanner, Solving Ord. Diff. Eq. II: Stiff and
differential algebraic problems, Springer 1996, 2nd ed., p.2
‹ Ch. Lubich, On projected Runge-Kutta methods for
differential-algebraic equations, BIT Numerical Mathematics, vol.
31, no. 3, pp. 545-550, 1991

xptq
vpptq

vptq

εpvptqq
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2.4. Inconsistent initial values in numerical analysis
Violation of orthogonality
between velocity and position
vp0q M xp0q

Simulation diverges towards
infinity or converges to zero

For friction: Painlevé Paradox.
Friction force accelerates instead
of decelerates.

vp0q M xp0q

t “ 0.5
t “ 1.0

t “ 1.5 t “ 2.0
In general:
Computation of consistent initial values computationally tedious:
Constraint equations non-linearÑ Solution of non-lin. systems necessary
In our case of friction: everything ok with relative finite slipping velocity
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3. Dry/Solid/Coulomb friction at a single contact
– tangential contact force between particles
– Friction coefficient µ “ Op1q Ñ no ’small perturbation’

0

velocity

friction force

dynamic friction
dissipative force

static friction
multi- valued
constraint force

dynamic friction
dissipative force

Dynamic friction: v ‰ 0
F fric “ ´µF Nsgnpvq

dissipative force in tangential
direction

Static friction: v “ 0
´µF N ď F static ď µF N

non-dissipative constraint of
motion without relative
motion

Purpose of this work: Introduce a numerically exact evaluation of
static friction for many-particle-problems for any given normal force
F N and coefficients of friction µ and arbitrary contact orientations
Find: – Criterion to discriminate static friction and dynamic friction

– Calculation scheme for static friction ă µF N
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4. Many particle problems with dry friction
Many Systems in Science and Technology friction
dominated

Multi-body mechanism, mecha-
tronics, mechanics of gears

Rock mechanics, soil
mechanics, geotechnics

Many-body finite element systems
No analytical formalism
for many particle friction
with given µi, F N

i and
arbitrary contact
orientation

Numerical noise:
v ” 0 does not exist
Numerically stable
implementation necessary

Up to now, there was no numerically consistent theory for
many-contact static friction for given normal forces F N and coefficients
of friction µ

This research pioneers such an approach!
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5. Friction and constraint: Concept for linear oscillator
Work with dynamical system / phase space pxptq, 9xptq “ vptqq
instead of real space pxptq, tq

m:x “ ´kx ´

viscous damping
hkkikkj

2δ 9x
looooooomooooooon

fext
´

dry friction
hkkkkkikkkkkj

µF Nsignp 9xq

Solve for

9x “

#

´ 1
2δ

`

m:x ` kx ` µF N
˘

9x ą 0
´ 1

2δ

`

m:x ` kx ´ µF N
˘

9x ă 0

9x dependence drops out for v “ 0 ´1 ´0.5 0 0.5 1
x

´1

´0.5

0

0.5

1

9x “ v

region I

region II

f “ m:x “

#

fI “ f ext ´ µF N for 9x ą 0, region I
fII “ f ext ` µF N for 9x ă 0, region II

What to do at the boundary
between region I and region II ? ñ

work with convex hull of the forces
p1 ´ λqfI ` λfII
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aI “ fI{m p“ aq, region I
aII “´fII{mp“ ´aq, region II

x

v

´µ `µ

Four different scenarios for the auxiliary variables aI , aII

1. aII ă 0 Ñ aI ą 0: dyn. friction,
jump from `µF N to ´µF N at 9x “ 0,
2. aI ă 0 Ñ aII ą 0: dyn. friction,
jump from ´µF N to `µF N at 9x “ 0,
3. aI ă 0, aII ă 0: flow is pulled into constraint 9x “ 0
from above and below: static friction solution for 9x “ 0
(numerically hardly ever f fric P t0, fI , fIIu),

˜

4. aI ą 0, aII ą 0: both flows pull away from constraint: Painlevé
paradox, unfortunate choice of initial conditions at 9x “ 0.

