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Vibrational properties of amorphous solids

Crystals (lattice structure) Amorphous solids (amorphous structure)

Molecules vibrate around lattice structure

Vibrational modes are phonons Some modes are localized
-> These modes are non-phonons

Molecules vibrate around amorphous 
structure

Tanguy et al., 
EPL 2010
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Vibrational properties of amorphous solids

Transverse Longitudinal

Vibrational density of states (one component Lennard-Jones system)

Crystals (lattice structure) Amorphous solids (amorphous structure)
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Excess low-ω vibrational modes in amorphous solids
Excess over Debye-theory prediction (Boson peak) is observed in 
many glasses (amorphous solids)

DOS

Crystal

Crystal

Yamamuro et al., JCP 1996

Buchenau et al., PRL 1984
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Low-T thermal properties of amorphous solids

Thermal conductivity

SiO2 Crystal

Zeller and Pohl, PRB, 1971

SiO2 Crystal

SiO2 Glass

Specific heat

SiO2
Glass
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Extension of Debye theory: Elastic heterogeneities

Crystals�Debye theory Amorphous solids: Extended Debye theory

Ø Heterogeneous elastic media
Ø Vibrational modes are deformed to non-

phonon modes by elastic heterogeneities
Ø This predicts heat capacity larger than 

Debye prediction ⇒ Thermal properties 
of amorphous solids (Boson peak)

Heterogeneous modulus

Ø Homogeneous elastic media
Ø Elastic mechanics predict phonons�or 

acoustic waves� as vibrational modes
Ø This explains heat capacity of crystals
�T cubed behavior�

Schirmacher et al., EPL 2006, PRL 2007
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Multi-scale structure of amorphous solids

Meso-scaleMicro-scale

Molecules

Mizuno, Mossa, Barrat, EPL 2013, PNAS 2014, PRB 2016

At meso-scale, local elastic modulus fluctuates in the space.
-> Elastic heterogeneities control thermal properties of amorphous
solids

Macro-scale

Homogeneous media?

At macro-scale (continuum limit), amorphous solids behave as 
homogeneous elastic media? Mizuno, Shiba, Ikeda, PNAS 2017

Local elastic modulus
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Low-T thermal properties of amorphous solids

Thermal conductivity

SiO2 Crystal
SiO2
Glass

Zeller and Pohl, PRB, 1971

SiO2 Crystal

SiO2 Glass

Specific heat
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Contents

Questions

ü Molecules interact through harmonic  pair 
potential

ü System size : up to 4,096,000
ü Periodic boundary condition in all the directions

We perform molecular-dynamics simulations on 
a simple model amorphous solid

l What is nature of low-frequency vibrations of amorphous solids?
l What laws do they obey?
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Low-T specific heat of amorphous solids

SiO2 Crystal

Zeller and Pohl, PRB, 1971

Specific heat Within the harmonic approximation

Low-temperature thermal properties are 
controlled by low-frequency vibrations:

SiO2
Glass

vDOS
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Two level system / Soft potential model

Anderson, et al., Phil. Mag., 1972

Additional, non-phonon modes exist 
in amorphous solids
-> Two level system, presumably 
considered as localized motions of 
particles
-> C�T is explained

Density of two level system with 
very low energy barriers

Two level system

Debye theory 
-> Phonons
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Vibrational modes analysis

Spring-mass model

ü Diagonalize Hessian matrix :

ü Vibrational modes (normal modes, eigen modes)
� Eigen frequencies:

� Eigen vectors:
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ü = −
(

∂2Φ

∂r∂r

)

0

u

ü Linearized equation of motion
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Vibrational modes in Lennard-Jones crystals

Transverse Longitudinal

Vibrational density of states

Crystals (lattice structure)
Transverse phonon

Longitudinal phonon

Eigen vectors:
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Vibrational modes in simple amorphous solid 

Ø A, Debye-like regime : 
Elastic-wave-like modes

Ø B, Plateau regime : 
Disordered extended modes 

Ø C, High frequency regime : 
Highly localized modes

Elastic-wave-like mode Disordered extended mode Highly localized mode

Silbert, Liu, Nagel, PRE 2009



15/27
Vibrational density of states

Debye level

ü We observe the boson peak around ω = 0.1.
ü Reduced vDOS goes towards the Debye level, but  does not converge 

in our frequency regime.



