Shock Acceleration of Electrons and Synchrotron Emission from the Dynamical Ejecta of Neutron Star Mergers

Herman S.-H. Lee, Kei-ichi Maeda, Norita Kawanaka (Kyoto U) ApJ, 858, 53 (2018)

Jet and Shock Breakouts in Cosmic Transients, YITP, 14 - 18 May 2018

## NS Merger Remnant





Sekiguchi+15

Rezzolla+ 11

- NSMs accompanied by high-speed mass ejection (dynamical ejecta)
- Ejecta interacts with circumbinary medium (CBM) and creates a sub-relativistic shock
- Shock accelerates particles and emits EM signals
- Possible additional EM signal following sGRB component



Metzger+



Metzger+



Vela Jr (H.E.S.S.)

NSM ejecta-CBM interaction as a "miniature" SNR?

Metzger+



Metzger+

#### Vela Jr (H.E.S.S.)

NSM ejecta-CBM interaction as a "miniature" SNR?

> $M_{ej} \sim 0.05 M_{sun} vs a few M_{sun}$  $E_{ej} \sim 10^{50} erg vs 10^{51} erg$





 $E_{e_i} \sim 10^{50} \text{ erg vs } 10^{51} \text{ erg}$ 

See also: Asano & To (2018), Hotokezaka+ (2018), Alexander+ (2017), etc 3

## The code





- 1-D Lagrangian hydro
- Non-linear diffusive shock acceleration
- CR-driven magnetic field amplification
- Spacetime-dependent
   broadband emission
   spectral calculation

# Applications to SNRs

 Applied successfully to non-thermal young and evolved SNRs (e.g., Lee+ 2012-2015; Castro+ 2012; Slane, Lee+ 2014)
 W44 ~20,000vr





#### Source of seed e-

## Source of seed e-

#### • 1) Shock-heated e-from CBM

- Same story as young SNR shocks
- Typical DSA proton injection fraction  $\eta_{inj,th} \sim 10^{-5}$  to  $10^{-4}$
- e<sup>-</sup> proportional to free parameter K<sub>ep</sub> ("e-to-p ratio")
- Typical K<sub>ep</sub> = 0.003 0.01 from young SNR models

### Source of seed e-

#### 1) Shock-heated e<sup>-</sup> from CBM

- Same story as young SNR shocks
- Typical DSA proton injection fraction  $\eta_{inj,th} \sim 10^{-5}$  to  $10^{-4}$
- e<sup>-</sup> proportional to free parameter K<sub>ep</sub> ("e-to-p ratio")
- Typical K<sub>ep</sub> = 0.003 0.01 from young SNR models

#### 2) Escaped B-decay e-from NSM dynamical ejecta

- · Emitted by decay of radioactive r-process stuff
- Escape from ejecta —> catch up with forward shock —> DSA

$$t = t' + \left(\frac{R_{sk} - R_{esc}}{\widetilde{v_e} - v_{sk}}\right) \left(1 - \frac{\widetilde{v_e}v_{sk}}{c^2}\right),$$
 escape-injection time delay

shock

CBM

ejecta

## Luminosity of B-decay e-

## Luminosity of B-decay e-



## Luminosity of B-decay e-



Rough order-of-magnitude estimate (Mej = 0.01 Msun, + >> tesc)

Rough order-of-magnitude estimate (Mej = 0.01 Msun, + >> tesc)

$$N_{\rm e,sup-th}(t) \sim 4 \times 10^{40} \left(\frac{\eta_{\rm inj,th}}{10^{-4}}\right) \left(\frac{K_{\rm ep}}{0.01}\right) \left(\frac{t}{1000 \text{ days}}\right)^2 \text{ s}^{-1}$$

(Number of accelerated shock-heated CBM e<sup>-</sup>)

Rough order-of-magnitude estimate (Mej = 0.01 Msun, + >> tesc)

$$N_{\rm e,sup-th}(t) \sim 4 \times 10^{40} \left(\frac{\eta_{\rm inj,th}}{10^{-4}}\right) \left(\frac{K_{\rm ep}}{0.01}\right) \left(\frac{t}{1000 \text{ days}}\right)^2 \text{ s}^{-1}$$

