Constraints on mass injection mechanism in M87 jet

> Taiki Ogihara (Tohoku Univ.) Kazuya Takahashi (YITP) Kenji Toma (Tohoku Univ.)

17/05/2018 Jet and Shock Breakouts in Cosmic Transients @Yukawa Institute for Theoretical Physics

OUTLINE

1. Introduction

- AGN Jets
- 2. Method
 - Jet Model
- 3. Results
 - Reproduction of Jet Image
- 4. Discussion & Summary

1. Introduction

Active Galactic Nucleus (AGN) Jets

AGN Jet:

- relativistic outflow (γ<10)
- jet length: ~10kpc-1Mpc
- tightly collimated (~1°)
- synchrotron radiation in radio band

Driving Mechanism

- Electromagnetically driven jet
- Energy Source:
 Rotation Energy of
 Blackhole or accretion disk
- B-field collimation
 & density distribution
 ↔ Jet power, terminal Lorentz

z(GM_{BH}/c²)

factor & radiation

Mass-Loading Problem

- Strong B-fields prevent plasma injection
- non-thermal injection model: photon-annihilation
- In simulations, density floor is set because of the numerical reason
- →We compare the computed jet image with observation, and constrain the density distribution

M87 Jet

Object	M _{BH} (10 ⁸ M _{sun})	D (Мрс)	1Rs (µas)
SgrA*	0.04	0.008	10
M87	60	16.7	7
(NGC1277)	170	73	4.5
Sombrero	10	9.0	2.3
M84	8.5	17	1
Cen A	0.5	3.8	0.25
3C84	3.4	68	0.1
BL Lac	2.0	270	0.015

Table from Hada's Slide

- distance: ~16Mpc
- jet length: ~100kpc
- BH mass: (3-6)x10⁹M_☉
- viewing angle: 10°-20°
- second largest angular sized BH
- one of the main targets of Event Horizon Telescope

←simulated image

Triple-Ridge Structure

from Hada's slide(see Hada 2017)

Aims of This Study

- Using a force-free model, we will explain the tripleridge structure.
- We will constrain the density distribution around the blackhole.

2. Method

Force-Free Electromagnetic fields

magnetic field flux

$$\Psi = r^{\xi} (1 - \cos \theta)$$

angular velocity of B-field

$$\Omega_F \sim \Omega_H/2$$

Tchekhovskoy et al. 2008

Blandford & Znajek 1977

Velocity and density

bulk velocity = drift velocity.

$$v = c \frac{E \times B}{B^2} = R \Omega_F e_{\phi} - \frac{R \Omega_F B_{\phi}}{B^2} B$$

number density

 $\nabla \cdot (n\boldsymbol{v}) = 0 \longrightarrow \frac{n/B^2 = \text{const.}}{\text{along B-field}}$

◆ we set density distribution at z=z_{fp}
 → obtain density at any point

Non-thermal electron distribution

density distribution
 of the non-thermal electron
 at z=z_{fp}

$$n_{fp}(R, z_{fp}) = n_{0, fp} \exp\left(\frac{-(R - R_p)^2}{2\sigma^2}\right)$$

(Broderick & Loeb 2009, K. Takahashi et al. 2018)

electron's energy density: power-law

 $f(\gamma_e) = \frac{1}{4\pi} n_{co} \frac{p-1}{\gamma_m^{1-p}} \gamma_e^{-p}$

 $\gamma_m m_e c^2$: minimum energy $\gamma_m = 100$ p=1.1

Synchrotron Emission

 Synchrotron radiation in the comoving frame $j_{co}(\omega, \alpha) = \left(\frac{n_{co}}{4\pi} \frac{p-1}{\gamma_m^{1-p}}\right) \frac{\sqrt{3}q^3 B \sin \alpha}{2\pi m_e c^2(p+1)} \left(\frac{2m_e c\omega}{3q B_{co} \sin \alpha}\right)^{-\frac{p-1}{2}} \\ \times \Gamma\left(\frac{p}{4} + \frac{19}{12}\right) \Gamma\left(\frac{p}{4} - \frac{1}{12}\right)$ Lorentz transformation $j_{obs} = \frac{1}{\gamma^2 (1 - \beta \mu_{obs})^3} j_{co}$

Intensity
$$I_{obs} = \int j_{obs} ds \quad \text{:optically thin}$$

Convolution with Gaussian beam $I(x,y) = \int \int I(x',y') \exp\left[-\frac{(x-x')^2}{2A_x^2}\right] \exp\left[-\frac{(y-y')^2}{2A_y^2}\right] dx' dy'$

Parameter Set-up

- D = 16.7Mpc
- Мвн = 6.6х10⁹М
- $\theta_{\text{view}} = 15^{\circ}$
- BH spin: a = 0.998
- $\Omega_F = 0.5\Omega_H = ac/4r+$
- $\xi = 0.75$ (from jet width profile)
- v = 15GHz (Hada 2017 obs.)
- beam size = 1.14mas x 0.55 mas

3. Results

4. Discussion & Summary

Are the Assumptions Correct?

- ◆ steady, axi-symmetric condition
 →no blobs in our jet
- ◆ force-free condition
 → invalid in the kinetic-energy dominated (far) region
- ◆ energy distribution = const.
 → shock heating, radiative loss, dissipation, and etc...
- triple-ridge structure in other jet?
 wait for future observations

We have shown that the observed triple-ridge jet structure can be explained by the steady axi-symmetric force-free model.

- ◆We have to consider complicated density distributions to fit to the observed triple-ridge.
 →inner ridge: photon injection?
 +outer ridges: reconnection?
- We have to compare the jet dynamics with GRMHD simulations.