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• Mass-loading problem



AGN jets

• Radio galaxies (mainly elliptical)
• FR-I / FR-II

• Blazars
• BL Lacs / Flat Spectrum Radio Quasars

angle would correspond to h 5 hmin and the polarization degree
would be highest for h < 1/Cjet. The ‘bent jet’ scenario can explain
the observed polarization event (the change of angle as well as the
magnitude of polarization) provided the jet curvature is confined to
the plane inclined to the line of sight at an angle hmin , 1/Cjet and
configured in such a way that the jet trajectory projected on the sky
turns by almost 180u. Similar geometry—albeit on larger scales—has
been observed in another blazar15, PKS 1510-089. Nonetheless, in
both scenarios, the coherent polarization event is produced by a
density pattern co-moving along the jet, and so it is possible to
estimate the distance travelled by the emitting material during the
flare, Drevent; this in turn allows us to constrain the distance of the
dissipation region (where flaring occurs) from the black hole, revent,
because revent $Drevent. With this, revent $Drevent < 1019(Dtevent/
20 days)(Cjet/15)2 cm, which is about five orders of magnitude larger
than the gravitational radius of the black hole in 3C 279.

The constraints on the distance of the dissipation region can be
relaxed under ‘flow-through’ scenarios, in which the emission
patterns may move much more slowly than the bulk speed of the
jet or not propagate at all: one such example is the model involving
swings (‘wobbling’) of the jet associated with jet instabilities such that
its boundary moves relative to our line of sight. In this case, the
timescale for the observed variation is the timescale for the jet
motion. Consequently, the emission region can easily be much closer
(by a factor C2

jet) to the black hole than in the ‘helical’ or ‘bent jet’
scenarios, because the natural radial scale for Dtevent < 20 days is
revent < cDtevent < 500–1,000 gravitational radii (see, for example,
ref. 16). Under this scenario, the angle the jet makes with the line
of sight must change by at least ,C{1

jet to explain the large swing of
polarization. Here, the jet motion can be imposed at its base, be
caused by deflection due to external medium, or be a consequence
of dynamical instability.

This leaves us with three viable possibilities. Both the scenario
involving a knot propagating along the helical magnetic field lines

and the ‘flow-through’ scenario above imply that the rotation of the
polarization angle should be preferentially following the same direc-
tion, because in those two models the twist presumably originates in
the inner accretion disk. In our case, we observe the rotation of the
polarization angle to be opposite in direction to that measured previ-
ously9, leaving us with the ‘bent jet’ model combined with a small
swing of the jet as the most compelling scenario.

The dominant source of ‘seed’ photons for inverse-Compton
scattering depends on the distance of the dissipation event from
the central black hole17. At the parsec distances predicted by the
‘helical’ or ‘bent jet’ scenarios that involve the radiating material
co-moving with the jet, the seed radiation fields are dominated by
infrared radiation emitted by a warm dust located in the circum-
nuclear molecular torus and by synchrotron radiation produced
within the jet. At the sub-parsec distances implied by the ‘flow-
through’ scenarios, this photon field could be the broad emission
line region13 (clearly detected in this object18, as expected in a quasar
possessing a luminous accretion disk19), as well as the direct radiation
of such a disk20 or its corona21. In any case, the ,20-GeV electrons
and positrons producing the highest-energy c rays and the polarized
optical radiation lose their energy on timescales shorter than the light
travel-time from the black hole, and so must be accelerated locally.

In summary, the close association of the energetically dominant
c-ray flare with the smooth, continuous change of the optical polariza-
tion angle suggests co-spatiality of the optical and c-ray emission and
provides evidence for the presence of highly ordered magnetic fields in
the regions of c-ray production. Provided the emission pattern is co-
moving with the jet, we can measure the distance of the coherent event
to be of the order of 105 gravitational radii away from the black hole.
While the available data cannot exclude the theoretically less explored
‘flow-through’ scenarios—in which the dissipation events may take
place at much smaller distances, down to ,103 gravitational radii—
that the observed direction of rotation of the optical polarization angle
is opposite to the direction previously measured appears to support
the jet bending at larger distances as the best explanation of the avail-
able data. Furthermore, the detection of the isolated X-ray flare chal-
lenges the simple, one-zone emission models, rendering them too
simple. However, the Fermi satellite has been in operation for only
just over a year, and the outlook for a more comprehensive picture of
these enigmatic objects, primarily via multi-band campaigns includ-
ing well-sampled optical polarimetry, is excellent.
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Figure 2 | Energy spectrum from radio to c-ray band of 3C 279 at two
different epochs. The red points were taken between 54880 and 54885 MJD,
corresponding to the first five days of the sharp c-ray flare accompanying the
dramatic polarization change event (epoch 1). The blue points were taken
between 54950 and 54960 MJD, around the peak of the isolated X-ray flare
(epoch 2). Thec-ray spectra were measured by Fermi-LAT. In the X-ray band,
the flux points are obtained by the RXTE-PCA in epoch 1 (red) and by Swift-
XRT in epoch 2 (blue). The fluxes in the UV range were measured by Swift-
UVOT. Observations in the optical-to-radio bands were performed by
ground-based telescopes as given in Fig. 1 (with additional radio coverage
provided by the Effelsberg radio telescope25). Each data point represents an
average source flux and the error bar represents 61 s.d. of the flux during each
epoch. Each data point is already corrected for Galactic absorption. Note that
the total energy associated with the X-ray flare is relatively modest, about 30
times less than the energy associated with the c-ray flare accompanying the
dramatic polarization change, and thec-ray emission is still dominant, having
five times the X-ray energy flux even during the X-ray flare event.
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Theoretical issues
• Energy source
• Mass source
• Acceleration
• Collimation
• Stability
• Dissipation
• …