¸
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Dynamic fI “ f ext ´ µF N pv ą 0q, aI “ fI{m p“ aq
friction fII “ f ext ` µF N pv ă 0q, aII “ ´fII{mp“ ´aq

Determine static friction in convex hull of dynamic friction values:

fp 9x, λq “ p1 ´ λqfI ` λfII , pv “ 0q 0 ď λ ď 1 p˚q

0 “ gp�x, 9xq “ v “ 9x Indicator function v “ 0 becomes
constraint function g

0 “
d
dt

gp 9xq “
d
dt

9x “ :x Differentiate (as for bilateral constraints)

:x “ fp 9x, λq{m “ 0 Independent equations
from (˚)0 “ p1 ´ λqaI ´ λaII Insert into convex hull, f... Ñ a....

Constraint static friction force
computed with Lagrange
parameter λ

λ “
aI

aI ` aII

: E. Hairer, S.P. Norsett, G. Wanner,
Solving Ordinary Differential
Equations I, Springer (1993)

v “ 0

Produces stable fixpoints of the ODE

(A. Filippov, Differential equations
with discontinuous righthand sides,
Springer (1988))
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6. Formalism for many particle problems

In this talk so far: only one contact
Conventional dynamical-systems theory: fixed coordinate system
Computation of static situations in many-particle systems
problematic: necessary to "hit" force equilibrium exactly, irrespective
of numerical errors

ñ Deal with problem at individual contact level
– Work with reduced masses and relative
coordinates and velocities for each contact
– Relative velocities and accelerations obtain-
able for centres of mass and contact point

t1
n1

t2 n2t3

n3

– Reduced mass for tangential forces: accounts for moments of inertia
and distance between centres of mass and contact point

1
mtan

“
1

m1
`

r2
1

I1
`

1
m2

`
r2

2
I2
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6.1. Velocity conditions for static friction

– Computation of constraint force instead of dynamic friction
– Other contacts formally absorbed as external force
– Deformation of manifold near zero velocity, attractors for v ‰ 0
possible Ñ more phaseflow patterns possible
Reither velocity condition necessary for static friction to occur
1. Change of sign of velocity in the next timestep
2. Change of sign of velocity in the previous timestep
3. Vanishing relative velocity vrel « 0 in current timestep

6.2. Auxiliary variables aI ,aII for many-particle approach
Analog to one-particle case with relative accelerations
fI “ mtanatan

eff ´ µ|F N | pv ą 0q

fII “ mtanatan
eff ` µ|F N | pv ă 0q

aI “ atan
eff ´ µ|F N |{mtan

aII “ ´atan
eff ´ µ|F N |{mtan

Same condition as before:
aI ă 0, aII ă 0 friction forces compensate relative acceleration

ñ Both conditions are necessary for static friction
14



6.3. Computation of static friction

Conditions for velocity and auxiliary variables fullfilled: use previous
approach for static friction
– Convex hull of dynamic friction values

fpvtan
rel , λq “ p1 ´ λqfI ` λfII , pv “ 0q 0 ď λ ď 1

– Differentiate constraint function to obtain Lagrange parameter λ

λ “
aI

aI ` aII

“
1
2

´
mtan

rel atan
rel

2µ|F N |

R

R

Static friction computation based on relative accelerations,
not based on velocities
Not required to solve non-linear equation
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7. Dynamics of granular media
Competition between rolling and sliding determines the dynamics of
granular materials, for single particles and for aggregates

round
particles
will roll

elongated
particles
will slide.

more
corners Ñ
competition between
rolling and sliding

Shape effects:

rolling sliding

Not considered:

(((((((hhhhhhhinterlocking �����XXXXXfracture Shearbands: rotation ö, œ
S. Luding, Univ. Twente
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8. Shape effects experimentally

Spheres:
no heap

Polyhedra:
stable heap

2D simulation:
friction turned of at
420 timesteps

RShape effects can only be simulated if additionally to the
dynamic friction also the static friction is modelled correctly!
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9. DEM: Method shape dependent force laws
Discrete Element Method (DEM): Elastic forces depending on shape

r2

r1
F

T1

T2

r1

r2 F

t
n

spherical particles:
central forces

F el ∥ r1, r2

non-spherical particles: no central forces
Elastic forces:
shape dependence

|F el| “ Y
A

l

Torques due to shape:

