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Introduction

Local rheology

Examples

𝑓 𝐫 = 𝑓bulk + 𝜉2𝛻2𝑓 𝐫

cooperativity length

Fluidity 𝑓 𝐫 ≡ Τሶ𝛾 𝐫 𝜎 𝐫

K. Kamrin and G. Koval, PRL 108 (2012) 178301.

D.L. Henann and K. Kamrin, PNAS 110 (2013) 6730.

The split-bottom cell, etc.

Non-local model

𝜎 𝐫 vs.  ሶ𝛾 𝐫

stress strain-rate

J. Goyon et al., Nature 454 (2008) 84.
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Flows of emulsion



Motivation

Local Non-local

viscosity

The local model is recovered

if 𝜼 𝐫 − 𝐫′ = 𝜹 𝐫 − 𝐫′ 𝜼 𝐫′ .

propagator

Does it mean a correlation length diverging at jamming?



Elastic force and damping

𝟎 = 𝐟𝑖
(e)

+ 𝐟𝑖
(d)

∴ 𝐯𝑖 = 𝐮 𝐫𝑖 + 𝜇−1𝐟𝑖
(e)

Time,  𝑡0 ≡ Τ𝜇 𝑘

𝐟𝑖
(e)

= 𝑘෍

𝑗≠𝑖

𝜉𝑖𝑗𝐧𝑖𝑗

𝐟𝑖
(d)

= −𝜇 𝐯𝑖 − 𝐮 𝐫𝑖

Flow field

Molecular dynamics simulations

𝜉𝑖𝑗 > 0

𝐫𝑖 𝐫𝑗

𝑅𝑆 𝑅𝐿

𝐧𝑖𝑗

𝐯𝑖

𝐮 𝐫

Overdamped dynamics

Length,  𝑑0 ≡ 𝑅𝑆 + 𝑅𝐿



Flow field

𝐮 𝐫 = 𝐴 sin 𝑞𝑛𝑦 , 0

Kolmogorov flows

• Wave-number, 𝑞𝑛 = Τ2𝑛𝜋 𝐿
• Amplitude, 𝐴 = 10−4~10−1 Τ𝑑0 𝑡0
• Area fraction, 𝜙 = 0.80~0.85
• Steady states, 20 ≤ Τ𝐴𝑡 𝑑0 ≤ 50

System

• Bi-dispersed, Τ𝑅𝐿 𝑅𝑆 = 1.4
• The number of disks, 𝑁 = 131072
• 𝐿 × 𝐿 square box, where 𝐿 ≈ 360𝑑0
• Periodic boundary conditions

𝑥

𝑦
𝑢𝑥 𝑦 = 𝐴 sin 𝑞1𝑦



Wave number, 𝒏 = 𝟐

Flow-curves

• 𝝈𝒙𝒚 𝒚 and ሶ𝜸 𝒚 ≡ 𝜵𝒚𝒗𝒙 𝒚 , are local quantities.

• The wave-number dependence implies non-local effects.

Flow-curves



Flow profiles

Shear-localization

• Local rheology is mixing the data of different densities.

• Are the non-local effects caused by density gradients*?

𝝓 𝒚 increases

𝒗𝒙 𝒚 is flattened

ሶ𝜸 𝒚 decreases

Increase of 𝒏

*D. Bonn et al., Rev. Mod. Phys. 89 (2017) 035005.



𝝓-dependence

Homogeneous flows

• Fitting constants, 𝑎, 𝑏, 𝑐, and 𝜂0
• The yield stress, 𝜎𝑌 𝜙

𝜎𝑥𝑦 = 𝜂𝑠 𝜙, ሶ𝛾 ሶ𝛾

𝜂𝑠 𝜙, ሶ𝛾 = ቐ
𝜂0 ሶ𝛾𝑎 + 𝑐Δ𝜙𝑏 −1

𝜙 < 𝜙𝐽

𝜎𝑌 𝜙 ሶ𝛾−1 + 𝜂0 ሶ𝛾−𝑎 𝜙 > 𝜙𝐽

Symbols

The lines

MD simulations of

simple shear flows



Local model

Constitutive laws

𝜎𝑥𝑦
𝐿 𝑦 = 𝜂𝑠 𝜙 𝑦 , ሶ𝛾 𝑦 ሶ𝛾 𝑦

𝜙 𝑦 and ሶ𝛾 𝑦 are taken from MD

Discontinuities

Symbols

The dotted line

The solution of force-balance eq.

The local model fails and generates discontinuities in the 

shear localized regions (shear-bands).



Non-local model

A.C. Eringen, “Nonlocal Continuum Field Theories”

Constitutive laws

∴ 1 − 𝜉2𝛻𝑦
2 𝜎𝑥𝑦 𝑦 ≈ 𝜎𝑥𝑦

𝐿 𝑦

𝜂 𝑦 − 𝑦′ ≡ 𝛼 𝑦 − 𝑦′ 𝜂𝑠 𝜙 𝑦′ , ሶ𝛾 𝑦′

Normalized propagator

The Taylor expansion, 𝒍 ≡ 𝒚 − 𝒚′

𝒍

The width of propagator

𝜉2 ≡ Τ𝑙2 2 = Τ1 2 න 𝑙2𝛼 𝑙 𝑑𝑙

𝜎𝑥𝑦 𝑦 = න𝛼 𝑙 𝜎𝑥𝑦
𝐿 𝑦 − 𝑙 𝑑𝑙

= 𝜎𝑥𝑦
𝐿 𝑦 + 𝜉2𝛻𝑦

2𝜎𝑥𝑦
𝐿 +⋯



Length scales

The length scale of non-locality does not show any critical 

divergences and is comparable with the disk diameter.



Summary

• Kolmogorov flows of soft athermal disks are simulated by MD 

simulations to examine the non-locality below jamming.

• Local model fails even if the density gradients are taken into account, 

where the discontinuities are generated in the shear-localized regions.

• Non-local model well explains the profiles and wave-number dependent 

flow curves.

• We conclude that the range of non-locality (the width of propagator, 𝝃) 

may not diverge at jamming transition.

Emulsion (Jop, et al. 2012)

Bubble (Katgert, et al. 2010) Granular, fixed pressure (Bouzid, et al. 2013)

Non-local elasticity (Baumgarten, et al. 2012)

𝝃 ~ 𝟑𝒅𝟎

𝝃 ~ 𝟑𝒅𝟎 𝝃 ~ 𝟐𝒅𝟎

𝝃 ~ 𝝁 − 𝝁𝒄
−𝟏/𝟐𝝁 ≡ Τ𝝈𝒙𝒚 𝒑



Thank you very much!