Koide et al. 2000; Komissarov 2001; McKinney & Gammie 2004; 
Barkov & Komissarov 2008; Tchekhovskoy et al. 2011; Ruiz et al. 
2012; Contopoulos et al. 2013 
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Energy source

• Rotating BH or accretion disk?
• (fireball is unlikely for AGN jets)
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Blandford-Znajek process
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Figure 3. Escape of the split-monopole magnetic field from a Schwarzschild blackhole. Left panel: Magnetic flux surfaces of the split-monopole solution,
which was used as an initial solution in these numerical simulations. Right panel: Magnetic flux surfaces of the numerical solution at t = 5.
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Figure 4 . Magnetospheric Wald problem. Left panel: The angular velocityof magnetic field lines. There are 15 contours equallyspaced between 0 and 0.67.
The angular velocityfirst graduallyincreased towards the axis but then reaches a maximum and goes slightlydown. The thicklines show the ergosphere (outer
line) and the inner light surface (inner line). Middle panel: The magnetic flux surfaces. Right panel: The distribution of (B2 − D2)/ max(B2, D2). There are 15
contours equallyspaced between −0.12 and 1.0. This quantitymonotonicallydecreases towards the current sheet in the equatorial plane within the ergosphere.
The thickline shows the ergosphere.
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and û− · D̂ < 0. Then, one has u+ · D > 0 and u− · D < 0 in the
coordinate basis, which lead to v+ · D > 0 and v− · D < 0 since
u t > 0. Therefore, the particle motions can carry Jp ∥ D. This
implies Jp ⊥ Bp. The force-free approximation FµνIν = 0 (i.e.
ρ E + J × B = 0) is violated in this case, since Eϕ = 0.

In summary, D2 > B2 is the necessary and sufficient condition
for driving the electric currents to flow across the poloidal B field
lines (and then obtaining Hϕ ̸= 0) under our assumptions (1)–(3)
listed in Section 4.1.

5 U N I P O L A R IN D U C T I O N O F K E R R BH S

We discuss the unipolar induction process in the Kerr BH magne-
tosphere where the poloidal B field lines threading the ergosphere
are open, i.e. crossing the outer light surface. We mainly utilize the
BL coordinates rather than the KS ones in this section.

The light surfaces are defined as follows. In the BL coordinates,
when B̂ϕ = Bϕ = 0, the coordinate angular velocity of the drift
motion is $F, as deduced in Appendix B. The light surfaces are
the surfaces where the four-velocity of a particle which is rotating
with the coordinate angular velocity $F becomes null, i.e. f ($F, r,
θ ) = 0, where we have defined

f ($F, r, θ) ≡ (ξ + $Fχ )2 = −α2 + γϕϕ($F − $)2. (28)

There can be two light surfaces. One has $F − $ = α/
√

γϕϕ at the
outer light surface (where $ < $F), while $F − $ = −α/

√
γϕϕ at

the inner light surface (where $ > $F).
From the condition D · B = 0, equations (17) and (23) lead to

D = − 1
α

(ω + β) × B. (29)

Calculating D2 ≡ DiDi, one obtains in the BL coordinates

D2 = 1
α2

($F − $)2B2
p , (30)

where B2
p ≡ BrBr + BθBθ . This equation can be rewritten by using

equation (28) (cf. Komissarov 2004a)

(B2 − D2)α2 = −B2f ($F, r, θ) + 1
α2

($F − $)2H 2
ϕ , (31)

where we have used Hϕ = αBϕ (see equation 18). This equation is
useful for the following discussion.

5.1 Origin of the electromotive force

We show that there is no steady, axisymmetric state with $F = 0
and Hϕ = 0 for the B field lines threading the ergosphere. The
condition $F = 0 means E = 0, and D = (−1/α)β × B. Equation
(31) is reduced to

(B2 − D2)α2 = B2(α2 − β2). (32)

In the ergosphere, where α2 − β2 < 0, one has D2 > B2. Note that
B2 − D2 = FµνFµν/2 is a scalar, and thus B2 − D2 < 0 is valid
also in the KS coordinates. The D field stronger than the B field
drives the poloidal currents to flow across the poloidal B field lines,
as discussed in Section 4.2. These poloidal currents generate Hϕ

(equation 25). Therefore, the state with $F = 0 and Hϕ = 0 cannot
be maintained.

The poloidal currents (i.e. the charged particle flows) across the
poloidal B field lines due to the strong D field in the ergosphere
change the charge density distribution. This reduces the strength
of the D field. (We show the charge density distribution calculated

Figure 2. D2/B2 calculated for the Wald vacuum solution in the BL co-
ordinates, as functions of r for θ = π/2 (solid), 0.45π (dashed), and 0.4π
(dotted). The spin parameter is set as a = 0.9. For comparison, D2/B2

(=β2/α2) in the plasma-filled case with $F = 0 and Hϕ = 0 for θ = π/2 is
plotted by the dot–dashed line. The vertical line represents the event horizon
radius rH = 1.436. The outer boundary of the ergosphere is res = 2 for
θ = π/2.

for the Wald Bp field in Appendix C, which might be helpful for
understanding the reduction of the D field strength by the charged
particle flows across the poloidal B field lines.) Then equation (30)
implies that $F > 0 is realized and one finds a non-zero E field.

