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NS Merger Remnant

• NSMs accompanied by high-speed mass ejection (dynamical ejecta) 
• Ejecta interacts with circumbinary medium (CBM)                             

and creates a sub-relativistic shock  
• Shock accelerates particles and emits EM signals 
• Possible additional EM signal following sGRB component

Rezzolla+ 11
Sekiguchi+ 15
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Metzger+ 

Vela Jr (H.E.S.S.)

NSM ejecta-CBM interaction 
as a “miniature” SNR?

Mej ~ 0.05 Msun vs a few Msun

Eej ~ 1050 erg vs 1051 erg

See also: Asano & To (2018), Hotokezaka+ (2018), Alexander+ (2017), etc



The code

• 1-D Lagrangian hydro 

• Non-linear diffusive 
shock acceleration 

• CR-driven magnetic 
field amplification 

• Spacetime-dependent 
broadband emission 
spectral calculation
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Applications to SNRs
• Applied successfully to non-thermal young and 

evolved SNRs (e.g., Lee+ 2012-2015; Castro+ 
2012; Slane, Lee+ 2014)
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Source of seed e-
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Source of seed e-

• 1) Shock-heated e- from CBM 
• Same story as young SNR shocks 
• Typical DSA proton injection fraction ηinj,th ~ 10-5 to 10-4  
• e- proportional to free parameter Kep (“e-to-p ratio”) 
• Typical Kep = 0.003 - 0.01 from young SNR models

CBM

shockejecta

DSA

 6
 6



Source of seed e-

• 1) Shock-heated e- from CBM 
• Same story as young SNR shocks 
• Typical DSA proton injection fraction ηinj,th ~ 10-5 to 10-4  
• e- proportional to free parameter Kep (“e-to-p ratio”) 
• Typical Kep = 0.003 - 0.01 from young SNR models

• 2) Escaped β-decay e- from NSM dynamical ejecta 
• Emitted by decay of radioactive r-process stuff 
• Escape from ejecta —> catch up with forward shock —> DSA 

escape-injection time delay 

CBM

shockejecta

DSA

e-
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Luminosity of β-decay e-

 7
 7



Luminosity of β-decay e-
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Specific luminosity of escaped e- 
      Inspired by Hotokezaka+ (2016) 
    tesc ~ 10 d (Barnes+ 2016) w/ uncertainty
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Luminosity of β-decay e-

 7

Specific luminosity of escaped e- 
      Inspired by Hotokezaka+ (2016) 
    tesc ~ 10 d (Barnes+ 2016) w/ uncertainty

β-decay e- density at shock 
   Assume typical <Ee> ~ 1 MeV 
   (~0.1 MeV e- cannot catch up with shock)
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Importance of β-decay e- 
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Importance of β-decay e- 
Rough order-of-magnitude estimate (Mej = 0.01 Msun,  t >> tesc)
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(Number of accelerated shock-heated CBM e-)

(Number of accelerated β-decay e-)

i.e., Ne,decay >> Ne,th for a few 1,000 d
• Actually, there are too many β-decay e- in early phase 
• Limited by shock energy budget, only a fraction can be accelerated  
• We assume Fe <= 0.1 Fshock for β-decay e-  (note: Fshock = ρCBMvshock(t)3/2)
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Importance of β-decay e- 
Rough order-of-magnitude estimate (Mej = 0.01 Msun,  t >> tesc)
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(Number of accelerated shock-heated CBM e-)

(Number of accelerated β-decay e-)

i.e., Ne,decay >> Ne,th for a few 1,000 d
• Actually, there are too many β-decay e- in early phase 
• Limited by shock energy budget, only a fraction can be accelerated  
• We assume Fe <= 0.1 Fshock for β-decay e-  (note: Fshock = ρCBMvshock(t)3/2)

Shock energy  
budget limit

Varying tesc does not affect result
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Parameters for NSMRs

Parameter space 
• Circumbinary medium: uniform: nCBM = 0.03 - 0.3 cm-3  (model b) 
• Ejecta mass: Mej = 0.01 - 0.04 Msun  (model c) 

• Ejecta K.E.: Eej = 1.25 - 5.0 x 1050 erg 
• DSA injection fraction (supra-thermal): ηinj,th = 3.3 x 10-5 - 4.2 x 10-4 (model d)
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dNSM = 40 Mpc 
BCBM = 3 x 10-6 G

(yellow: fiducial)
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NSM ejecta profile
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Mej = 0.01 Msun

Mej = 0.04 Msun

from Hotokezaka+ (2016)

Cumulative Eej profile

We impose initial βej < 0.8

ρej profile

α = 3
α = 4.5

exp
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NSM ejecta profile

 10

Mej = 0.01 Msun

Mej = 0.04 Msun

from Hotokezaka+ (2016)

Cumulative Eej profile

We impose initial βej < 0.8

ρej profile

α = 3
α = 4.5

exp

Possibility of high-speed tail (Hotokezaka+ 2018)?  10



Hydrodynamic evolution
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fiducial
10 x ρCBM 
1/4 x Eej

