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Reversible-Irreversible Transitions (RIT)
& Absorbing-State Transitions (AST)

[ RIT in suspensions ] [ AST in stat phys }

discovered by Pine et al. (Nature 2005)
in a Couette cell experiment

* Non-equilibrium phase transitions
into “absorbing states”

< y(1) = y,sin(w?) * A few universality classes established.

“test bed of physics of

noneq critical phenomena”
[Hinrichsen, Adv. Phys. 49,815 (2000);
Henkel et al., Noneq Phase Transitions (2009)]

* Established based on toy models,
but relevance in real systems
has been recognized recently.

*RIT is a type of AST.

small y,: particles motion reversible
large y,: particles motion irreversible

concerns rheological properties




Absorbin g-State Transitions [inrichsen Adv. Phys. 49, 815 (2000)]

Prototypical model: contact process A > A A<
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Order parameter: density of active sites

A-2)8 (1> A) Critical exponents are universal.
0 (A< A) > universality class

Directed percolation (DP) universality class: most fundamental case

“DP conjecture”: [Janssen 1981, Grassberger 1982]

AST are usually DP, in the absence of symmetry, conservation law,
long-range interactions, quenched disorder.




Real Example
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[KaT et al. PRL 99,234503 (2007);
Near the Transition PRE 80,051116 (2009)]
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Absorbing-state transition (DSM2 nucleation is very rare)

Order parameter p = DSM2 area fraction




[KaT et al. PRL 99,234503 (2007);

Critical Phenomena PRE 80, 051116 (2009)]
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Quantum Turbulence;
Another Topological-Defect Turbulence

e In quantum fluids (e.g., superfluid He, cold atom BEC)
vortices are quantized (= topological defects). Vg = %VG

e Quantum turbulence
= turbulence made of quantum vortices w(r, 1) = |y(r, 1)e?"?

e In silico example: Gross-Pitaevskii eq. with dissipation + random potential
(if — 7)%'#(”, f) = _%90 +[V(r, 1) — ul + gl (potential amplitude = V)
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[Takahashi, Kobayashi
& KaT, arXiv:1609.01561]
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Transition to Quantum Turbulence ‘T axivie090i561;

Order parameter p = density of quantum vortices

relaxation from

steady state developed turbulence
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 Data suggest (3+1)d DP class.

* “Absorbing state” underlying, thanks to
energy barrier for defect generation,
but smeared by thermal excitation.




Newtonian Fluids

Transition to turbulence in pipe flow

e Experimentally, transition near Re ~ 2000.

e Laminar flow is linearly stable up to Re = co.
(nonlinear effect is crucial)

o [Reynolds 1883]

Question:
Turbulence generated by a nonlinear perturbation can persist or decay?
(at a given Reynolds number)




«— time

Near the Transition to Turbulence in Pipe

Turbulence localized: “turbulent puff” [see; Hof group, Science 2011 & refs therein]
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similar transition in channel flow/Taylor-Couette &> DP-class exponents!
[Sano & Tamai, Nat. Phys. 12,249 (2016); Lemoult et al., Nat. Phys. 12,254 (2016)]




Current Status of DP-class Transitions

* 4 real / realistic examples, where all independent exponents were checked

Systems | whyabsorbing? ___ & agreed,

liquid-crystal turbulence (exp) topological defect (at least barely)

quantum turbulence (num) topological defect
[Yeomans group,
Nat. Comm. 8,

active matter turbulence (num) ? (numerically checked) #— 5326 (2017)]
but further studies needed to answer why DP in those systems.

Newtonian turbulence (exp & num) laminar stability

e So what!? DP continuum equation
0 :
> Unified description near the transition 8_€ = ap — bp* + DV*p + \Jp(noise)

> Not only the dependence on the control parameter,
but how it ages, how it reacts against perturbations, etc., are known.

> Theory & analysis & techniques developed for AST may be employed.