From this argument, we can conclude that the origin of the electro-
motive force is ascribed to the ergosphere in the unipolar induction
of the BH magnetosphere with D · B = 0.

The generation of such a strong D field may be understood as a
phenomenon similar to the pulsar case. In the vacuum case, we can
straightforwardly calculate D2/B2 by using the Wald solution (see
Appendix A), and find that the region where D2 > B2 is only in
the vicinity of the event horizon at the equatorial plane, as shown
in Fig. 2. In contrast, one has D2/B2 = β2/α2 in the plasma-filled
case with $F = 0 and Hϕ = 0 (equation 32), which is larger than
unity in the entire ergosphere (see the dot–dashed line in Fig. 2). The
enhancement of the electric field in the plasma-filled case compared
to the vacuum case is quite similar to the pulsar case (see equations 6
and 7 in Section 2.1). The charge distribution of the plasma screen
the D field component along the B field but enhances the total
strength of the D field. Note that the condition D2 > B2 is not due
to a shortage of the number of charged particles like the gap with
non-zero electric field along the magnetic field lines (Blandford &
Znajek 1977; Beskin, Istomin & Pariev 1992; Hirotani & Okamoto
1998), but rather, it arises due to a sufficiency of the charged particles
sustaining D · B = 0.

The divergence of D2/B2 near the event horizon in Fig. 2 is not
physical, just due to the BL coordinate singularity. In Appendix A,
we calculate D2/B2 in the KS coordinates, which does not show
any divergence (see Fig. A1).

We also find that no B field lines can have the condition of $F = 0
and Hϕ ̸= 0. Along such B field lines, the poloidal electromagnetic
angular momentum flux is non-zero, but the poloidal Poynting flux
is zero (see equations 25 and 26). The current closure requires
that such a B field line should have a part where the poloidal
currents cross this field line. Focusing on the currents crossing
the field line at the far zone, one finds that the Jp × Bϕ force
acts on the matter, converting the poloidal momentum flux of the
electromagnetic field to that of the matter. The matter should also

MNRAS 442, 2855–2866 (2014)
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Ergosphere does not allow force-free plasma with no outward Poynting flux

Blandford & Znajek 1977; Komissarov 2004; KT & Takahara 2014; 2016
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Resistive force-free simulation



Acceleration / collimation
• Energy conversion from 

Poynting to fluid by E�J = 
(-V x B)�J = (J x B)�V

• J x B force also collimates the 
flow, but ρE force prevents it
-> Bφ

2 stress is not effective for 
relativistic fluid
-> External pressure required to 
collimate relativistic flow

⨀
B' ⇢E

Jp ⇥B'

Jp

E

KT & Takahara 2013 and many references therein
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Figure 7. Evolution of the magnetic flux distribution across the jet with distance from the inlet. Left-hand panel: model C1. Middle panel: model C2. In both

cases the solid line corresponds to η = 10, the dashed line to η = 102, the dash–dotted line to η = 103, the dotted line to η = 104 and the dash–triply dotted

line to η = 105. Right-hand panel: model A2. The solid line corresponds to η = 1, the dashed line to η = 30, the dash–dotted line to η = 3 × 102, the dotted

line to η = 3 × 103 and the dash–triply dotted line to η = 3 × 104. Note that in the conical case we use the spherical coordinate θ = arctan ξ (in radians) rather

than the ξ coordinate.

Figure 8. $σ (solid line), µ (dashed line) and $ (dash–dotted line) along a magnetic field line as a function of cylindrical radius for models C1 (left-hand

panel), C2 (middle panel) and A2 (right-hand panel).

Figure 9. Distribution of µ (solid line), $ (dashed line) and $σ (dash–dotted line) across the jet for models C1 (left-hand panel) and C2 (middle panel) at

η = 105, and for model A2 (right-hand panel) at η = 2 × 103.

(17) and (28) to obtain

$σ =

(

&'2

4π2kc3

)

S ∝ S.

SinceS depends on the shape of the flow, the latter relation brings

out the importance of the trans-field force balance and the connection

between acceleration and collimation. If the poloidal magnetic field

is almost uniformly distributed across the jet then S ∼ 1; this is the

case near the inlet boundary. However, due to the collimation, the

poloidal magnetic flux becomes concentrated near the rotation axis,

forming a cylindrical core and causingS to decrease with increasing

r (see Fig. 15).

Our jet solutions are characterized by a high magnetic-to-kinetic

energy conversion efficiency, but in the final states that we obtain

C⃝ 2007 The Authors. Journal compilation C⃝ 2007 RAS, MNRAS 380, 51–70

Large-scale SRMHD simulation

• Flow near the axis is non-relativistic and self-collimated
• Then the outer part expands and accelerates
• Equipartition between Poynting and Kinetic <-> blazar emission model

Field lines and Γρ

Kinetic

Poynting

Komissarov+ 2007
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Figure 2. Same as Fig. 1, but for Model C2.

rest of this section we present results mainly for these solutions.

