Dust Formation and Emission from Pulsar-Driven Supernovae

Conor Omand University of Tokyo

Collaborators: Kazumi Kashiyama Kohta Murase

Credit: Alexandra Angelich (NRAO/AUI/NSF)

Background

- Models of pulsar-driven SN to explain energetic transients are common
- In order to test the pulsar-driven SN model, late-phase emission should be probed

Purpose

- Dust has been found around SN, shown to cool quickly (SN1987A has ~20 K dust)
- If the dust absorbs optical/UV radiation from the PWN, it could heat up and emit in infrared
- Want to determine:
 - Which supernovae form dust?
 - How different parameters affect formation time, dust size, and temp?
 - What does the emission look like?
 - Are detections feasible?

Image credits: NASA and Larry Nittler.

Strategy

- Calculate ejecta dynamics (Kashiyama+, 2016)
- Calculate dust formation and growth (Nozawa and Kozasa, 2013)
- Calculate dust temperature and account for sublimation (Waxman and Draine, 2000)
- Account for ionization
- Calculate blackbody/greybody emission from dust

Model Overview

Dust Formation

 Dust grains form by nucleation of key molecules

$$I_s = s\Omega_o \left(\frac{2\sigma_{\text{ten}}}{\pi m_1}\right)^{\frac{1}{2}} c_1^2 \Pi \exp\left(-\frac{4}{27}\frac{\mu^3}{(\ln S)^2}\right)$$

 Nucleation controlled by supersaturation ratio S

$$\ln S = \frac{A}{T_{\text{gas}}} - B + \ln\left(\frac{c_1 k_B T_{\text{gas}}}{p_s}\right) + \ln \Xi$$

Grains grow by accretion
 of key molecules

$$\frac{da}{dt} = s\Omega_o \left(\frac{kT_{\text{gas}}}{2\pi m_1}\right)^{\frac{1}{2}} c_1 \left(1 - \frac{1}{S}\right)$$

Jet and Shock Breakouts in Cosmic Transients

Dust Destruction/Emission

Dust is sublimated out to a critical radius:

$$R_{c} = \left(\frac{L_{\rm opt/UV}}{16\pi\sigma T_{c}^{4}}\frac{Q_{\rm opt/UV}}{\langle Q \rangle_{T_{c}}}\right)$$

- Opt/UV optical depth determines emission:
- Optically thick:
- Optically thin:

$$L_{\nu} = 4\pi R_c^2 Q(a) \pi \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{k_B T_c}} - 1}$$
$$dL_{\nu} = 4\pi r^2 n_{\text{dust}} 4\pi a^2 Q(a) \pi \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{k_B T(r)}} - 1} dr$$

Gas is ionized out to the Strömgren radius:

$$R_s = \left(\frac{3}{4\pi} \frac{S_*}{c_1^2 \beta_2} - R_{\rm ej}^3\right)^{\frac{1}{3}}$$

Parameters to Study

Composition	f _c	f _o	f _{Mg}	f _{si}
В	0.1	0.3	0.03	0.03
С	0.3	0.6	0.05	0

Grain Type	C _(s)	MgSiO _{3 (s)}	MgO _(s)		ID	Composition	$M_{ m ej}(m M_{\odot})$	f _L
Key Species	C _(g)	Mg _(g)	Mg _(g)	E	B5-1	В	5	1
<i>A</i> /10 ⁴ (K)	8.64726	25.0129	11.9237	E	B5-05	В	5	0.5
В	19.0422	72.0015	33.1593	E	B15-1	В	15	1
a _o (Å)	1.281	2.319	1.646	(C5-1	С	5	1
σ _{ten} (erg cm ⁻²)	1400	400	1100	(C15-1	С	15	1

Formation Timescale (B5-1)

С

MgSiO₃

Jet and Shock Breakouts in Cosmic Transients

Formation Timescale (B15-1 and B5-05)

18/05/18

Jet and Shock Breakouts in Cosmic Transients

3500

Formation Timescale (C5-1 and

Jet and Shock Breakouts in Cosmic Transients

Jet and Shock Breakouts in Cosmic Transients

Radius Evolution (15 M_{\odot})

B = 2 X 10¹² G, P = 1 ms

B composition

C composition

Jet and Shock Breakouts in Cosmic Transients

Radius Evolution (5 M_o)

18/05/18

Dust Emission

B5-1

q₁ = 1.8

18/05/18

Jet and Shock Breakouts in Cosmic Transients

Summary

- Calculated dust formation for multiple ejecta compositions and pulsar parameters
- Formation timescale can vary from 50-4000 days, be delayed by sublimation or accelerated by fast ejecta
- Ionization barely effects dust in heavy ejecta, but can breakout of lighter ejecta
- Emission is sub-dominant to flat PWN spectrum, comparable to a less flat spectrum
- Dust size distribution still to be investigated