(Number of accelerated shock-heated CBM e<sup>-</sup>)

$$N_{\rm e,decay}(t) \sim 6 \times 10^{42} \left( \frac{t}{1000 \text{ days}} \right)^{-1.3} \text{ s}^{-1}.$$

(Number of accelerated  $\beta$ -decay e<sup>-</sup>)

Rough order-of-magnitude estimate (Mej = 0.01 Msun, + >> tesc)

$$N_{\rm e,sup-th}(t) \sim 4 \times 10^{40} \left(\frac{\eta_{\rm inj,th}}{10^{-4}}\right) \left(\frac{K_{\rm ep}}{0.01}\right) \left(\frac{t}{1000 \text{ days}}\right)^2 \text{ s}^{-1}$$

(Number of accelerated shock-heated CBM e<sup>-</sup>)

$$N_{\rm e,decay}(t) \sim 6 \times 10^{42} \left( \frac{t}{1000 \text{ days}} \right)^{-1.3} \text{ s}^{-1}.$$

(Number of accelerated  $\beta$ -decay e<sup>-</sup>)

i.e., Ne, decay >> Ne, th for a few 1,000 d

Rough order-of-magnitude estimate (Mej = 0.01 Msun, + >> tesc)

$$N_{\rm e,sup-th}(t) \sim 4 \times 10^{40} \left(\frac{\eta_{\rm inj,th}}{10^{-4}}\right) \left(\frac{K_{\rm ep}}{0.01}\right) \left(\frac{t}{1000 \text{ days}}\right)^2 \text{ s}^{-1}$$

(Number of accelerated shock-heated CBM e<sup>-</sup>)

$$N_{\rm e,decay}(t) \sim 6 \times 10^{42} \left( \frac{t}{1000 \text{ days}} \right)^{-1.3} \text{ s}^{-1}.$$

(Number of accelerated  $\beta$ -decay e<sup>-</sup>)

i.e., Ne,decay >> Ne,th for a few 1,000 d

- Actually, there are too many  $\beta$ -decay e-in early phase
- · Limited by shock energy budget, only a fraction can be accelerated
- We assume  $F_e \ll 0.1 F_{shock}$  for  $\beta$ -decay  $e^-$  (note:  $F_{shock} = \rho_{CBMV_{shock}}(+)^3/2$ )

Rough order-of-magnitude estimate (Mej = 0.01 Msun, + >> tesc)

$$N_{\rm e,sup-th}(t) \sim 4 \times 10^{40} \left(\frac{\eta_{\rm inj,th}}{10^{-4}}\right) \left(\frac{K_{\rm ep}}{0.01}\right) \left(\frac{t}{1000 \text{ days}}\right)^2 \text{ s}^{-1}$$

(Number of accelerated shock-heated CBM e<sup>-</sup>)

$$N_{e,decay}(t) \sim 6 \times 10^{42} \left(\frac{t}{1000 \text{ days}}\right)^{-1.3} \text{ s}^{-1}.$$
(Number  
i.e., Ne,decay >> Ne,the  
ctually, there are too many  $\beta$ -de  
mited by shock energy budget,  
 $P_e$  assume  $F_e \leq 0.1$  Energy for  $\beta$ -decay  $e^{-1}$  (note: Esheck = 0.0 Envyshork(t)^3/2)

Rough order-of-magnitude estimate (Mej = 0.01 Msun, + >> tesc)

$$N_{\rm e,sup-th}(t) \sim 4 \times 10^{40} \left(\frac{\eta_{\rm inj,th}}{10^{-4}}\right) \left(\frac{K_{\rm ep}}{0.01}\right) \left(\frac{t}{1000 \text{ days}}\right)^2 \text{ s}^{-1}$$

