Polarized Balmer Line Emissions from Collisionless Shock Waves: On
Measurements of the Energy Loss of the Shocks due to the Production of Nonthermal Particles

Ref: Shimoda et al. 2018, MNRAS, 473

Jiro Shimoda ${ }^{1,2}$

Yutaka Ohira ${ }^{1}$ 1. Aoyama Gakuin Univ.
2. Tohoku Univ.

Ryo Yamazaki ${ }^{1}$ 3. NRL
4. Saitama Univ.
J. Martin Laming ${ }^{3}$ Jet and Shock Breakouts

Satoru Katsuda ${ }^{4} \begin{aligned} & \text { in Cosmic Transient } \\ & \text { May 14-18, 2018, Kyoto }\end{aligned}$

Summary of this work

-We have calculated the polarized Balmer line emissions from the shocks efficiently accelerating non-thermal particles.
\square We have shown that the energy loss rate of the shocks resulting from the particle acceleration can be measured by the polarization degree.

DOur calculation will be applied for an estimation of a distance from the acceleration sites.

Balmer Line Emissions from Collisionless Shocks

Winkler+14
Supernova Remnants (SNRs)

Figures from Morlino+15

Balmer line emissions (especially $\mathrm{H} \alpha$) are ubiquitously seen in collisionless shocks propagating into the ISM.

Balmer Line Emissions from Collisionless Shocks

Winkler+14

Hereafter, we

 focus on the SNRs. (although our study is applicable to other objects)Supernova Remnants (SNRs)
Balmer line emissions (especially $\mathrm{H} \alpha$) are ubiquitously seen in collisionless shocks propagating into the ISM.

Balmer Line Emissions from Collisionless Shocks

Balmer Line Emissions from Collisionless Shocks

\checkmark Emission Mechanism (e.g. Chevalier+80) upstream downstream • The collisionless shock is
 formed by the interaction between charged particles and plasma waves rather than Coulomb collision.

- The neutral particles (e.g. hydrogen atoms) are not affected.

SNR shock
Charged particles \rightarrow shock heating
Hydrogen atoms \rightarrow no dissipation

Balmer Line Emissions from Collisionless Shocks

\checkmark Emission Mechanism (e.g. Chevalier+80)

SNR shock
Charged particles \rightarrow shock heating Hydrogen atoms \rightarrow no dissipation

- Collisional Excitation

$$
\mathrm{H}+\mathrm{p}(\text { or } \mathrm{e}) \rightarrow \underline{\mathrm{H}^{*}}+\mathrm{p}(\text { or e })
$$ Emits "narrow" comp.

\square Charge Transfer
$\mathrm{H}+\mathrm{p} \rightarrow \mathrm{p}+\underline{H}^{*}$
Emits "broad" comp.
The "broad" component reflects the downstream temperature of protons.

Discovery of polarized $\mathrm{H} \alpha$ emission @ SNR SN 1006 (Sparks+ 15)

$>$ Linear Polarization

> Polarization angle: perpendicular to the shock
$>$ Degree: $2.0 \pm 0.4 \%$

On polarization of atomic line

On polarization of atomic line

Polarization of photon is characterized by the variation of m before and after the transition:
$\Delta m=0 \rightarrow$ Linear
$\Delta m= \pm 1 \rightarrow$ Circular

Polarized H α

\square Experiments: Hydrogen atoms in electron/proton beam

\checkmark Hydrogen atoms in electron (proton) beam emit polarized H α with $\sim 40 \%$
(20 \%) degree.
\checkmark Polarization direction
is parallel to the incident beam.

Polarized H α

\square Experiments: Hydrogen atoms in electron/proton beam

degree: $\Pi \equiv \frac{I_{\|}-I \text { Specific energy }}{I_{\|}+I_{\perp}} r \begin{array}{r}1000 \\ {[\mathrm{keV} / \mathrm{amu}]}\end{array}$
parallel to the beam $: I_{\|}$
perpendicular to the beam : I_{\perp}
\checkmark Hydrogen atoms in electron (proton) beam emit polarized H α with $\sim 40 \%$
(20 \%) degree.
\checkmark Polarization direction
is parallel to the incident beam.

Polarized H α

\square For the case of shocks

upstream downstream

SNR shock
Charged particles \rightarrow shock heating
Hydrogen atoms \rightarrow no dissipation

Polarized H α

\checkmark Collision direction seen in the rest frame of hydrogen atoms

Velocity comp. normal to the shock surface

Velocity comp. parallel to the shock surface

- In the rest frame of hydrogen atoms (i.e. the upstream frame), the colliding charged particles are seen as a "mildly collimated beam".
- The "width" of beam is determined by the downstream temperature.
- The anisotropy of collision yields polarized $\mathrm{H} \alpha$ with a few \% degree.