16/27Characterize each vibrational mode:
Phonon order parameter

Phonons in isotropic medium under periodic boundary:

: wave vector

Expansion by phonon modes (Fourier expansion) of vibrational mode k:

Phonon order parameter:
: Phonon

: Non-phonon



17/27Characterize each vibrational mode:
Participation ratio

Participation ratio of vibrational mode k:

1. Only one particle vibrates:

2. All the particles vibrate equivalently:

Mazzacurati, Ruocco, Sampoli, 
EPL 1996

Fraction Pk of total particles participate in the vibrational mode k



18/27Vibrational modes

At ω �ωBP < ω* :
Hybrid character of phonon 
and disordered mode

Non-phonon, extended 
vibrational nature
-> Disordered extended mode

At ω > ω* :

At ω < ωBP :
Mixture of phonon mode and
soft localized mode
-> Consistent with the idea of 
two-level system
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Close up to the low-frequency regime

ü Non-phonon, localized modes sit 
between different phonon energy levels

N = 2,048,000,  L = 114

Localized
mode 

Phonon 
mode
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Vibrational density of states
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Vibrational density of states

Debye law Non-Debye law of localized modes
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Vibrational modes in Lennard-Jones glass
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FIG. 1. The vibrational modes of amorphous solids interact-
ing via LJ1. The panels are rDOS, the phonon order parame-
ter, and the participation ratio from above. From the phonon
order parameter and the participation ratio, we can see the
bifurcation of modes into extended phonon and localized non-
phonon modes. The rDOS of extended modes (P k > 0.01)
seems to converge to the Debye level A0. The DOS of local-
ized modes (P k < 0.01) (inset to the second panel) is fitted
by ω4, as reported in ref. [16, 18].

disappearance of soft localized modes.
In Fig. 4, we plot the rDOS of LJ0 and compare it

with that of LJ1. The figure shows the plateau of LJ0
shrinks. One can also see that two potentials give the
same result above the boson peak and the difference ap-
pears around it. Hence, we can conclude the potential
truncation influences vibrational modes of LJ glasses at
ω ! ωBP.

C. The limit of rc → ∞

In light of the results of LJ0 and LJ1, we investgated
the vibrational modes of LJ glasses by taking the limit
of rc → ∞. Concretely, we lengthened the cutoff as
rc = 2.5, 3.0, 3.5, 4.0 and performed the same analysis.
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FIG. 2. The plot of the phonon order parameter versus the
participation ratio for the systems of LJ1. We divide all
modes into three groups based on their frequency: ω < ω0,
ω0 < ω < ωBP, and ωBP < ω.
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FIG. 3. The vibrational modes of amorphous solids interact-
ing via LJ0. The plots are the same as Fig. 1. Only the
phonon modes can be seen below the boson peak.
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These results are clearly different from those of the har-
monic potential [16]. In contrast, a recent study using
the Kob-Andersen binary LJ system exhibited the soft
localized modes following the universal non-Debye scal-
ing law g(ω) ∝ ω4 [18]. These modes are distinct from
phonons and the results of the harmonic potential agree
with this results [16]. Hence, no one has given the con-
clusive results about the continuum limit of LJ glasses.

To resolve this problem, we performed exhaustive anal-
ysis of low-frequency vibrational modes of LJ glasses.
According to our results, the vibrational modes of LJ
glasses are similar to those of the harmonic potential,
the coexistence of extended phonon and localized non-
phonon modes [16]. We also discovered the reason of the
seemingly contradicting results reported thus far. That
is truncation of the potential during calculation and we
evaluate this effect by simple linear stability analysis.

II. METHODS

A. LJ potential

We explored the low-frequency vibrational properties
of glasses interacting via the LJ potential,

φ(r) = 4ϵ

[

(σ

r

)12

−
(σ

r

)6
]

, (1)

by molecular dynamics simulations. When we use short-
ranged interactions like the LJ potential, we usually trun-
cate the potential at a fixed value rc [19]. Namely, we
ignore interactions with particles at larger distances than
rc [19]. However, when the potential is truncated, it has
a discontinuity at r = rc and this discontinuity may lead
to errors [19]. Some methods are used to avoid such er-
rors [19]. Firstly, we can truncate and shift the potential,
such that it vanishes at r = rc [19]. We call this type of
the LJ potential LJ0,

VLJ0(r) =

{

φ(r)− φ(rc) (r < rc)

0 (r > rc)
. (2)

Another method is to shift a force, first derivative of the
potential, as well as the potential itself [19]. we call it
LJ1,

VLJ1(r) =

{

φ(r)− φ(rc)− (r − rc)φ′(rc) (r < rc)

0 (r > rc)
.