(Number of accelerated shock-heated CBM e<sup>-</sup>)

$$N_{e,decay}(t) \sim 6 \times 10^{42} \left(\frac{t}{1000 \text{ days}}\right)^{-1.3} \text{ s}^{-1}.$$
(Number  
i.e., N\_{e,decay} >> N\_{e,th}  
ctually, there are too many  $\beta$ -de  
mited by shock energy budget,  
 $V_{e}$  assume  $F_{e} \leq 0.1$  Espect for  $\beta$ -decay  $e^{-1}$  (note: Espect =  $\rho$ CBMVshock(t)<sup>3</sup>/2)

## Parameters for NSMRs

| Model Summary |                                         |                          |                                                                    |                      |                      |
|---------------|-----------------------------------------|--------------------------|--------------------------------------------------------------------|----------------------|----------------------|
| Model         | $n_{\text{CBM}}$<br>(cm <sup>-3</sup> ) | $M_{\rm ej}~(M_{\odot})$ | $\begin{array}{c} E_{\rm ej} \ (10^{50} \\ {\rm erg}) \end{array}$ | $\eta_{ m inj,th}$   | $\beta$ -decay $e^-$ |
| 1a            | 0.03                                    | 0.04                     | 5.0                                                                | $3.3 \times 10^{-5}$ | No                   |
| 1b            | 0.3                                     | 0.04                     | 5.0                                                                | $3.3 \times 10^{-5}$ | No                   |
| 1c            | 0.03                                    | 0.01                     | 1.25                                                               | $3.3 \times 10^{-5}$ | No                   |
| 1d            | 0.03                                    | 0.04                     | 5.0                                                                | $4.2 	imes 10^{-4}$  | No                   |
| 2a            | 0.03                                    | 0.04                     | 5.0                                                                | $3.3 \times 10^{-5}$ | Yes                  |
| 2b            | 0.3                                     | 0.04                     | 5.0                                                                | $3.3 \times 10^{-5}$ | Yes                  |
| 2c            | 0.03                                    | 0.01                     | 1.25                                                               | $3.3 \times 10^{-5}$ | Yes                  |
| 2d            | 0.03                                    | 0.04                     | 5.0                                                                | $4.2 \times 10^{-4}$ | Yes                  |

#### Parameter space (yellow: fiducial)

- Circumbinary medium: uniform:  $n_{CBM} = 0.03 0.3 \text{ cm}^{-3}$  (model b)
- Ejecta mass:  $M_{ej} = 0.01 0.04 M_{sun}$  (model c)
  - Ejecta K.E.:  $E_{ej} = 1.25 5.0 \times 10^{50}$  erg
- DSA injection fraction (supra-thermal):  $\eta_{inj,th} = 3.3 \times 10^{-5} 4.2 \times 10^{-4}$  (model d)

#### $d_{NSM} = 40 Mpc$ $B_{CBM} = 3 \times 10^{-6} G$

# NSM ejecta profile



# NSM ejecta profile



Possibility of high-speed tail (Hotokezaka+ 2018)?

10

## Hydrodynamic evolution



11

ATCA, VLA





Tenuous ISM

Slow dissipation of shock energy



Tenuous ISM

- Slow dissipation of shock energy
- 10x denser CBM

 $K_{\rm ep}\eta_{\rm inj,th}$   $n_{\rm CBM}BV$ 

- Faster dissipation of E<sub>shock</sub> (smaller V)
- More efficient DSA
- Higher amplified B-field



Tenuous ISM

- Slow dissipation of shock energy
- 10x denser CBM

 $K_{\rm ep}\eta_{\rm inj,th}$   $n_{\rm CBM}BV$ 

- Faster dissipation of E<sub>shock</sub> (smaller V)
- More efficient DSA
- Higher amplified B-field
- 4x less energetic ejecta
  - Faster deceleration of shock
  - Smaller V at given time

#### Radio lightcurve Case without $\beta$ -decay e-



Tenuous ISM

- Slow dissipation of shock energy
- 10x denser CBM  $K_{ep}\eta_{inj,th}$   $n_{CBM}BV$