This choice is further motivated by the fact that models with a non-

uniform rotation do not seem to exhibit any significant differences

with respect to the uniform-rotation models besides those that we

have already described.

Given the results of previous analytical and numerical studies,

which suggested poor self-collimation of relativistic magnetized

flows (see references in Section 5.1), one could have expected the

magnetic flux surfaces to almost mirror the imposed shape of the jet

boundary. However, our results indicate that the outflows collimate

significantly faster, and that this property is manifested not only by

jets with paraboloidal boundaries but also by the ones that are con-

fined by a conical wall (see Fig. 3). Fig. 6 shows the magnetic flux

surfaces and the coordinate surfaces ξ = constant for models A2

and C2. In both cases the magnetic flux surfaces clearly do not di-

verge as fast as the coordinate surfaces. This effect is further demon-

strated by Fig. 7, which shows the evolution of the magnetic flux

distribution across these jets (as well as the jet of model C1) with

distance from the origin. It is seen that the magnetic flux becomes

progressively more concentrated towards the symmetry axis as the

flow moves further downstream.

The left-hand and middle panels of Fig. 8 show the evolution of

µ, "σ and " along selected magnetic surfaces for models C1 and

C2. For model C1 this flux surface is in the middle part of the jet,

where the flow accelerates most rapidly; it encloses approximately

one-third of the total magnetic flux in the jet. For model C2 this

surface is near the jet boundary, enclosing ∼5/6 of the total mag-

netic flux in the jet. One can see that µ remains very nearly constant

on the surfaces, indicating that the flow has reached a steady state

and that the computational errors that we have described above are

fairly small. The Lorentz factor at first grows linearly with cylin-

drical radius but then enters an extended domain of logarithmic

growth. The linear behaviour was previously found in the magnet-

ically dominated regime of self-similar solutions (e.g. Vlahakis &

Königl 2003a), whereas the logarithmic behaviour was shown to

characterize the acceleration in the asymptotic matter-dominated

zone (e.g. Begelman & Li 1994). The range of Lorentz factors in

the solutions derived in this paper is evidently too narrow to allow

us to probe the linear growth regime, but we expect that this could

be done in our forthcoming paper where we consider higher "∞

flows.

The magnetization function σ eventually becomes less than 1,

signalling a transition to the matter-dominated regime. The right-

hand panel of Fig. 8 shows the evolution of µ, "σ and " along

the magnetic flux surface of model A2 that again encloses ∼5/6

of the total magnetic flux in the jet. This conical jet also exhibits

C⃝ 2007 The Authors. Journal compilation C⃝ 2007 RAS, MNRAS 380, 51–70

Current lines and Γ



Additional conversion mechanisms
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Figure 1. Lorentz factor and magnetic field lines in models B1 (left-hand panel) and B1b (right-hand panel).

Figure 2. Left-hand panel: evolution of !, σ! = µ − ! and µ along the magnetic surface enclosing 80 per cent of the total magnetic flux (# = 15) in models
B1 (solid line), B1a (dash–dotted line) and B1b (dashed line), with the distance measured in units of the light-cylinder radius rlc of the source. Right-hand
panel: evolution of !θv, where θv is the opening half-angle, along the jet in model B1b. The solid lines show the variation of this parameter across the jet as a
function of the poloidal magnetic flux # for z = 1, 2, 4 and 8 × 105 rlc, with higher values of z corresponding to higher curves at # = 15. The dashed curve
shows !θv at z = 8 × 105 rlc in model B1.

In model B1b the jet Lorentz factor approaches its maximum
possible value !max = µ at the jet boundary, signalling a total
conversion of the Poynting flux. The acceleration is weaker in the
jet interior but, as one can clearly see in Fig. 1, it is still more
effective than in model B1. This is further illustrated in the left-
hand panel of Fig. 2, which compares the acceleration in both
models along the magnetic surface enclosing 80 per cent of the
jet’s total poloidal magnetic flux. In the case of model B1a, where
the channel opens up much earlier, the jet also passes through a
phase of rapid acceleration. However, the acceleration slows down
dramatically when the jet enters the phase of ballistic expansion.

As a result, the final Lorentz factor in this model is even lower
than in model B1. As one can see from Fig. 1, the opening angle
of the jet does not change much after passing the point where the
channel widens, in agreement with the results of Tchekhovskoy
et al. (2009b). Thus, the product !θ v, where θ v is the local opening
half-angle, is expected to increase following the rapid increase of
the Lorentz factor. This is indeed the case, as one can see in the
right-hand panel of Fig. 2. In model B1b this product is much
larger than in model B1, approaching values that are ≫1 near the
jet boundary. Concluding this section, we reiterate that our results
are in very good agreement with those obtained in Tchekhovskoy

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 407, 17–28
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Figure 4. Time evolution of density for the model κ = 0.5. Shown are y = 0 slices for times t ∈ {100, 200, 300, 500}. The white contour indicates the jet
boundary. The non-linear development of the instability dramatically increases the effective jet cross-section and seeds turbulence in the jet medium (t = 300).
At t = 500 the jet is disrupted entirely and replaced by a slowly moving plume.