* Other classes:
voter (with Z, symmetry), C-DP (with conservation law), etc.




So... Reversible-Irreversible Transition (RIT)

Couette cell experiment by Pine et al. [Nature 438, 997 (2005)]

> diameter 230pum L) Brownian motion negligible e y(1) =y sin(w?)
> oscillatory shear () = yo sin wt

> Re = 103 ) Stokes flow
~Vp+V» =0 & boundary | reversible

> volume fraction ¢ = 0.1-0.4 ) no jamming

> density & index matching, some particles are dyed.
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StI’ObOSCOPiC Imaging [Pine et al., Nature 438, 997 (2005)]

v = 1.0 (¢ = 0.3) vo = 2.5

reversible motion irreversible motion

{ “reversible-irreversible transition” }




An Order Parameter
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[Pine et al., Nature 438,997 (2005)]

diffusion coefficient
(in stroboscopic imaging)

Strain amplitude, y,

(Ax*) = 2D.n
(AZ*) = 2D.n
x: flow direction

Z: axial direction
n = cycle number

Suggested the existence of a well-defined transition point.




Possible Mechanism

Model by Corté et al. [Nat. Phys. 4,420 (2008)]
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e Finite range of interaction.
s Oscillatory shear: y(?) = yo sin wt
* When particles collide ©) random displacements

e Model for the dilute case.




RIT in Corte et al’s Model

Yo = 1.0<’)/(C)

Stroboscopic sampling

2D simulation Y < T; cycle# 362 reveI"Sible

y - velocity gradient direction

Yo = 3.0 >’)/(C)

x - flow direction
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[Corté et al., Nat. Phys. 4,420 (2008)]

fraction of
colliding particles
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RIT is an AST!

“Random organization”

Total particle number
is conserved.

E"> C-DP class?




active (A)
\‘\>

C_DP CIaSS or inactive (B)
)

(# of active (colliding) particles) + (# of inactive particles) = const.

A (diffusive) B (non-diffusive)
[A - B ] C-DP continuum equation
A+B —2A % = ap — bp* + DV?p + +/p(noise) + cp¢
p(x, 1) = [A] 1 6¢ ,
(.0 =[A1+[B] | |3 =PV F

* Infinitely many absorbing states (any ¢(x,t) with p(x,t) = 0 is absorbing)

* Critical exponents are different from DPF, but unfortunately close...

| (2+1)dDP 2+1)d C-DP 3+1)d DP 3+1)d C-DP

B 0.584(3) 0.624(29) 0.813(11) 0.840(12)
v, 0.733(3) 0.799(14) 0.584(6) 0.593(13)
vp  1.295(6) 1.225(29) 1L11(1) 1.081(27)

surface critical behavior is useful to distinguish them [Bonachela & Munoz 2007]




Critical Behavior in Corte et al’s Model
[Corté et al., Nat. Phys. 4, 420 (2008)]

order parameter

Fraction of active particles per cycle

(fraction of colliding particles)

relaxation time
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not in quantitative agreement with C-DP or DP..




Critical Behavior in Experiment
[Corté et al., Nat. Phys. 4,420 (2008)]

imaginary part of
complex viscosity

_§ order parameter ,(elastic component) relaxation time
E 1DO_§ . 1@ ll 200 o

c - %; :
— | ’ ; : 504 1% g
. ] 0 Nzaba ) 40 60 0

S 10- ;L umber of cycles jor b ..
o 2 o] AN
uq:) - 1[::30-‘2 10"1 'IQOO

O 10273 17-74 i

c €l from elasticity o
'gm_;_ & O: from diffusion ™

>
% 0 50 100 150 200 05 ' 1 ' ] ! .

Number of cycles %
> B = 0.45(10) > v = 1.1(3)
CDP CDP
BT = 0.639(9), 8,4 = 0.584(3) P = 1.225(29), v” (Md — 1.295(6)

B = 0.840(12), 800 4 = 0.813(11)  Vjgina = LOBLR2T), v e = 11D

* Not in agreement with C-DP/DP. Hydrodynamic long-range interactions!?

