Neutrino-Dominated Accretion Flows as the Central Engine of Gamma-Ray Bursts

NK & Mineshige 2007 Masada, NK, Sano & Shibata 2007 NK, Piran & Krolik 2013 NK & Masada in prep. NK & Kohri 2012 NK, Mineshige & Piran 2013 Liu, Gu, NK & Li 2015 Kimura, Mineshige & NK 2015

Department of Astronomy, **Kyoto University**

Norita Kawanaka

(Hakubi center/Department of Astronomy, Kyoto-u)

Jet and Shock Breakouts in Cosmic Transients @ YITP, Kyoto 17/05/2018

Outline

- 1. Introduction: What is an NDAF?
- 2. Structure and Luminosity of NDAFs
- 3. Stability of NDAFs: the origin of short-term variability in GRBs
 - the effects of neutrino diffusion
 - the effects of viscosity/resistivity

1. Introduction

Central Engine of Gamma-ray Bursts

- total energy ~ 10⁵¹ erg/ compact/relativistic jet/...
- most likely: a massive accretion disk around a stellar-mass black hole
- the outcome of the collapse of a massive star or a merger of compact objects

$$\dot{M} \approx 0.01 - 1M_{\rm sun} \, {\rm s}^{-1}$$

- Photons are trapped in the accretion flow (Advection-Dominated Accretion Flow; ADAF).
- When \dot{M} is large enough, neutrino emission becomes efficient.

Hyperaccreting Black Holes

Neutrino-Dominated Accretion Flow (NDAF)

- <u>cools via neutrino emission</u>
- appears above $\sim 0.01 M_{sun} s^{-1}$; $\rho \sim 10^{9-11} g cm^{-3}$, $T \sim 10^{10-11} K$
- URCA processes $(e^- + p \rightarrow n + v_e / e^+ + n \rightarrow p + \overline{v}_e)$ are dominant

Analytical studies

Popham+ 99; Narayan+ 01; Kohri & Mineshige 02, Di Matteo+ 03; Kohri+ 05; Chen & Beloborodov 07; NK & Mineshige 07; Masada, NK+07; Liu+ 07; NK & Kohri 12; NK, Piran & Krolik 13; NK, Mineshige & Piran 13; Liu, Gu, NK & Liu 15; Kimura, Mineshige & NK 15 etc. Simulation studies

Lee & Ramirez-Ruiz 02; Lee+ 03; Setiawan+ 04; Shibata+07; Metzger+ 08; Sekiguchi & Shibata 11; Siegel & Metzger 17; Kyutoku+ 18 etc.

Problems to be solved

• Jet launching mechanism

Compactness problem \rightarrow ultrarelativistic jet

How can the NDAF drive a powerful jet?

From T.Totani's website

• Origin of short-term variability

internal shock model... a jet ejected from the NDAFshould be spatially inhomogeneous

2. Structure and Luminosity of NDAFs

Important Physics

• neutrino emission

URCA process (dominant) $e^- + p \rightarrow n + v_e, e^+ + n \rightarrow p + \overline{v}_e$ e^\pm pair annihilation $e^- + e^+ \rightarrow v_i + \overline{v}_i$ nucleon bremsstrahlung $n + n \rightarrow n + n + v_i + \overline{v}_i$ plasmon decay $\widetilde{\gamma} \rightarrow v_e + \overline{v}_e$ etc.

• pressure source

gas/radiation/degenerated electrons/neutrinos

composition

photodissociation of nuclei around $\sim 100R_{g}$

neutrino trapping

When mass accretion rate is very large, the disk would be optically-thick with respect to neutrinos

Fundamental Equations of an NDAF

$$\dot{M} = -2\pi R\Sigma \upsilon_R \qquad \text{mass conservation}$$

$$2\alpha p_{\text{disk}} H = \frac{\dot{M}\Omega}{2\pi} \qquad \text{ang. mom. conservation}$$

$$Q_{\text{vis}}^+ = Q^- (= Q_{\text{adv}}^- + Q_v^-) \qquad \text{energy balance}$$

$$Q_{\text{vis}}^+ = Q^- (= Q_{\text{adv}}^- + Q_v^-) \qquad \text{energy balance}$$

$$\frac{p_{\text{disk}}}{\rho} = \Omega^2 H^2 \qquad \text{hydrostatic balance}$$

$$p_{\text{disk}} = \frac{\rho k_B T}{m_p} + \frac{11}{12} a T^4 + \frac{2\pi h c}{3} \left(\frac{3}{8\pi m_p}\right)^{4/3} (Y_e \rho)^{4/3} + \frac{u_v}{3} \qquad \text{EoS}$$

Innermost region of an NDAF

(NK, Piran & Krolik 2013 etc.)