- Faster dissipation of E<sub>shock</sub> (smaller V)
- More efficient DSA
- Higher amplified B-field
- 4x less energetic ejecta
  - Faster deceleration of shock
  - Smaller V at given time

#### ~10x faster p & e- injection

Very efficient DSA and MFA



#### Radio lightcurve Case with ß-decay e-



#### Radio lightcurve Case with ß-decay e-



Including B-decay e-

- Very efficient injection from early phase (t<sub>peak</sub> ~ 10 d)
- Acceleration of e-limited by input energy flux at shock F<sub>shock</sub>

#### Radio lightcurve Case with $\beta$ -decay e-



Including B-decay e-

- Very efficient injection from early phase (t<sub>peak</sub> ~ 10 d)
- Acceleration of e-limited by input energy flux at shock F<sub>shock</sub>
## Radio lightcurve Case with $\beta$ -decay e-



Including B-decay e-

- Very efficient injection from early phase (t<sub>peak</sub> ~ 10 d)
- Acceleration of e-limited by input energy flux at shock F<sub>shock</sub>

#### 10x denser ISM

- No effect on  $\beta$ -decay e<sup>-</sup> injection
- But an increased F<sub>shock</sub> ~ ρ<sub>CBM</sub>
- More accelerated β-decay e<sup>-</sup>
- (Note:  $F_e / F_{shock} \leq 0.1$  is an assumption)

## Radio lightcurve Case with $\beta$ -decay e-



Including B-decay e-

- Very efficient injection from early phase (t<sub>peak</sub> ~ 10 d)
- Acceleration of e-limited by input energy flux at shock F<sub>shock</sub>

#### 10x denser ISM

- No effect on  $\beta$ -decay e<sup>-</sup> injection
- But an increased F<sub>shock</sub> ~ ρ<sub>CBM</sub>
- More accelerated β-decay e<sup>-</sup>
- (Note:  $F_e / F_{shock} \leq 0.1$  is an assumption)

#### 4x less energetic ejecta

- Early phase limited by F<sub>shock</sub>
- Later phase  $L_e \sim M_{ej}$

## Radio lightcurve Case with $\beta$ -decay e-



Including B-decay e-

- Very efficient injection from early phase (t<sub>peak</sub> ~ 10 d)
- Acceleration of e-limited by input energy flux at shock F<sub>shock</sub>

#### 10x denser ISM

- No effect on  $\beta$ -decay e<sup>-</sup> injection
- But an increased F<sub>shock</sub> ~ ρ<sub>CBM</sub>
- More accelerated β-decay e<sup>-</sup>
- (Note:  $F_e / F_{shock} \leq 0.1$  is an assumption)

#### 4x less energetic ejecta

- Early phase limited by Fshock
- Later phase  $L_e \sim M_{ej}$

## Radio lightcurve Case with $\beta$ -decay e<sup>-</sup>



Including B-decay e-

- Very efficient injection from early phase (t<sub>peak</sub> ~ 10 d)
- Acceleration of e-limited by input energy flux at shock F<sub>shock</sub>

#### 10x denser ISM

- No effect on  $\beta$ -decay e- injection
- But an increased F<sub>shock</sub> ~ p<sub>CBM</sub>
- More accelerated B-decay e-
- (Note:  $F_e / F_{shock} \le 0.1$  is an assumption)

#### 4x less energetic ejecta

- Early phase limited by Fshock
- Later phase  $L_e \sim M_{ej}$









•

Chandra



Model dependence of lightcurve similar to radio



- Model dependence of lightcurve similar to radio
- Major difference: rolloff
  - Synch X-ray v<sub>cut</sub> sensitive to E<sub>max,e</sub>
  - Emax of e-determined by tacc and tloss (synch)
  - Model with larger pcbm and ninj, th
    —> more efficient DSA
    —> larger B-field
  - Higher E<sub>max,e</sub> in early phase
  - hv<sub>cut</sub> drops below 1 keV faster

### X-ray lightcurve Case with ß-decay e-





#### X-ray lightcurve Case with $\beta$ -decay e-



#### X-ray lightcurve Case with $\beta$ -decay e-



#### X-ray lightcurve Case with $\beta$ -decay e-



Peak X-ray flux can sustain for ~ a few 1000d



Peak X-ray flux can sustain for ~ a few 1000d

Q: optimistically, can this dynamical ejecta component become observable some time after merger?