(3)
Note that ref. [6, 7] used LJ0 and concluded vibrational
modes converge to phonon modes while ref. [18] adopted
the very smooth LJ potential, which is similar to LJ1,
and soft localized modes was found. Therefore, we used
both LJ0 and LJ1 and compared the results.

B. Simulations

We performed molecular dynamics simulations in d =
3 dimensional cubic boxes under periodic boundary con-
ditions. Particles are monodisperse and interact via the
LJ potential with a mass m and a truncation length rc.
We used the two types of the potentials, LJ0 and LJ1 as
mentioned above. In this paper, we will measure length,
energy, and mass scale in units of σ, ϵ, and m. The
density was fixed at ρ = 0.997 for any cases and the sys-
tem sizes are from N = 8000 to N = 256000 for LJ0
and from N = 8000 to N = 1024000 for LJ1. In or-
der to get amorphous configurations, we used LAMMPS,
the package for molecular dynamics, and performed the
simulations as follows. Firstly, we prepared configura-
tions of the equilibrium normal liquid at T = 2 by means
of the microcanonical ensemble. Then, we carried out
the steepest descent to get stable glassy configurations
(inherent structure). This protocol equals instantaneous
quench from T = 2 and we chose it as the simplest start-
ing point to explore the very low frequency region.

C. Analysis

We calculated dynamical matrices of amorphous con-
figurations by the harmonic approximation and diago-
nalize them to get their eigenvalues λk and eigenvectors
ek = (ek1 , e

k
2 , · · · , ekN ) [2]. Here, k = 1, 2, · · · , dN and

they are sorted in ascending order of eigenvalues. Eigen-
vectors are normalized as ek · ek =

∑

i e
k
i · eki = 1.

1. DOS

Given eigenfrequencies of dynamical matrices ωk =√
λk, the vibrational DOS is defined as

g(ω) =
1

dN − d

dN−d
∑

k=1

δ(ω − ωk). (4)

We also use the reduced DOS (rDOS) g(ω)/ω2 to see
difference from the Debye law g(ω) = A0ω2 for crystalline
solids, where A0 is called the Debye level and is written
as

A0 =
d

ωd
D

, ωD =

(

18πρ

c−3

L + 2c−3

T

)1/3

, (5)

for d = 3. ωD is the Debye frequency and cT (cL) is the
velocity of transverse (resp. longitudinal) sound wave. In
the low frequency limit, the sound velocity can be calcu-
lated from the bulk modulus K and the shear modulus
G by the continuum mechanics as cT =

√

G/ρ (resp.

cL =
√

(K + 2G)/ρ). We calculated these elastic moduli
by the harmonic formulation [20].

Shimada, Mizuno, Ikeda, PRE 2018  

Mixture of phonons and soft localized
modes is observed in LJ glass
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Conclusion 

Questions

ü Mixture of phonons and soft localized modes

ü Phonons follow Debye law, while localized modes follow non-Debye 
scaling law (ω4 law)

ü This seems consistent with TLS/SPM picture

ü In the continuum limit, glasses do NOT behave as homogeneous elastic 
media, but rather they behave as elastic media with ``defects”

Mizuno, Shiba, Ikeda, PNAS (2017)

l What is nature of low-frequency vibrations of amorphous solids?
l What laws do they obey?
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Conclusion

Meso-scaleMicro-scale

Molecules Local elastic modulus

Macro-scale

Homogeneous media with defects

At macro-scale (continuum limit), amorphous solids are essentially 
different from normal solids (elastic media).

ü プレスリリース (東大・東北大)、ガラスと通常の固体の本質的な違いを発見
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Can we explain linear-T term by localized modes?

SiO2 Crystal

Specific heat

Localized modesPhonon modes

+

Continuum limit

SiO2
Glass



26/27Low-T specific heat
Can we explain linear-T term by localized modes?