T1 “ r1 ˆ F

T2 “ r2 ˆ ´F

With spherical particles: rolling friction coefficients of unphysical
magnitude used. Realistic observable values for non-spherical particles.
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10. Concept for rotational damping
Physically: Particles are elastic.
– Particles can deform and vibrate.
– Internal vibration can store and
dissipate energy via fixed contacts

DEM: Particles are stiff.
– Deformation is modelled as overlap
– Vibration as particle rotation
– Rotational degrees of freedom can store and
release energy

– Friction acts only in tangential direction
Ñ rotation only affected by normal interaction
– Asymmetric contacts don’t compensate normal
forces completely

Ñ energy remains in rotational degrees of freedom
RWith Cundall-Strack: Tangential interaction modelled as springs,
particle rotation can be damped out
RWith DAE: No tangential oscillator, additional tangential damping
required
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10.1. One particle with a fixed floor
Damping torque T damp based on
interpolated velocity field of contact line
P1P2
Approximation of corresponding elastic
torque based on endpoints of contact line
T elast « 1

2 pF pP2q ˆ CP2 ` F pP1q ˆ CP1qq

C

P1
P2v1

v2rpsq
F pP1q F pP2q

Rotational damping as counteracting torque based on velocity field of
contact line, approximated
T damp « ´γtan

a

Y ¨ meff
1
2

´

vcontpP2q ˆ CP2 ` vcontpP1q ˆ CP1

¯

Velocity of contact point i: vcontpPiq “ vpPiq ´ vN

10.2. Two particles in non-rotated coordinate system

Torque based on relative velocities at contact line
vcontpPiq “

´

vaipPiq ´ vbipPiq

¯

´ vN
rel

for particles a,b and contact points i “ 1, 2

P1

P2vb1
va1

Ca

Cb

vb2
va2

ds

vN
rel
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10.3. Conditional damping of torques for many contacts
RParticle rotation result from sum of damping
torques of all contacts Ñ not possible to compute
damping torques individually
RDamping torques reactive to elastic torques
Ñ not possible to deal with contacts individually

TiTj

Tk

T damp
i

T damp
j

T damp
k

ñ Extremal limits with respect to (counter-)clockwise rotation
Tmin “

ř

T damp
i , @T damp

i ă 0, Tmax “
ř

T damp
i , @T damp

i ą 0.
Minimize angular motion Ñ compensate rT “ T ` I

ω

τ
, where

T = external torque, ω = angular velocity of particle, τ = timestep

rT ą 0: use Tmin Ñ

| rT | ą |Tmin|: T damp “ Tmin;
| rT | ă |Tmin|: T damp “ ´ rT , else
overcompensation

rT ă 0: use Tmax Ñ

| rT | ą |Tmax|: T damp “ Tmax

| rT | ă |Tmax|: T damp “ ´ rT , else
overcompensation
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10.4. Coordinate system rotating with ω0

– Surrounding granular matrix influences particle rotation
– Rotational damping has to respect bulk
motion
– Consider influence from contacting particles i
Ñ Weighted angular velocity due to environment
ω0 “

ř

i ωi|F
N
i |

ř

i |F N
i |

from contacts i, ωi “ |ri ˆ vi|

– Adapt damping torque with bulk angular
motion
ñ rT “ T ` I

ω

τ
Ñ rT “ T ` I

ω ´ ω0

τ

r1
v1

F N
1

r2

v2

F N
2

r3

v3

F N
3

–Threshold now based on ω0
rT ą I

ω0

τ
: use Tmin

rT ă I
ω0

τ
: use Tmax

Then, as before test for |Tmax|,|Tmin|

Example: drum rotating with ωrot.
Particle in bulk rotates with ω0 “ ωrot.
Particle on surface avalance independent of wall
motion, ω0 “ 0

ωrot

ω0 “ ωrot

ω0 “ 0
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11. Static friction in a vibrated granular system

Setup:
Horizontally vibrated box, dimensionless acceleration Γ “ 0.75,
1008 particles, 5-10 corners, regular polygons
RAs long as the accelerations are not too large, interparticle forces
are static coulomb friction