- Dominance of "main" component (jet? cocoon?)
- 2. Detectability by instruments



Off-axis jet model (Lazzati+ 2017)



Off-axis jet model (Lazzati+ 2017)



Off-axis jet model (Lazzati+ 2017)



Off-axis jet model (Lazzati+ 2017)

In context of an offaxis jet model, NSM ejecta component can be comparable or even dominant if:

- 1. acceleration of  $\beta$ -decay e<sup>-</sup> is efficient
- 2. jet-observer offset angle > ~50°









Off-axis jet model (Lazzati+ 2017)

Under same conditions, NSM dynamical ejecta component can dominate ~ 100d after merger

#### Comparison with 'conventional' models Equipartition vs SNR-calibrated result



#### Comparison with 'conventional' models Equipartition vs SNR-calibrated result



- Case without B-decay e-
  - Parameters calibrated by SNR observations
  - Typical  $\varepsilon_e(t)$ ,  $\varepsilon_B(t)$  far lower than equipartition

#### Comparison with 'conventional' models Equipartition vs SNR-calibrated result



- Case without B-decay e-
  - Parameters calibrated by SNR observations
  - Typical  $\varepsilon_e(t)$ ,  $\varepsilon_B(t)$  far lower than equipartition
- Case with B-decay e-
  - $\cdot \epsilon_e$  limited to 0.1 at early phase
  - Lightcurve similar to conventional models
  - Start to deviate from ~1000d as  $\varepsilon_e$  limited by dropping  $L_e(t)$











Peak fluxes predicted by our optimistic cases occur at ~1000d

Comparable to 1-hr sensitivities of near-future instruments for d = 40 Mpc

# Detectability - X-ray



## Detectability - X-ray


## Detectability - X-ray



~Ms exposure by Chandra would detect the broad peak at ~ a few 1000d for d = 40 Mpc

### 'UnID' sources in radio surveys?



Long-term radio lightcurve predicted by our model

Prediction: a roughly constant radio flux ~10<sup>-4</sup> mJy at d = 40 Mpc up to ~10<sup>4</sup> yr after merger

### 'UnID' sources in radio surveys?



Long-term radio lightcurve predicted by our model

Prediction: a roughly constant radio flux ~10<sup>-4</sup> mJy at d = 40 Mpc up to ~10<sup>4</sup> yr after merger

Assume NSM rate in  $R_{MW} \sim 21^{+28}_{-24} Myr^{-1}$ in MW (Kim+ 15),  $N_{NSMR} \sim 0.2$  in MW

#### 'UnID' sources in radio surveys?



Long-term radio lightcurve predicted by our model Prediction: a roughly constant radio flux ~10<sup>-4</sup> mJy at d = 40 Mpc up to ~10<sup>4</sup> yr after merger

Assume NSM rate in  $R_{MW} \sim 21^{+28}_{-24} Myr^{-1}$ in MW (Kim+ 15),  $N_{NSMR} \sim 0.2$  in MW

Assume NSM rate density in nearby galaxies r ~ 1540<sup>+3200</sup>-1220 Gpc<sup>-3</sup> yr<sup>-1</sup> (Abbott+ 17),

- detectable sources by 3-yr VLA survey, N<sub>NSMR</sub> ~ 0.05-0.7
- Case of ngVLA or SKA (with 10x better sensitivity), N<sub>NSMR</sub> ~ 1.6-22

# Summary

- We investigated radio and X-ray emission from NSM ejecta-CBM interaction using a self-consistent CRhydro model calibrated by young SNR observations
- We suggested for the 1st time the importance of acceleration of β-decay e<sup>-</sup> for NSMs, a unique feature not found anywhere else
- We predicted possible detectable EM signals from NSM remnants in the future under a set of welldefined conditions