Anderson, et al., Phil. Mag., 1972

Two level systemLocalized modes

l Do two-level tunneling transitions 
happen in the localized modes?

l What is role of non-Debye law?
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Localized mode is key to understand amorphous solids

Local elastic modulus Homogeneous media with defects

Localized modesPhonon modesDisordered extended modes

+

4

FIG. 3. Comparison of the vDOS between numerical value and prediction from phonon transport properties. Plot of the
reduced vDOS g(ω)/ωd−1 as a function of ω. a, 3D model system (d = 3). b, 2D model system (d = 2). The symbols present
the numerical value of vDOS provided in Ref. [50]. The line shows the prediction calculated from cα(ω) and Γα(ω) (α = T, L)
by Eq. (2). The prediction of Eq. (2) is composed of two terms, one related to dispersion curve (term1, f1[cα(ω)]) and the
other to damping rate (term2, f2[cα(ω),Γα(ω)]). For the 3D system in a, gex(ω), the vDOS of extended modes (P k > 10−2),
is also plotted for comparison. The horizontal line indicates the Debye value A0 calculated from the macroscopic moduli.

work, for the first time to our knowledge, offers clear
understanding of these two phonon transports based on
the vibrational properties. We therefore can consis-
tently identify the crossover frequency between these two
regimes as the continuum limit, ω = ωex0, that has
been never achieved before. We remark that previous
works [9, 10, 13] studied the phonon transport at finite
temperatures, where the crossover frequency is located
around the boson peak regime, ω ∼ ωBP. This result
suggests that the temperature can shift the crossover fre-
quency to the higher ω side. In addition, the crossover
behavior is consistent with the prediction of the mean-
field theories [7, 8, 10, 11, 41, 43]. However, as we will
demonstrate below, the soft localized modes play an im-
portant role in the phonon transport, that is beyond cur-
rent mean-field theories.

It is worth to mention that both the transverse (α = T )
and longitudinal (α = L) waves show the similar trans-
port properties with the identical crossover frequency
ωex0, that has been also observed in Ref. [9, 11]. The
mean-field theory [7, 8, 10, 11] assumes that the shear
modulus heterogeneity is crucial compared to the bulk
modulus heterogeneity, that is true for the present amor-
phous system [66]. In this framework, the shear mod-
ulus heterogeneity induces the anomalous behaviors for
both the transverse and longitudinal waves. To check
this validity, we calculate the longitudinal sound speed
as
√

K/ρ+ 4cT (ω)2/3 that excludes effects of the bulk
modulus heterogeneity. The inset to the top of Fig. 1a
demonstrates that this value is close to the true longitu-
dinal speed cL(ω), that supports this scenario. However,
we see that although the difference is small, the minimum
dip of cL(ω) is larger than that of

√
K/ρ+ 4cT (ω)2/3.

This suggests that the bulk modulus heterogeneity also
makes some effects on the longitudinal waves. Indeed,

Ref. [13] demonstrated that the bulk modulus K(ω) can
not be approximated by frequency-independent value.
We therefore argue that the similarity between trans-
verse and longitudinal transport properties depends on
amorphous systems and preparation procedures.
In order to explore role of the soft localized modes, we

next calculate the vDOS within the phononic approxi-
mation (generalized Debye model) [7, 8, 10, 11, 41, 43].
As suggested in Ref. [11], we can formulate the reduced
vDOS g(ω)/ωd−1 as:

g(ω)

ωd−1
= f1[cα(ω)] + f2[cα(ω),Γα(ω)], (2)

which is composed of two terms: f1[cα(ω)] is related to
the dispersion curve, and f2[cα(ω),Γα(ω)] is to the sound
broadening. In this formulation, g(ω)/ω2 is predicted
from the data of cα(ω) and Γα(ω) provided in Fig. 1a.
Detailed formulations of f1[cα(ω)] and f2[cα(ω),Γα(ω)]
are given in the Methods section (see Eq. (8) for 3D and
Eq. (9) for 2D).
Figure 3a compares the reduced vDOS g(ω)/ω2 pre-

dicted by Eq. (2) and the numerical value presented in
Ref. [50]. Although the phononic approximation is con-
sidered to be valid upto the Ioffe-Regel limit, ω ! ωIR ≈
ωBP, it seems to produce the numerical value upto the
higher frequency regime, ω ! ω∗. In particular, it well
captures the boson peak (excess vibrational modes over
the Debye prediction) around ωBP. Previous works [9, 63]
explain that the boson peak originates from the deforma-
tion of dispersion curve, i.e., from the first term f1[cα(ω)]
in Eq. (2). However, our result shows that f1[cα(ω)] ex-
hibits only a tiny peak around ωBP and can not explain
the boson peak. We therefore need to consider the sec-
ond term f2[cα(ω),Γα(ω)] coming from the sound broad-
ening, as has been pointed out in Ref. [11].
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FIG. 3. Comparison of the vDOS between numerical value and prediction from phonon transport properties. Plot of the
reduced vDOS g(ω)/ωd−1 as a function of ω. a, 3D model system (d = 3). b, 2D model system (d = 2). The symbols present
the numerical value of vDOS provided in Ref. [50]. The line shows the prediction calculated from cα(ω) and Γα(ω) (α = T, L)
by Eq. (2). The prediction of Eq. (2) is composed of two terms, one related to dispersion curve (term1, f1[cα(ω)]) and the
other to damping rate (term2, f2[cα(ω),Γα(ω)]). For the 3D system in a, gex(ω), the vDOS of extended modes (P k > 10−2),
is also plotted for comparison. The horizontal line indicates the Debye value A0 calculated from the macroscopic moduli.

