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Wet granular particles
Liquid bridges

Capillary force
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Aerosols [1] PM2.5 [2] Sand castle [3]

Gas-liquid or liquid-solid phase transition may occur.

Fine powders
Ex)：PM2.5, aerosols, volcanic ashes…

Typical size ～𝜇𝑚
Van der Waal force

2

http://china-pm25.com/


Cohesive particles
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Royer et al., Nature, 459, 1110, (2009)

Freely falling wet granular particles

⇒ Clustering due to cohesive forces

K. Yasuoka and M. Matsumoto, 

J. Chem. Phys., 109 8451 (1998)

When we control the temperature, 

gas-liquid phase transition occurs after quench.



Previous studies on 

rheology of (dense) cohesive systems
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E. Irani, et al. PRL 112, 188303 (2014) 

If attractive interactions exist, 

the rheology changes as 

compared with non-cohesive systems.

Clustering due to cohesive forces 

may affect the rheology of the system.



Our previous studies 

Lennard-Jones system

+ shear
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S. Takada, K. Saitoh, & H. Hayakawa, 

Phys. Rev. E, 90, 062207 (2014)

Uniform system

Coexistence 

system

Cluster phase



Motivation of this work 

Theoretical explanation of the rheology of cohesive powders 

is poor. 
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We study the rheology of cohesive powders 

numerically (MD simulation) and theoretically (kinetic theory).

Motivation:

How do attractive forces change the rheology?

Especially, at the first step, we focus on

• cohesiveness from an attractive potential

• dilute case.



Model

We perform event-driven molecular dynamics simulations

by DynamO (open-source simulator).

Monodisperse gases (mass: 𝑚, diameter: 𝑑)

Potential = square-well potential

(well depth: 𝜀, well width ratio: 𝜆)

Dilute limit (packing fraction) 𝜙 ≪ 1

Nearly elastic limit (restitution coefficient) 𝑒 ≲ 1

Inelastic collision only occurs at 𝑟 = 𝑑

We apply a shear 

by Lees-Edwards boundary condition (shear rate ሶ𝛾)
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Parameters:

𝜙 = 0.01
𝑒 = 0.99
𝜆 = 1.5

All quantities are nondimensionalized in terms of 𝑚, 𝑑, 𝜀.



Numerical results
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Results: 

high shear regime
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• Existence of 

the critical shear rate ሶ𝛾c
( ሶ𝛾c

∗ ≃ 0.02)

• For ሶ𝛾 ≳ ሶ𝛾c, there exists a steady state.

Shear viscosity 𝜂∗ = −𝑃𝑥𝑦
∗ / ሶ𝛾∗

vs. shear rate ሶ𝛾∗

𝜂∗ =
5(2 + 𝑒)

72 1 + 𝑒 2 3 − 𝑒 3

5(2 + 𝑒)

3(1 − 𝑒)

1

𝜙
ሶ𝛾∗

shear rate ሶ𝛾: sufficiently high 

⇒ temperature 𝑇 ≫ well depth 𝜀
⇒ Particles are hard-core like.

ሶ𝛾 ≫ ሶ𝛾c: consistent with Bagnoldian (hard-core limit)

ሶ𝛾 ≃ ሶ𝛾c: deviation from Bagnoldian



Results: 

low shear regime
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Clustering

• For ሶ𝛾 ≲ ሶ𝛾c, no steady state

What happens?

Mean cluster size 𝑀2 = σ𝑘 𝑘
2𝑐𝑘

grows as time goes on.

cluster size distribution

𝑐𝑘 ∝ 𝑘−2.67



Results: low shear regime
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Q. Can we modify the theory 

in terms of this cluster size?

Effective quantities

Assumption: 

(a) All clusters are the same size 𝑀2

(b) Cluster is spherical (mass 𝑚cl ∼ 𝑀2, diameter 𝑑cl ∼ 𝑀2
1/3

)

ሶ𝛾eff = ሶ𝛾∗
𝜀

𝑚cl𝑑cl
2 = ሶ𝛾𝑀2

−5/6

𝜂eff = 𝜂𝑀2
−1/6

effective shear viscosity & effective shear rate

time

Effective rheology curve for the viscosity 

is partially consistent with Bagnoldian

expression!



Short summary of simulation results
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ሶ𝛾 ≫ ሶ𝛾c ⇒ Bagnold

ሶ𝛾 ≃ ሶ𝛾c ⇒ Deviation from 

Bagnold

ሶ𝛾 ≲ ሶ𝛾c ⇒ no steady state

the “effective” Bagnold

Question: 

What determines the critical shear rate ሶ𝛾c?
Can we explain the deviation from Bagnoldian expression?

We have performed event-driven molecular dynamics 

simulations of granular gases having the square-well potential 

under a shear.

We analyze the Boltzmann 

equation under a shear.