Figure 5. Solution for the model with κ = 1.0 at t = 1000. The white contour indicates the jet boundary.

more prominent (see Fig. 6). By the end of the run (t = 2000),
the jet radius is approximately the same as in the corresponding
steady-state solution and its envelope does not show noticeable de-
formations. However, already at t = 1000 the jet core shows wiggles
that have grown out of the initial n = 4 mode of the perturbation.
These deformations, advected with the fast flow in the core, drive
compression waves reminiscent of bow shocks into the jet envelope.
One can trace each such wave to a particular wiggle of the core. By
t = 2000, the initial perturbation starts to fragment the jet core.

Continuing the general trend, at the critical value of κ = 2 the
envelope shows no visible features. The core, however, begins to
show noticeable wiggles at t = 3000 (see Fig. 7).

The growth of initial perturbations is reflected in the displacement
of the jet centre of mass, or barycentre. This displacement is a use-

ful quantitative measure of the amplitude of global instability. We
compute the average barycentre displacement in the computational
box via integration over the jet cross-section,

r̄ =
∣∣∫ Qr ds

∣∣
∫

Q ds
, (17)

and subsequent averaging along the jet axis for the whole box. As a
weighting function we choose the relativistic inertia multiplied by
the jet tracer

Q = "2(ρc2 + 4p)τ. (18)

Fig. 8 shows the evolution of r̄ normalized to the current jet radius
rjet for models with different κ . Only in the runs with κ = 0 and
0.5 jets loose integrity and become fully turbulent by the end of

MNRAS 452, 1089–1104 (2015)
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Black hole jets without large-scale flux L63

Figure 1. Retrograde simulation. (a) t = 592 rg/c. A fresh magnetic loop is poised just outside risco. (b) t = 794 rg/c. As the new loop begins to be accreted
on to the black hole it compresses the preceding flux system, inducing reconnection. Poloidal field lines begin to expand outwards. Peak jet power is reached
at t ≈ 975 rg/c. (c) t = 1064 rg/c. Reconnection begins in the current sheet along the loop’s centre line, ejecting plasmoids to infinity. (d) t = 1170 rg/c. The
reconnecting current sheet is brought on to the black hole. Thick (thin) black lines are poloidal field lines for initially clockwise (counter-clockwise) loops as
viewed in the poloidal (r–θ ) plane, with one additional field line per clockwise loop highlighted in red; the green bar indicates the position of the ISCO and the
green curve is the ergosphere boundary. Hφ is the poloidal current function, loosely equivalent to the toroidal magnetic field .

The initial conditions consist of a series of equal-flux mag-
netic loops, of width l and alternating polarity, sourced from a
thin disc in the equatorial plane; this configuration is a vacuum
steady state. At t = 0 conducting massless plasma is injected ev-
erywhere (i.e. the force-free current term is activated) and an ideal
heavy thin accretion disc begins to advect and twist the frozen-in
magnetic field loops, with spatial velocity field vi = ui/ut = (vr,
0, #K), where uα is the four-velocity in Kerr–Schild coordinates
and #K = ±c/(r

√
r/rg ± arg) is the Keplerian angular velocity

for prograde (+) and retrograde (−) orbits. Inside risco the gas,
into which the magnetic field remains frozen, plunges geodesically
into the black hole. We describe here two simulations, one each
for prograde and retrograde accretion flows. In both cases, the ac-
cretion speed is a constant vr = −c/200 outside risco and the loop
width l = 2 rg.

In the prograde simulation, field lines are inflated by the Keple-
rian differential rotation while both footpoints are attached to the
disc, but they collapse to a lower energy closed state once their
inner footpoints are advected on to the black hole. They no longer
expand poloidally, but rather passively transfer energy and angular
momentum from the black hole to the inner disc. The disc dif-
ferential rotation drives large eruptive plasmoid ejections from the

next-to-innermost flux system. There is no outflow from the black
hole, because the loop scale is smaller than the critical scale, l < lcrit;
in this case we find lcrit ≈ 3.2 rg.

The retrograde configuration behaves entirely differently. Con-
sider the evolution from when a flux loop first reaches the ISCO
(Fig. 1a). As the loop’s leading edge is accreted through the ISCO
the entire flux structure begins to open up, due to the fast differ-
ential rotation between footpoints near the black hole and those
still rooted in the disc. The loop begins to be dragged on to the
black hole, pushing together oppositely directed field lines ahead
of it and inducing magnetic reconnection (Fig. 1b). At this time the
absolute flux through the horizon is at a minimum and therefore
so is the jet power (Fig. 2). The differential rotation across a field
line changes sign as its leading footpoint approaches the black hole
and experiences the frame dragging effect in the direction opposite
to the disc’s retrograde Keplerian rotation. As a result the toroidal
magnetic field in the loop changes sign. As more of the loop is
brought on to the hole the flux through the horizon increases and
the integrated outgoing Poynting power climbs steadily. The angu-
lar velocity difference between the black hole and the retrograde
Keplerian disc is so great that, despite the ability of the magnetic
field to slip through the horizon, all field lines threading the hole

MNRASL 446, L61–L65 (2015)
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• Rarefaction acceleration
• Kink instability/RT instability
• Magnetic reconnection

Komissarov+ 2010; Porth & 
Komissarov 2015; Perfrey+2015

Stability of cosmic jets 1091

into buoyant turbulent plumes (e.g. Bicknell 1984). We argue that
this loss of jet global stability can occur when it enters regions
where the external pressure distribution flattens out. In the case of
AGN jets this can be the core of the X-ray corona of the parent
galaxy or the extended radio lobe.