work, for the first time to our knowledge, offers clear
understanding of these two phonon transports based on
the vibrational properties. We therefore can consis-
tently identify the crossover frequency between these two
regimes as the continuum limit, ω = ωex0, that has
been never achieved before. We remark that previous
works [9, 10, 13] studied the phonon transport at finite
temperatures, where the crossover frequency is located
around the boson peak regime, ω ∼ ωBP. This result
suggests that the temperature can shift the crossover fre-
quency to the higher ω side. In addition, the crossover
behavior is consistent with the prediction of the mean-
field theories [7, 8, 10, 11, 41, 43]. However, as we will
demonstrate below, the soft localized modes play an im-
portant role in the phonon transport, that is beyond cur-
rent mean-field theories.

It is worth to mention that both the transverse (α = T )
and longitudinal (α = L) waves show the similar trans-
port properties with the identical crossover frequency
ωex0, that has been also observed in Ref. [9, 11]. The
mean-field theory [7, 8, 10, 11] assumes that the shear
modulus heterogeneity is crucial compared to the bulk
modulus heterogeneity, that is true for the present amor-
phous system [66]. In this framework, the shear mod-
ulus heterogeneity induces the anomalous behaviors for
both the transverse and longitudinal waves. To check
this validity, we calculate the longitudinal sound speed
as
√

K/ρ+ 4cT (ω)2/3 that excludes effects of the bulk
modulus heterogeneity. The inset to the top of Fig. 1a
demonstrates that this value is close to the true longitu-
dinal speed cL(ω), that supports this scenario. However,
we see that although the difference is small, the minimum
dip of cL(ω) is larger than that of

√
K/ρ+ 4cT (ω)2/3.

This suggests that the bulk modulus heterogeneity also
makes some effects on the longitudinal waves. Indeed,

Ref. [13] demonstrated that the bulk modulus K(ω) can
not be approximated by frequency-independent value.
We therefore argue that the similarity between trans-
verse and longitudinal transport properties depends on
amorphous systems and preparation procedures.
In order to explore role of the soft localized modes, we

next calculate the vDOS within the phononic approxi-
mation (generalized Debye model) [7, 8, 10, 11, 41, 43].
As suggested in Ref. [11], we can formulate the reduced
vDOS g(ω)/ωd−1 as:

g(ω)

ωd−1
= f1[cα(ω)] + f2[cα(ω),Γα(ω)], (2)

which is composed of two terms: f1[cα(ω)] is related to
the dispersion curve, and f2[cα(ω),Γα(ω)] is to the sound
broadening. In this formulation, g(ω)/ω2 is predicted
from the data of cα(ω) and Γα(ω) provided in Fig. 1a.
Detailed formulations of f1[cα(ω)] and f2[cα(ω),Γα(ω)]
are given in the Methods section (see Eq. (8) for 3D and
Eq. (9) for 2D).
Figure 3a compares the reduced vDOS g(ω)/ω2 pre-

dicted by Eq. (2) and the numerical value presented in
Ref. [50]. Although the phononic approximation is con-
sidered to be valid upto the Ioffe-Regel limit, ω ! ωIR ≈
ωBP, it seems to produce the numerical value upto the
higher frequency regime, ω ! ω∗. In particular, it well
captures the boson peak (excess vibrational modes over
the Debye prediction) around ωBP. Previous works [9, 63]
explain that the boson peak originates from the deforma-
tion of dispersion curve, i.e., from the first term f1[cα(ω)]
in Eq. (2). However, our result shows that f1[cα(ω)] ex-
hibits only a tiny peak around ωBP and can not explain
the boson peak. We therefore need to consider the sec-
ond term f2[cα(ω),Γα(ω)] coming from the sound broad-
ening, as has been pointed out in Ref. [11].

Continuum limit

Meso-scale Macro-scale