Theoretical results
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Boltzmann equation under plane shear
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Starting point:

H. Grad, Comm. Pure Appl. Math. 2, 331–407 (1949).Assumption

Velocity distribution = Grad’s 13 moment method

Equation of state 𝑝𝑘 = 𝑛𝑇 (ideal gas)

Santos et al. PRE, 69 061303 

(2004)

𝑓(𝑽, 𝑡): velocity distribution

𝐼(𝑓, 𝑓): collision integral

Effect of shear

𝑓 𝑽 = 𝑓M 𝑽 1 +
𝑚

2𝑇

𝑃𝑖𝑗
𝑘

𝑝𝑘
− 𝛿𝑖𝑗 𝑉𝑖𝑉𝑗



Collision geometry

Two types of collisions depending on 𝑏, 𝑣

(a) inelastic collision

(b) grazing collision (no dissipation)

Acceleration in the potential well
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(a) Inelastic collision (𝑏 < 𝜈𝑑) (b) Grazing collision (𝜈𝑑 < 𝑏 < 𝜆𝑑)

Attractive 

range

𝑏

refractive 

index

☛ Landau Lifshitz “Mechanics”

⇒ The collision integral has two terms:
𝐼 𝑓, 𝑓 = 𝐼hard−core 𝑓, 𝑓 + 𝐼grazing(𝑓, 𝑓)



Time evolution of the stress tensor

𝜕𝑡𝑃𝑖𝑗
𝑘 + ሶ𝛾 𝛿𝑖𝑥𝑃𝑦𝑗

𝑘 + 𝛿𝑗𝑥𝑃𝑖𝑗
𝑘

= −𝜈 𝑃𝑘 − 𝑝𝑘𝛿𝑖𝑗 − 𝜁𝑝𝑘𝛿𝑖𝑗

Boltzmann equation under plane shear
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Starting point:
Santos et al. PRE, 69 061303 

(2004)

𝑓(𝑽, 𝑡): velocity distribution

𝐼(𝑓, 𝑓): collision integral

Two different frequencies



2018/6/27 Rheology of disordered particles 17

Static pressure

Pressure difference Δ𝑃 = 𝑃𝑥𝑥
𝑘 − 𝑃𝑦𝑦

𝑘

Shear stress

Steady state solution

• Shear rate ሶ𝛾 =
3

2

𝜈2𝜁

𝜈−𝜁
, Pressure difference 𝛥𝑃𝑘 =

3𝜁

𝜈
𝑝𝑘

• Shear stress 𝑃𝑥𝑦
𝑘 = −

𝑝𝑘

𝜈

3

2
𝜁(𝜈 − 𝜁)

In a steady state

Time evolution of the stress tensor

𝜕𝑡𝑃𝑖𝑗
𝑘 + ሶ𝛾 𝛿𝑖𝑥𝑃𝑦𝑗

𝑘 + 𝛿𝑗𝑥𝑃𝑖𝑗
𝑘 = −𝜈 𝑃𝑘 − 𝑝𝑘𝛿𝑖𝑗 − 𝜁𝑝𝑘𝛿𝑖𝑗

𝜕𝑡𝑝
𝑘 +

2

3
ሶ𝛾𝑃𝑥𝑦
𝑘 = −𝜁𝑝𝑘

𝜕𝑡Δ𝑃
𝑘 + 2 ሶ𝛾𝑃𝑥𝑦

𝑘 = −𝜈Δ𝑃𝑘

𝜕𝑡𝑃𝑥𝑦
𝑘 + ሶ𝛾 𝑝𝑘 −

1

3
Δ𝑃𝑘 = −𝜈𝑃𝑥𝑦

𝑘

We need to solve the simultaneous equations for three parameters:

All quantities can be represented 

as a function of the temperature. ⇒ Parametric plot of 𝑇.



Result: 

viscosity vs. 

shear rate
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• Existence of 

the critical shear rate ሶ𝛾c
∗

⇒ Consistent with 

the simulation result 

• No steady solution for ሶ𝛾 < ሶ𝛾c
∗

• Two branches for ሶ𝛾 > ሶ𝛾c
∗

1. Upper branch well reproduces simulation results 

including the vicinity of ሶ𝛾c
∗

(Even when we use linear plot)

2. Lower branch is linearly unstable



Discussion
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The shear viscosity and the temperature 

obtained by kinetic theory show good 

agreements with those of simulations.

BUT, the temperature difference 

Δ𝑇 ≡
𝑃𝑥𝑥
𝑘 − 𝑃𝑦𝑦

𝑘

𝑛
shows a poor agreement!

Why?

We have no idea.



Summary

We have 

(numerically)

• performed event-driven molecular dynamics simulations of 

granular gases having the square-well potential under a shear.

• found the consistency of the rheology curve with the Bagnold 

expression for high shear. 

• not found any steady state in the low shear rate regime, but 

the effective rheology curve for the viscosity is consistent with 

the Bagnoldian expression.

(theoretically)

• constructed the kinetic theory of dilute cohesive granular 

gases under a shear.

• obtained the consistent results with simulations.
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