Polarized H α

\checkmark Collision direction seen in the rest frame of hydrogen atoms The polarized H α with a few \% degree was firstly predicted by Laming (1990) for SNR shocks, but he did not consider the acceleration of non-thermal particles (i.e. cosmic-rays).

Velocity comp. parallel to the shock surface
downstream temperature.

- The anisotropy of collision yields polarized $\mathrm{H} \alpha$ with a few \% degree.

Cosmic Rays

The energy spectrum of CRs

On the energy loss of the shocks

No cosmic-rays

Downstream temperature

Upstream

 kinetic energy$$
k T_{\text {down }}=k T_{\mathrm{RH}} \equiv \frac{3}{16} \mu m_{\mathrm{p}} V_{\mathrm{sh}}{ }^{2}
$$

Downstream

kinetic energy

If the shock accelerates cosmic-ray, ...

On the energy loss of the shocks

Efficient Acceleration

Downstream temperature

$$
k T_{\text {down }}<k T_{\mathrm{RH}} \equiv \frac{3}{16} \mu m_{\mathrm{p}} V_{\mathrm{sh}}^{2}
$$

Cosmic-ray Acceleration

Downstream

 kinetic energyEnergy loss rate (Shimoda+ 15):

$$
\eta \equiv \frac{T_{\mathrm{RH}}-T_{\mathrm{down}}}{T_{\mathrm{RH}}}
$$

On the energy loss of the shocks

Efficient Acceleration

Energy loss rate (Shimoda+ 15):

$$
\frac{T_{\mathrm{RH}}-T_{\text {down }}}{T_{\mathrm{RH}}}
$$

Previous works of the loss rate

Helder+ 13 for SNR RCW 86

Shock velocity is measured by the proper motion $\Delta \theta$.

Downstream temperature is measured by the broad $\mathrm{H} \alpha$.

$$
\eta \equiv \frac{T_{\mathrm{RH}}-T_{\mathrm{down}}}{T_{\mathrm{RH}}}=0.5 \pm 0.3
$$

Suggesting the significant energy loss (e.g. Helder+ 09, 13, Shimoda+15, 18)

Problem in the previous estimation

 \square Measurement of the shock velocity
\checkmark In order to derive the shock velocity from the proper motion, we need a distance to the SNR with high accuracy (with errors less than 1%).

Polarized H α (No cosmic-ray)

\checkmark Collision direction seen in the rest frame of hydrogen atoms

Velocity comp. normal to the shock surface

Velocity comp. parallel to the shock surface

- In the rest frame of hydrogen atoms (i.e. the upstream frame), the colliding charged particles are seen as a "mildly collimated beam".
- The "width" of beam is determined by the downstream temperature.
- The anisotropy of collision yields polarized $\mathrm{H} \alpha$ with a few \% degree.

Polarized $\mathrm{H} \alpha$ (with cosmic-ray)

\checkmark Collision direction seen in the rest frame of hydrogen atoms

Velocity comp. normal to the shock surface

Velocity comp. parallel to the shock surface

- If the shock efficiently accelerates cosmic-rays, then they can escape from the shock, carrying away significant energy.
- As a result, the downstream temperature becomes lower than the adiabatic case, yielding larger anisotropy of collision.
- Polarization degree increases!

$$
\text { Polarized } \mathrm{H} \alpha \text { (with cosmic-ray) }
$$

\checkmark Collision direction seen in the rest frame of hydrogen atoms
\square In the previous study, Laming (1990) considered only H α emission from shocks without cosmic-rays.
\square In this work, updating the atomic data (e.g. cross sections), we calculate $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ emissions from shocks efficiently accelerating cosmic-rays.
Velocity comp. parallel to the shock surface

- Polarization degree increases!

Calculation diagram

\square Downstream temperatures

$$
\begin{aligned}
k T_{\mathrm{p}} & =\frac{3}{16}(1-\eta) \mu m_{\mathrm{p}} V_{\mathrm{sh}}^{2} \\
k T_{\mathrm{e}} & =\beta k T_{\mathrm{p}}
\end{aligned}
$$

The downstream proton and electron temperatures are observable.
Setting the downstream proton and electron temperatures, and the energy loss rate η, we derive the downstream velocity from the jump conditions for the shock loosing an energy (Cohen+98).
\square Downstream velocity in the upstream frame

$$
u_{2}=\left(1-\frac{1}{R_{c}}\right) \sqrt{\frac{16}{3} \frac{k T_{\mathrm{p}}}{(1-\eta) \mu m_{\mathrm{p}}}}
$$

$$
\begin{aligned}
Q & \equiv I_{\|}-I_{\perp} \\
I & \equiv I_{\|}+I_{\perp}
\end{aligned} \quad \Pi \equiv \frac{I_{\|}-I_{\perp}}{I_{\|}+I_{\perp}}
$$

