Shear modulus of granular materials near jamming transition

Michio Otsuki (Osaka Univ.),

Collaborators : Hisao Hayakawa (Kyoto Univ.), Kazuhisa Inata (Shimane Univ.)

Outline

Introduction : Jamming transition

·Shear modulus of granular materials

1. Finite strain

MO and H. Hayakawa, PRE 90, 042202 (2014)

2. Frictional grains

MO and H. Hayakawa, PRE 95, 062902 (2017)

3. Non-spherical grains (Preliminary results)

•Summary

Jamming transition

 $\phi < \phi_{\mathsf{J}}$ Granular materials flow like fluids.

 $\phi > \phi_{\mathsf{J}}$ Granular materials have rigidity like solids.

Critical behavior near ϕ_{J} (frictionless)

C. O'Hern, et al., Phys. Rev. Lett. 88, 075507 (2002)

Shear modulus : frictionless grains

Problem

C. S. O'Hern et al., PRE 68, 011306 (2003)

$$G \propto (\phi - \phi_J)^{1/2}$$

The shear strain is too small (10⁻⁵)

· Particles are frictionless

The shape of grains is disc or sphere.

Experiment :

The shear strain is finite.

We cannot ignore the friction between grains.

The shape of grains is not sphere.

Outline

Introduction : Jamming transition

·Shear modulus of granular materials

1. Finite strain

MO and H. Hayakawa, PRE 90, 042202 (2014)

2. Frictional grains

MO and H. Hayakawa, PRE 95, 062902 (2017)

3. Non-spherical grains (Preliminary results)

•Summary

Model of 3D frictionless particles

Oscillatory shear strain

$$\gamma(t) = \gamma_0 (1 - \cos \omega t)$$

- Frequency : ω Quasi-static limit : $\omega \rightarrow 0$
- Strain amplitude : γ_0
- Shear stress : σ (t)

Shear storage modulus:

$$G = -\frac{\omega}{\pi} \int_0^{2\pi/\omega} dt \frac{\sigma(t)\cos(\omega t)}{\gamma_0}$$

We investigate the dependence of G on γ_0 and ϕ .

compression length : r

Problem : Shear modulus under finite strain

Infinitesimal strain : $G \propto (\phi - \phi_J)^{1/2}$ Finite strain : $G \propto \gamma_0^{-c} (\phi - \phi_J)$ Origin : slip avalanche (correlated bond breakage)

Critical scaling of G

Slip avalanches

Elastic-plastic model

V. A. Lubarda, D. Sumarac, and D. Krajcinovic, Eur. J. Mech., A/Solids 12, 445 (1993).

- $\sigma(t) = \int_{0}^{\infty} ds \ \rho(s) \tilde{\sigma}(s,t)$ σ : stress of element
- s_n : yield stress = stress drop $\rho(s)$: size distribution

each elements have different yield stress

Phenomenological result

$$G(\gamma_{0},\phi) = \frac{\omega}{\pi} \int_{0}^{2\pi/\omega} dt \frac{\sigma(t)\cos(\omega t)}{\gamma_{0}} \Rightarrow G \propto \gamma_{0}^{-(\tau-1)} \tau = 3/2$$

$$G(\tau) = \int_{0}^{\infty} ds \ \rho(s) \ \tilde{\sigma}(s,t) = \int_{0}^{\infty} ds \ \tilde{\sigma}(s,t$$

The similar results are obtained in experiments C . Coulais, et al., PRL. 113, 198001 (2014)

Outline

Introduction : Jamming transition

·Shear modulus of granular materials

1. Finite strain

MO and H. Hayakawa, PRE 90, 042202 (2014)

2. Frictional grains

MO and H. Hayakawa, PRE 95, 062902 (2017)

3. Non-spherical grains (Preliminary results)

•Summary

2D model of frictional grains

μ -dependence of shear modulus

Sufficiently small γ_0 : G for $\mu = 10^{-4}$ is different from that for $\mu = 0$.

Relatively large γ_0 : The difference between $\mu=0$ and 10^{-4} is small.

γ_0 -dependence of shear modulus

μ -dependence of σ - γ relation

γ_0 -dependence of σ - γ relation

Second linear region : Transition of F_t to "slip phase" \rightarrow Second plateau in G

Shear modulus near ϕ_J

Scaling of G(lin)

Shear modulus at ϕ_J

Scaling law of G

$$G(\gamma_0, \mu, \phi) = G^{(\text{lin})}(\mu, \phi) \mathcal{F}\left(\frac{\gamma_0}{\mu\{\phi - \phi_J(\mu)\}}\right)$$

 $G^{(\text{lin})}(\mu,\phi) - G_0^{(\text{lin})}(\mu) \propto \{\phi - \phi_J(\mu)\}^a \qquad a \simeq 1/2$

Shear modulus : G Friction coefficient : μ Strain amplitude : γ_0 Packing fraction : ϕ Transition point : ϕ_J

G in the linear response regime : $G^{(\mathrm{lin})}$ Scaling function : F

Origin of scaling law

$$G(\gamma_0, \mu, \phi) = G^{(\text{lin})}(\mu, \phi) \mathcal{F}\left(\frac{\gamma_0}{\mu\{\phi - \phi_J(\mu)\}}\right) \qquad \lim_{x \to 0} \mathcal{F}(x) = 1$$
$$\lim_{x \to \infty} \mathcal{F}(x) \propto x^{-1}$$
$$\lim_{x \to \infty} \mathcal{F}(x) \propto x^{-1}$$
Linear repulsive force

Continuous-discontinuous transition

Outline

Introduction : Jamming transition

·Shear modulus of granular materials

1. Finite strain

MO and H. Hayakawa, PRE 90, 042202 (2014)

2. Frictional grains

MO and H. Hayakawa, PRE 95, 062902 (2017)

3. Non-spherical grains (Preliminary results)

•Summary

Model of frictionless glued discs

We expected discontinuous transition due to "effective" friction, but G exhibit continuous transition.

Outline

Introduction : Jamming transition

·Shear modulus of granular materials

1. Finite strain

MO and H. Hayakawa, PRE 90, 042202 (2014)

2. Frictional grains

MO and H. Hayakawa, PRE 95, 062902 (2017)

3. Non-spherical grains (Preliminary results)

Summary

Summary

- Topic : Shear modulus of granular materials.
- Due to slip avalanches, G exhibits different critical behaviors.
- · With small friction, linear elasticity changes drastically.
- Frictionless glued discs exhibits only a continuous transition.