Depending on mass accretion rate, the dominant cooling process and pressure source would change

- \dot{M} 1. Advection-dominated (ADAF/photons are trapped) neutrino cooling is not efficient $\dot{M} / M_{sun} s^{-1} \le 0.018$ $p_{disk} \sim (11/12) a T^4$
 - 2. "optically thin" NDAF e^{-}/e^{+} captures onto $p/n \rightarrow v / \overline{v}$
 - $p_{\rm disk} \sim \rho k_{\rm B} T/m_p$
 - 3. "optically thick" NDAF $\tau_{v} > \sim 1 \rightarrow Q^{-\infty} U_{v} / \tau_{v}$
 - $p_{\rm disk} \sim \rho k_{\rm B} T / m_p$

- $0.018 \le \dot{M} / M_{sun} s^{-1} \le 0.045$
 - $0.045 \le \dot{M} / M_{sun} s^{-1} \le 4.1$
- 4. Advection-dominated (ADAF/neutrinos are trapped) $p_{\text{disk}} \sim 11/12aT^4 + u_v/3$ $4.1 \le \dot{M} / M_{\text{sum}} \text{s}^{-1}$

How is the relativistic jet launched?

neutrino pair annihilation
 vv → e⁺e⁻ above the disk
 → fireball formation?

(Eichler+ 89; Asano & Fukuyama 00, 01; Birkl+ 07; Zalamea & Beloborodov 11 etc.)

• MHD mechanism (e.g. Blandford-Znajek process)

energy extraction from a rotating BH via magnetic field → Poynting-dominated jet Q: How powerful is the jet and how does it depend on the mass accretion rate and other properties?

How to Estimate the Poyinting Jet Luminosity

$$L_{\rm jet} \sim c \left(\frac{B^2}{8\pi} \right) R_g^2 f \left(a / M_{\rm BH} \right)$$

B: poloidal magnetic field strength on the BH horizon $f(a/M_{BH})$: increasing function of $|a/M_{BH}|$; $\sim O(1)$ if $a/M_{BH} \sim 1$ and the poloidal field is dominant (Hawley & Krolik 06)

Assumption:

The magnetic pressure near the horizon is limited by the inner disk pressure: $B^2/8\pi \sim p_{disk}$ (Beckwith+09) $\rightarrow L_{jet} \sim cp_{disk}(R_{in})R_g^2 f(a/M_{BH})$

Need to evaluate $p_{disk}(R_{in})$ as a function of mass accretion rate, BH mass, etc.

Jet Luminosity from a Hyperaccretion flow

 $\alpha = 0.1, R_{\rm in} = 6GM_{\rm BH}/c^2,$

- simple estimates of Blandford-Znajek luminosity $L_{\rm BZ}$ and $v\overline{v}$ annihilation luminosity $L_{v\overline{v}}$
- a discontinuity at a certain mass acc. rate (\dot{M}_{ign})
- corresponds to the transition between ADAF and NDAF

Results (Jet luminosity vs accretion rate)

thick: BZ luminosity thin: *v* annihilation luminosity

solid lines: $M_{\rm BH}$ =3 $M_{\rm sun}$, α =0.1, $R_{\rm in}$ =6 GM/c^2

 $L_{\rm jet}$ at $\dot{M}_{\rm ign}$: ~10⁵⁰⁻⁵¹erg/s similar to the jet luminosity inferred from observed GRBs the drop in $L_{\rm jet}$ (a factor of ~5) at $\dot{M}_{\rm ign}$ may lead to the variability observed in the prompt emissions or the steep decay in the afterglows

NK et al. (2013a)

3. Stability of NDAFs

Origin of short-term variability in GRBs?

- The disk instability may drive the intermittent mass accretion
 - \rightarrow inhomogeneous jet?
- often discussed in the context of X-ray binaries (Lightman & Eardley 74; Shibazaki & Hōshi 75; Shakura & Sunyaev 76; Piran 78)
- Some instabilities of NDAFs have been found
 thermal instability: Janiuk+07
 viscous instability: Masada, NK +07; NK & Kohri 12; NK+ 13b; Kimura, Mineshige & NK 15; NK & Masada in prep.

Viscous Instability (Secular Instability)

- M : mass accretion rate
- $\boldsymbol{\Sigma}\;$: surface density of a disk

unstable condition

 $\Sigma(r) \text{ grows}$ $\Rightarrow \text{ less inward mass accretion}$ $\Rightarrow \Sigma(r) \text{ grows further}$ $\Rightarrow \text{ unstable, clump formation}$ $\Rightarrow \text{ intermittent mass accretion}$

Kato, Fukue & Mineshige 2008

Origin of shear viscosity in an accretion disk

... turbulence driven by MagnetoRotational Instability (MRI) $\rightarrow \alpha$ -prescription (Shakura & Sunyaev 1973)

 \therefore If the growth of MRI is boosted (suppressed), α becomes larger (smaller).

The growth of MRI in an NDAF can be affected by (1) neutrino diffusion (Masada et al. 2007) (2) e⁻ viscosity/resistivity (NK & Masada in prep.)

MRI in a v-thick NDAF?