RCompare our DAE-approach with Cundall-Strack (CS) friction
model (incrementation of tangential forces)
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Total kinetic energy Ekin
COM “

1
2

´

ÿ

mi

¯

v2
COM: shows how fast

friction grips and how large the portion of influenced particles is
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[J
]

DAE-approach (black), CS-model (grey)

DAE-approach – Granular assembly moves consistently as bulk
– Static friction dominates due to faster grip of friction
– Better reaction to external forces
– Bulk more coherent than for CS
(slower grip, under-/overcompensation)
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Kinetic energy for velocity deviation from the centre of mass
Ekin

diff “
1
2

ÿ

mi

`

vCOM ´ vi

˘2: shows particle separation from
bulk motion
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DAE-approach (black), CS-model (grey)

DAE-approach – Less independent motion for individual particles
– Particles more likely to stick with bulk

Ñ DAE-approach better suited for dynamical processes
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12. Static friction in a heap of particles

Setup: 1622 polygonal particles dropped from a hopper
Particles with 5-10 corners, 20% variation in size
Smooth floor, but finite friction (µ “ 0.6) between particles and
particles-floor

1dm

No sidewalls or artificial forces required to keep heap stable, correct
angle of slopes
Slopes straight, except region where particles have been dropped down
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Relative position for centre of mass with respect to rSauter “

c
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13. Conclusion
– Computation of static friction based on constraints / Differential
Algebraic Equations works
– Even though dry Coulomb friction at v “ 0 is highly non-linear, no
need to solve any non-linear equations
– No additional physical parameters required
– More accurate modeling of bulk motion in dynamic situations,
especially under vibration
– Finite drift in static configurations problem of numerical stability
– Same treatment possible for other kinds of
friction, but for rolling friction (coefficient too
small) and pivoting friction (in 3D, surface
roughness dependence)

In 2001, 17 years ago, my supervisor used the
Cundall-Strack model with µ,Yt, and γt as
parameters.
Prof. Hayakawa was very unhappy and asked:
"Can you work with less parameters?"
RNow we canL
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A. Cundall-Strack model
– Commonly used model: “breaking tangential springs”

F tanptq “ F tanpt ´ τq ´ ktanvtan ¨ τ ,
, Finite F tan possible for v “ 0/ Oscillatory behaviour/ Degree of freedom can store and release energy/ slower “grip” than real friction/ requires tracking of contact point

µ|Fn|

Time

Ta
ng

en
tia

lf
or

ce

Closing of contact

Gripping Delayed gripping for Cundall-Strack
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B. Painlevé Paradoxon

– Rigid body problem apparently without any solution:
Friction force accelerates body, irrespective of choice of direction of

friction
– Resulting from problematic assumption: Static friction must have
magnitude µ|Fn| at all times
Ñ Case of inconsistent initial conditions
Phaseflow is pulling on the
constraint from both sides
Solution is not unique

9v “ 0

fI

fII
– For v “ 0 static Coulomb friction must exactly compensate external
forces
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C. Stiff Ordinary Differential Equations
Stiffness, tautological definition: “stiff
solvers work than non-stiff solvers”
Equations per se not stiff, equations
become stiff for specific initial values and
parameter regions
Possible causes for stiffness:
Rstability more important than
accuracy
Rmultiple timescales in the problem
Rlarge variations of the solution in
small intervalls
Rlarge variation in the eigenvalues of
the Jacobian
More pragmatically: “Problems for which
explicit methods don’t work.”: Less
computational cost, no additional noise
with stiff solversÑ equation is stiff
Details unimportant, in our case stability
obtained by modeling
: E. Hairer, G. Wanner, Solving Ordinary
Differential Equations II: Stiff and differential
algebraic problems, Springer 1996, 2nd ed., p.2

Large zoo of cri-
teria for stability of
stiff problems;

; G. Wanner,
Bit Numer Math,
2006, 46:671
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D. Friction is not Roughness
– Friction dependent on absolute
contact area, not surface roughness
– Roughnes can increase contact area

– Atomically smooth surfaces (split mica)
Ñ high friction forces
(E. Rabinowicz, Friction and Wear of Materials,
Wiley, New York, 1965)
– Possible to build heap on polished mirror
surfaces
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