10 x ηinj,th

NSMR radius Shock speed / c

pmax,e Bshock



Radio lightcurve 
Case without β-decay e-
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ATCA, VLA
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GW170817
3 GHz

GW170817
3 GHz

GW170817
3 GHz

• 4x less energetic ejecta 
• Faster deceleration of shock 

• Smaller V at given time

• 10x denser CBM 
• Faster dissipation of Eshock (smaller V) 
• More efficient DSA 

• Higher amplified B-field

GW170817
3 GHz

• ~10x faster p & e- injection 
• Very efficient DSA and MFA

Unimportant contribution😥
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Radio lightcurve 
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Radio lightcurve 
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GW170817
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• Including β-decay e-  
• Very efficient injection from 

early phase (tpeak ~ 10 d) 

• Acceleration of e- limited by 
input energy flux at shock Fshock
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• But an increased Fshock ~ ρCBM  
• More accelerated β-decay e- 
• (Note: Fe / Fshock ≦ 0.1 is an assumption)
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GW170817
3 GHz

• 10x denser ISM 
• No effect on β-decay e- injection 
• But an increased Fshock ~ ρCBM  
• More accelerated β-decay e- 
• (Note: Fe / Fshock ≦ 0.1 is an assumption)

GW170817
3 GHz

• 4x less energetic ejecta 
• Early phase limited by Fshock  
• Later phase Le ~ Mej

GW170817
3 GHz

ηinj,th no effect on β-decay e- 

may contribute after a few yr?
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X-ray lightcurve 
Case without β-decay e-
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• Major difference: rolloff  
• Synch X-ray νcut sensitive to Emax,e 
• Emax of e- determined by tacc and 

tloss (synch) 

• Model with larger ρCBM and ηinj,th             
—> more efficient DSA                            
—> larger B-field 

• Higher Emax,e in early phase 

• hνcut drops below 1 keV faster
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X-ray lightcurve 
Case with β-decay e-
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• Q: optimistically, can this 
dynamical ejecta component 
become observable some 
time after merger?  

1. Dominance of “main” 
component (jet? cocoon?) 

2. Detectability by instruments
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Comparison with Jet Component 
Radio case
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Comparison with Jet Component 
Radio case

In context of an off-
axis jet model, NSM 
ejecta component can 
be comparable or even 
dominant if:  

1. acceleration of β-decay 
e- is efficient 

2. jet-observer offset 
angle > ~50o 
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Comparison with Jet Component 
X-ray case
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Comparison with Jet Component 
X-ray case

Off-axis jet model (Lazzati+ 2017)
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Under same conditions, 
NSM dynamical ejecta 
component can dominate 
~ 100d after merger
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Comparison with ‘conventional’ models 
Equipartition vs SNR-calibrated result
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without β
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with β-decay e- 

• Case with β-decay e- 

• εe limited to 0.1 at early phase 
• Lightcurve similar to 

conventional models  
• Start to deviate from ~1000d 

as εe limited by dropping Le(t) 
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Detectability - radio

 19

3 GHz

 19



Detectability - radio

 19

3 GHz

VLA 1-hr

 19



Detectability - radio

 19

3 GHz

VLA 1-hr
ngVLA 1-hr

 19



Detectability - radio

 19

3 GHz

VLA 1-hr
ngVLA 1-hr

SKA1 1-hr

 19



Detectability - radio

Peak fluxes predicted by 
our optimistic cases occur 
at ~1000d  

Comparable to 1-hr 
sensitivities of near-future 
instruments for d = 40 Mpc
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Detectability - X-ray
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Detectability - X-ray

Chandra 1-Ms
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Detectability - X-ray

Chandra 1-Ms ~Ms exposure by Chandra 
would detect the broad 
peak at ~ a few 1000d 
for d = 40 Mpc

 20

1 keV
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‘UnID’ sources in radio surveys?
• Prediction: a roughly constant radio 

flux ~10-4 mJy at d = 40 Mpc up to 
~104 yr after merger
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predicted by our model

~ t-3/2

~ const.
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• Prediction: a roughly constant radio 

flux ~10-4 mJy at d = 40 Mpc up to 
~104 yr after merger
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fiducial model  
w/ β-decay e- 

104 yr

3 GHz

Long-term radio lightcurve 
predicted by our model

~ t-3/2

~ const.

• Assume NSM rate in RMW ~ 21+28-24 Myr-1 

in MW (Kim+ 15), NNSMR ~ 0.2 in MW

• Assume NSM rate density in nearby 
galaxies r ~ 1540+3200-1220 Gpc-3 yr-1 

(Abbott+ 17), 
• detectable sources by 3-yr VLA 

survey, NNSMR ~ 0.05-0.7 
• Case of ngVLA or SKA (with 10x 

better sensitivity), NNSMR ~ 1.6-22
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Summary
• We investigated radio and X-ray emission from NSM 

ejecta-CBM interaction using a self-consistent CR-
hydro model calibrated by young SNR observations 

• We suggested for the 1st time the importance of 
acceleration of β-decay e- for NSMs, a unique feature 
not found anywhere else 

• We predicted possible detectable EM signals from 
NSM remnants in the future under a set of well-
defined conditions
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