This paper is organized in the following way. In Section 2, we
put forward very simple and general arguments, which explain how
lateral expansion increases global stability of jets. In brief, such
expansion slows down, and may even completely terminate, the
flow of information across jets, thus reducing the growth of coher-
ent displacements. The rate of expansion depends on the proper-
ties of jet surrounding, namely on how fast the external pressure
decreases with distance from the jet origin. For power-law atmo-
spheres, pext ∝ z−κ , there is a critical value for the power index,
κ = 2. For steeper gradients, causal connectivity is lost and the jets
are globally stable. In astrophysical context, such steep atmospheres
are expected to be quite common. The generality of the argument
makes this a very robust and hence attractive explanation, but details
depend on the actual internal jet structure. Numerical simulations
are required to study the non-linear development of instabilities,
particularly in the subcritical regime with κ < 2. Our efforts in this
direction are described in Section 3, where we focus on a particular
class of magnetized relativistic jets, whose initial internal structure
is described by the core-envelope model of cylindrical jets due to
Komissarov (1999). These jets have a z-pinched inner core and a
force-free envelope with purely azimuthal magnetic field. A simple
method to obtain initial near stationary solutions of relativistic ex-
panding jets was presented in Komissarov, Porth & Lyutikov (2015,
hereafter KPL). In Section 3, this approach is generalized in a way
which allows us to study the time-dependent 3D dynamics of these
flows using periodic box simulations. In both cases, the jet expan-
sion is triggered by a gradual lowering of the external gas pressure,
which imitates the conditions experienced by the jet material as it
propagates through power-law atmospheres. In Section 5, we dis-
cuss the astrophysical implications of our findings. In particular, we
propose that the division of extragalactic radio source into FR-I and
FR-II classes is related to the stability issue. The lower power FR-I
jets are externally confined in the coronas of their host galaxies,
which have rather flat pressure distribution, do not expand suffi-
ciently rapidly, become unstable and mix with the coronal plasma
on the galactic scale. In contrast, the more powerful FR-II jets re-
main free and stable until they reach the scales of radio lobes. The
instability of jet cores may cause their disintegration and trigger
internal dissipation and ultimately electromagnetic emission even
when the envelope is stable. This may explain the emission of FR-II
jets on much smaller scales than radio lobes. Our conclusions are
summarized in Section 6.

2 STA BILITY AND CAUSALITY

During the development of instabilities that may threaten the jet
integrity, global perturbation modes are amplified. These modes
involve coordinated motion of the whole jet and hence imply com-
munication between its different parts by means of waves. These
waves trigger forces that push the flow away from its equilibrium
state. In the case of unmagnetized fluid, these are sound waves.
In magnetized fluids, these are mainly fast magnetosonic waves. If
the whole section of the jet is to be displaced to one side of the
original jet axis, as this occurs in the kink mode, any part of this
section needs to ‘know’ what the other parts do. In other words,
the jet has to be causally connected in the direction transverse to
its direction of motion. In the case of supersonic (or superfast mag-

netosonic) flow, all these waves are advected with the flow and the
region of influence of any particular point has the geometry of a
cone, aligned with the flow direction. In fluid dynamics, this cone
of influence is known as the Mach cone. For such flows, the causal
communication in the transverse direction is obstructed – no wave
can originate at one edge of the cross-section and reach the other.
However, a synchronized motion may still be possible as long as an
upstream location can be communicated with the whole of the jet
somewhere downstream. The higher the Mach number, the longer
the separation along the jet between its causally connected sections
and slower the growth of unstable perturbation modes become. This
is the reason why supersonic flows are less unstable.

For cylindrical jets, this necessary condition for the global insta-
bility is always satisfied. This explains why laboratory and terres-
trial jets are relatively quickly destroyed by instabilities and why
the theoretical studies of flows with cylindrical geometry struggle
to explain the stability of cosmic jets. For expanding flows, the
situation is more complicated as now there is a competition be-
tween the jet expansion and the expansion of the cone of influence.
Let us analyse this competition in the simple case of a power-law
atmosphere, with pressure pext ∝ z−κ .

For a start, consider an unmagnetized non-relativistic highly su-
personic adiabatic jet. Denote as θ j = rj/z its half-opening angle
and as θM its Mach angle. In the limit of small angles, θM = a/v,
where a and v are the sound and bulk motion speeds of the jet,
respectively. In such a flow, v =const, ρ ∝ r−2

j and p∝ ργ , which
leads to θM/θj ∝ z

√
p. Finally, using p= pext, one finds that

θM

θj
∝ z(2−κ)/2. (1)

Magnetic field introduces an additional degree of complexity as
the magnetic hoop stress can result is strong axial pinching of the
jet and hence a mismatch between the internal jet pressure and the
external one. This is particularly true for magnetically dominated
jets, where the magnetic pressure dominates over the thermal one.
For scale-free external pressure, one would expect the jets to be
self-similar and hence B2 ∝ pext. Away from the central engine the
magnetic field is mainly azimuthal and evolves as B ∝ r−1

j , whereas
ρ ∝ r−2

j as before. Thus, the Alfvén speed c2
a ∝ B2/ρ ∝ r0

j , the
Mach angle based on the Alfvén speed θM ∝ r0

j and the opening
angle θ−1

j ∝ z
√

pext. The last two results ensure that equation (1)
still holds in this limit.