\square Distribution function of protons and electrons

$$
\left.f_{q}\left(\boldsymbol{v}_{\boldsymbol{q}}, \boldsymbol{u}_{\boldsymbol{2}}\right)=\left(\frac{m_{q}}{2 \pi k T_{q}}\right)^{\frac{3}{2}} \exp \left(-\frac{m_{q}\left(\boldsymbol{v}_{\boldsymbol{q}}-\boldsymbol{u}_{\boldsymbol{2}}\right)^{2}}{2 k T_{q}}\right)\right)
$$

Conversion of Ly $\beta \rightarrow \mathrm{H} \alpha$
 $$
\operatorname{Ly} \beta 3 p \rightarrow 1 s \quad H \alpha 3 p \rightarrow 2 s
$$

$\mathrm{H} \alpha$ is not absorbed by the hydrogen atoms in ground state.
a) A part of hydrogen atoms in $\mathbf{n = 3}$ emit $\underline{L y} \beta$ due to $3 p$ to $1 s$ transition.
b) The emitted Ly β is absorbed by the hydrogen atoms in ground state.
c) Eventually, Ly β is converted to $\mathbf{H \alpha}$ due to $3 p$ to $2 s$ transition.

> Optically thin for $\operatorname{Ly} \beta$ is "Case A "
> Optically thick for Ly β is "Case B "

We assume the converted $\mathrm{H} \alpha$ photons are unpolarized.

Polarization of $\mathrm{H} \alpha: Q(\mathrm{H} \alpha) / /(\mathrm{H} \alpha)$

Ratio of total intensity: $I(\mathrm{H} \beta) / I(\mathrm{H} \alpha)$

Ratio of polarized intensity: $Q(\mathrm{H} \beta) / Q(\mathrm{H} \alpha)$

Comparison with the observation: vs. η The loss rate is not constrained due to the errors of observations.

WWe need a precise measurement of

 polarization and a calculation for an arbitrary optical thickness of Lyß.

Applications

Comparison of the proper motion and the downstream temperature had been relied on for an estimation of distance to the SNR (Chevalier+80).

The significant energy loss of shock was
2000~ suggested (e.g. Hughes+00, Warren+05, Helder $+09,13$). The previous estimation of distance became suspicious.

We can estimate the distance by combination of the loss rate by polarization and the proper motion.

Once we determine the distance and η
Downstream temperature

ㅁ Cosmic-ray protons: η_{p} $p_{\mathrm{CR}}+p_{\text {thermal }} \rightarrow \pi^{0} \rightarrow 2{ }_{\gamma}$
Number of thermal nuclei can be derived from $\mathrm{H} \alpha$ surface brightness with the calculation for an arbitrary optical thickness of Ly β (e.g. Chevalier+80).

- Cosmic-ray electrons: η_{e} $e_{\mathrm{CR}}+\underset{\text { known }}{\gamma_{\mathrm{CMB}}} \rightarrow \gamma_{\mathrm{IC}}$
- Generation of Magnetic field: η_{B} Related to Synchrotron surface brightness $\mathrm{L}_{\text {syn }}$

$$
\eta \equiv \frac{T_{\mathrm{RH}}-T_{\mathrm{down}}}{T_{\mathrm{RH}}}
$$

We can observationally constraint the energy budget of collisionless shock in detail.

Once we determine the distance and η
Downstream temperature

$$
k T_{\text {down }}<k T_{\mathrm{RH}} \equiv \frac{3}{16} \mu m_{\mathrm{p}} V_{\mathrm{sh}}^{2}
$$

Cosmic-ray Acceleration

$$
\begin{aligned}
\eta & =\eta_{\mathrm{e}}+\eta_{\mathrm{p}}+\eta_{\mathrm{B}} \\
L_{\gamma} & =L_{\mathrm{IC}}\left(\eta_{\mathrm{e}}\right)+L_{\pi^{0}}\left(\eta_{\mathrm{p}}\right) \\
& =a \eta_{\mathrm{e}}+b \eta_{\mathrm{p}} \\
L_{\mathrm{syn}} & =c \eta_{\mathrm{e}} \eta_{\mathrm{B}}
\end{aligned}
$$

Downstream kinetic energy

$$
\eta \equiv \frac{T_{\mathrm{RH}}-T_{\mathrm{down}}}{T_{\mathrm{RH}}}
$$

We have three equations with three unknowns!

We can observationally constraint the energy budget of collisionless shock in detail.

Summary of this work

-We have calculated the polarized Balmer line emissions from the shocks efficiently accelerating non-thermal particles.
\square We have shown that the energy loss rate of the shocks resulting from the particle acceleration can be measured by the polarization degree.

DOur calculation will be applied for an estimation of a distance from the acceleration sites.