Masada, NK, Sano & Shibata 2007

 $\dot{M} \ge 0.1 - 1M_{\odot} \mathrm{s}^{-1}$

 \rightarrow innermost region may be neutrino-opaque

- → energy/momentum transport due to neutrino diffusion is effective
- \rightarrow The growth of MRI would be suppressed

Order Estimate

The fastest growing mode of MRI: $\lambda \sim v_A/\Omega$ The growth timescale of MRI $\sim \lambda/v_A$ The damping timescale due to the viscosity $\sim \lambda^2/v$ \rightarrow MRI can grow only when

$$\operatorname{Re} \equiv \frac{LU}{\nu} = \frac{v_{\rm A}^2}{\nu\Omega} \gtrsim 1,$$

Neutrino viscosity:

$$\nu = \frac{4}{15} \frac{U_{\nu}}{\rho c} \langle \lambda \rangle \approx 5.2 \times 10^{12} T^2 \rho^{-2} \text{ cm}^2 \text{ s}^{-1},$$

Re ~ 3.4 × 10⁻⁷ $B_{11}\rho_{11}T_{11}^{-2} (M/3M_{\odot})(r/3r_s)^{3/2}$

Neutrino Diffusion Effect on MHD eqs.

Masada, Sano & Shibata (2007)

Maximum growth rate

MRI would be suppressed in the inner region (neutrino-opaque) \rightarrow Angular momentum transport would be taken by neutrinos, which would be weaker than that in the outer region (neutrino-thin)

Evolution scenario of an NDAF

 α -parameter by neutrino viscosity

$$\alpha_{\nu} = \frac{\nu \Omega_{\rm K}}{c_s^2} = 5.2 \times 10^{-5} f_{\Sigma}^2 f_T^2 M_3^{-2} \hat{r}^{-2(p-q)+3/2}$$

Mass accretion rate from the MRI-dead zone:

$$\dot{M}_{\rm out} = 4\pi r \rho H v_r \simeq 7.2 \times 10^{-4} \left(\frac{\alpha_{\nu}}{10^{-4}}\right) f_{\Sigma} f_T M_3 \dot{M}_{\odot},$$

Mass accretion from the outer (MRI-active) zone:

 $f_{\Sigma}, f_T \sim O(1)$

$$\dot{M}_{\rm in} \simeq 7.2 \times 10^{-2} \left(\frac{\alpha_t}{10^{-2}} \right) f_{\Sigma} f_T M_3 \dot{M}_{\odot}. >> \dot{M}_{\rm out}$$

Matter would be accumulated into the dead zone \rightarrow Gravitationally unstable!

Schematic picture

The growth of MRI in an NDAF can be affected by (1) neutrino diffusion (Masada et al. 2007) (2) e⁻ viscosity/resistivity (NK & Masada in prep.)

e⁻ viscosity can affect the MRI efficiency

Magnetic Prandtl number P_m could influence the saturated state of the MRI turbulence (Fromang et al. 2007; Lesur & Longaretti 2007; Simon & Hawley 2009 etc.)

Disk instability induced by varying $\boldsymbol{\alpha}$

Takahashi & Masada 2011 Potter & Balbus 2014

e.g. accretion disks in X-ray binaries

Cooling: photon

viscosity, resistivity: Coulomb scattering of electrons

Assuming $\alpha \propto P_m^{\delta}$, an accretion disk can be unstable when $\delta > 2/3$

How about an NDAF?

Cooling: neutrino

viscosity, resistivity: Coulomb scattering of relativistically degenerate electrons

instability criterion

NK & Masada in prep.

When $\dot{M} \sim 0.01 - 0.1 M_{\odot} \text{s}^{-1}$ (v-thin cooling regime),

an NDAF becomes viscously unstable if

1-d simulation of an NDAF

NK & Masada in prep.

parameter

Equation for the surface density

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} \left[r^{1/2} \frac{\partial}{\partial r} \left(v \Sigma r^{1/2} \right) \right]$$

 $\Sigma(r,t)$: surface density $\nu = \alpha c_s H$: kinetic viscosity

Assumption: $\alpha = \alpha_{\min} + (\alpha_{\max} - \alpha_{\min}) \left(\frac{Pm^{\delta}}{Pm^{\delta} + 1} \right)$

$$\alpha_{\min} = 0.01, \alpha_{\max} = 10$$

time variation of α -viscosity

NK & Masada in prep.

Evolution of the surface density

NK & Masada in prep.

NK & Masada in prep.

$$c_s \Omega$$

 $\pi G \Sigma$

When $Q < Q_{crit}=2$, the disk becomes gravitationally unstable

- → non-axisymmetric patterns
- → Outward angular momentum transport
- → Intense mass accretion

Assumption: $\alpha_{\text{grav}} = 0.1 \left(\frac{Q_{\text{crit}}^2}{Q^2} - 1 \right)$

mass accretion variability

NK & Masada in prep.

Summary

- Hyperaccretion flows as a central engine of GRBs
 Neutrino-Dominated Accretion Flow (NDAF)
- A powerful jet may be driven by the MHD process resembling Blandford-Znajek mechanism when an accretion flow is efficiently cooled by neutrinos.
- Viscous instability: the origin of the short-term variability of GRBs?
- α -parameter is not always constant in an NDAF.
- An NDAF may become viscously unstable and mass accretion may be highly variable when it is neutrino thick (due to neutrino diffusion) or thin (due to degenerate electrons' viscosity/resistivity).