The relativistic case is a little bit more complicated as even in
the hypersonic regime the thermal energy may dominate the rest-
mass energy of gas particles, p ≫ ρc2, and the jet may continue
to accelerate. Combining the energy conservation, p%2r2

j = const,
and the mass conservation ρ%r2

j = const, where % is the jet Lorentz
factor and ρ is its comoving density, with the equation of state
p∝ ργ , one finds % ∝ p(1 − γ )/γ , rj ∝ p(γ − 2)/2γ , whereas the sound
speed is constant, a = c

√
γ − 1, and the relativistic Mach angle

θM ∝ 1/%. Taken together, these yield equation (1) again. Thus,
equation (1) is quite general.

The form of equation (1) suggests that κ = 2 is a critical value –
for κ < 2 the jet can remain causally connected, whereas for κ > 2
the connectivity will be lost. In order to verify this conclusion, we
consider a flow characteristic that originates at the jet boundary and
moves towards its axis. Its equation is

dr

dz
= θv − θM, (2)

where θv = (r/rj)drj/dz is the local streamline angle. Given the
lack of characteristic length scale, one may assume that all the jet
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Figure 2. Left: the steady-state solution for the LSHS jet based on 1D time-dependent simulations. Right: the transverse structure of the jet with the same
initial condition as the left panel at z = 2.6 (top-left), z = 3.2 (top-right), z = 4 (bottom-left) and z = 7 (bottom-right) based on 2D time-dependent simulations.
The parameter shown is the effective inertia log (ρh"2).

Figure 3. The initial conditions of the HSLS problem. The curves show
log ρ (red), log p (blue), log " (green) and log ρh"2 (black).

For the time-dependent simulations, we used the grid with the
same number of AMR levels as in the LSHS case. The results are
illustrated in the right-hand panels of Fig. 4, which shows the solu-
tion at the times corresponding to the locations with the distances of
z = 2, 3.2, 7 and 9.5 in the steady-state model. At z = 2, the recon-
finement shock has crossed the spine-sheath interface, which now
shows small-amplitude disturbance. Its amplitude remains small all
the way to the bounce point. After the bounce, the solution clearly
exhibits two unstable zones with outwards reaching fingers of heavy
gas. The inner one corresponds to the RM-unstable spine-sheath in-
terface and the outer one to the RT-unstable outer layer of the sheath
where the effective inertia gradually decreases outwards. Hence, our

results confirm and strengthen the MM13 conclusions by capturing
the case where the discontinuity is replaced by a smooth layer.

4 C O N C L U S I O N A N D D I C U S S I O N

Along their length, AGN jets (and many other astrophysical jets)
almost inevitably experience reconfinement by the pressure of either
the surrounding interstellar gas or their own cocoons. We have
studied the dynamics of reconfinement in the case of spine-sheath
hydrodynamic jets moving through uniform external medium. We
find that the reconfinement gives rise to RT-type instabilities at the
contact discontinuity between the spine and the sheath and results
in mixing of the two components. This occurs both in the LSHS
and HSLS cases, because each reconfinement episode is followed
by a de-collimation, which involves switching the effective gravity
direction. The instability grows on the reconfinement scale, soon
after (or just before) the reconfinement shock reaches the jet axis
in the LSHS (HSLS) case. Our results also show that the instability
growth in layers with initially smooth variation of effective inertia
is as fast as at contact surfaces with discontinuous effective inertia.
This allows us to conclude that the reconfinement is accompanied by
efficient mixing of any parts with strong radial variation of inertial
density in hydrodynamic jets.

It is natural to assume that all astrophysical jets are born structured
due to the nature of their central engines. In particular, the accreting
central engines may have a spine-sheath structure, where the spine
is connected to the central compact object and the sheath to the ac-
cretion disc. For this reason, we conclude that reconfinement of all
weakly magnetized astrophysical jets should lead to rapid onset of
RT-type instabilities and efficient mixing. The spine-sheath jet struc-
ture has also been discussed in the observational context of AGN

MNRAS 472, 1253–1258 (2017)Downloaded from https://academic.oup.com/mnras/article-abstract/472/1/1253/3965849/Rayleigh-Taylor-instability-in-two-component
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Event Horizon Telescope (EHT)

• Global VLBI array 
at 1.3mm/230GHz

• US, EU, EA joint 
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Fig. 3.— VLBA+GBT 86GHz false-color total intensity image of the M87 jet. The image is

produced by combining the visibility data over the two epochs on 2014 February 11 and 26. The

restoring beam (0.25 × 0.08mas in PA 0◦) is shown in the bottom-right corner of the image. The

peak intensity is 500mJybeam−1 and the off-source rms noise level is 0.28mJybeam−1, where the

resulting dynamic range is greater than 1500 to 1. (A color version of this figure is available in the

online journal.)
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Event Horizon TelescopeApril 2017: First EHT run with ALMA

• Imaging BH shadow and accretion flow
• Imaging jet-launch structure (BZ vs BP)
• Imaging B-field topology (poloidal vs toroidal)
• Other jet sources: 3C273, 3C279, OJ287, CenA

Imaging the Black Hole Shadow and Jet Launching Region
of M87

PI: The EHT consortium

VLBA image at 7 mm

5.2 Rs

Central region of M 87
(GRMHD simulation)