* Elastic component behaves like order parameter. Rheological consequence!
purely viscous (reversible) &> viscoelastic (irreversible)




. [Franceschini et al., PRL 107,250603 (201 1);
With Rods... Soft Matter 10,6722 (2014)]

motion of a rod

(@) P=0.136 mm  (g) Jeffery orbit
A

Jeffery
orbits __—

efo re

affects
Rods get aligned through interactions. effective volume fraction

) Tilting of Jeffery orbit changes in time,
so does the effective volume fraction.




With Rods...

steady-state order parameter

, (imag. part of complex viscosity)
104

[Franceschini et al.,, PRL 107,250603 (201 I);
Soft Matter 10, 6722 (2014)]

relaxation process
(|nset with constant volume fractlon)
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Agreement with C-DP class! (also with DP class)

Why different from spheres! Hydrodynamic long-range effect?




Dense Case

high volume fraction, particles jammed ) all particles interact & cage effect

* Less well understood, different observations from different systems,
but reversible-irreversible transition seems to exist as well.

e Three regimes [Keim & Arratia, PRL |12,028302 (2014); see also Regev et al., PRE 2013]

> Yo < Yc:reversible (back & forth), nearly affine deformation, elastic
> Y0 < Yc :reversible (loop), non-affine with T| events, viscosity emerges
> Y0 R V¢ :irreversible, plastic deformation, related to yielding?

# of loop particles
L

(Keim & Arratia, PRL 2014) loop-reversibility regime Npi

102 o!
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Needle

bidisperse PS particles,
electrostatically jammed

Yo
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Question |; Continuous vs Discontinuous

confocal rheometer experiment simulations
bidisperse PNIPAM particles, ¢ =~ 0.67 soft repulsive particles, ¢ = 0.80
[Hima Nagamanasa et al., PRE 2014] [Kawasaki & Berthier, PRE 2016]
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Question 2: Homogenous vs Inhomogeneous

interfacial rheometer experiment simulations

bidisperse PS particles, electrostatically jammed  bidisperse Lennard-Jones w/ cut-off
[Keim & Arratia, PRL 2014] [Parmar, Kumar, Sastry, arXiv:1806.02464]
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Question 3: Connection to the Dilute Limit

Tendencies (there may be counter-examples!)

T e @ <d) |demse @2 4)

Particle motion (as yo /) | reversible reversible (back & forth)
— irreversible [— reversible (loop)]
— irreversible
Rheology purely viscous purely elastic
— elasticity emerges — viscosity emerges
— yielding
RIT  continuity continuous discontinuous? continuous?
homogeneity homogeneous shear banding!?
homogeneously disordered?
: / : :
as an absorbing- | ?? (spheres) 2? (even if continuous & b
state transition  { C-DP class (rods) _J\homogeneovus) y

How can those be connected? \_) 0 AST With ?"_sorde"?
[cf. phase diagram in any possibility of

Schreck et al., PRE 2013] [“a“i\‘/’a.tted FfI;aE“;gl’ 27]7
see Vojta,




Summary

Current status of absorbing-state transitions
e Transitions into an absorbing state (no further state change allowed)

e Most fundamental = directed percolation (DP) class.
» Established based on toy models (mostly decades ago)

> Now relevant in real experiments & realistic models:
turbulence in liquid crystal, quantum fluid, Newtonian flow, active matter

» Practical criteria for being in the DP class?

Connections to reversible-irreversible transitions

e Transition between reversible & irreversible particle motion
in suspensions under oscillatory shear.

e A kind of AST (almost by definition), rheological consequences.

¢ Dilute case: relation to C-DP class (DP with conserved field),
but confirmed with rods only.

e Dense case: largely unsettled, intriguing features
(loop reversibility, relation to yielding, ...) and many open problems!
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