BH

Jet

Counter-Jet

B-field

100 Rs

Jet

Counter-Jet

Rs
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JCMT/SMA
LMT

PdBI

ALMA/APEX

 PV

EHT array 2017

Model without ALMA with ALMA

Figure 1. Project Overview. (top) Image of M87 at 7mm with the VLBA. Upper Insets show particle density
and magnetic field lines threading a simulated jet (Moscibrodzka+ 2016) and the 2017 EHT array as viewed from
M87. (bottom) Model image of M87 at 230 GHz with simulated EHT reconstructions. The model image is based
on Moscibrodzka+ (2016) with general relativistic radiative transfer (Dexter+ 2016). Images are reconstructed with
sparse modeling (Honma+ 2015) showing expected EHT performance with and without ALMA (see Fig. 2). We have
compared these results with four synthesis imaging techniques (Bouman+ 2016) and have confirmed that, with ALMA,
we can clearly detect the shadow with each method.

A. Introduction and Background: Among all AGN known to power jets, M87 presents us with
the best opportunity to forge a link between the supermassive black hole (SMBH) and relativistic
outflow. At a distance of 16.7Mpc, and with an estimated mass of 6.6⇥109 M� (Gebhardt+ 2011), the
Schwarzschild radius of this black hole subtends ⇠ 8µas on the sky. Because of strong gravitational
lensing near the black hole, the apparent diameter of the shadow cast by the black against the local
hot plasma will be 42µas (Bardeen 1973), and the corresponding apparent diameter of the Innermost
Stable Circular Orbit (ISCO) for accreting matter is 59µas. Remarkably, the sizes of these strong-
field GR features are well matched to the angular resolution of the Event Horizon Telescope (EHT),
a 1.3mm wavelength VLBI array spanning the Earth. The EHT Consortium has used observations
on a three-station 1.3mm VLBI array to report size measurements for the jet base of M87 of just
44µas (5.5 times the Schwarzschild radius), confirming the existence of horizon-scale structure and
bringing the possibility of imaging the jet launch region within reach (Doeleman+ 2012, Akiyama+
2015). In parallel, members of our team have carried out the most detailed VLBI imaging of the M87
jet at longer wavelengths. At a wavelength of 3mm, the inner jet down to ⇠ 20 Schwarzschild radius
scales exhibits a broad parabolic opening, indicating the start of an accelerating outflow, as well as
a clear counter jet, constraining the location of the central black hole (Asada & Nakamura 2012,
Hada+ 2016, Fig. 1). In addition, phase-referenced VLBI over multiple wavelengths has revealed
a clear frequency-dependent shift of the jet base, as expected for a jet that becomes optically thin
at higher frequencies close to the black hole (Hada+ 2011). Together, these prior results place the
1.3mm VLBI emission within a few Schwarzschild radii of the black hole.

1
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VLBI: recent progress for M87
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Continuing triple-ridge structure
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FIG. 11.— Distribution of the jet radius R as a function of the jet axial distance z (de-projected with M = 6.2⇥ 109M� and ✓v = 14�) from the SMBH in
units of rg (cf. Asada & Nakamura 2012; Nakamura & Asada 2013; Hada et al. 2013, labeled as AN12, NA13, and H13, respectively). Additional data points
are taken from Doeleman et al. (2012); Akiyama et al. (2015); Hada et al. (2016) (labeled as D12, A15, and H16, respectively). The (vertical) dashed-dotted
line denotes the Bondi radius rB, located at ' 6.9⇥105 rg and the HST-1 complex is around 106 rg. Filled black region denotes the black hole (inside the event
horizon), while the hatched area represents the ergosphere for the spin parameter a = 0.99. The light gray area denotes the approximate solution (e.g. NMF07,
TMN08) of the FFE genuine parabolic jet (outermost BZ77-type streamline: z / R2 at R/rg � 1), while the dark gray area is the case of the parabolic jet
(outermost BP82-type streamline: z / R1.6 at R/rg � 1), respectively. In both of the outermost streamlines, which are anchored to the event horizon with
✓fp = ⇡/2, a variation from a = 0.5 (upper edge) to a = 0.99 (lower edge) is represented as a shaded area.

wavelength VLBI and optical observations reveal both sub-
luminal and superluminal features in proper motion, provid-
ing a global distribution of the jet velocity field V in M87.
We display the value of �� in Figure 12 by using simple alge-
braic formulas with the bulk Lorentz factor � ⌘ (1��

2)�1/2

and � = �app/(�app cos ✓v + sin ✓v), where � = V/c, and
�app is the apparent speed of the moving component in units
of c, respectively. The value of �� approaches � in the non-
relativistic regime (� ! 1) and represents � in the relativistic
regime (� ! 1), thereby representing simultaneously the full
dynamic range in velocity over both regimes.

Superluminal motions (�app > 1) have been frequently ob-
served at relatively large distances beyond rB. Furthermore,
these components seem to originate at the location HST-1
(Biretta et al. 1999; Cheung et al. 2007; Giroletti et al.
2012). On the other hand, no prominent superluminal fea-

tures inside rB have been confirmed in VLBI observations
over decades (Reid et al. 1989; Kellermann et al. 2004; Ly
et al. 2007). Instead, sub-luminal features are considered as
non-bulk motions, such as growing instability patterns and/or
standing shocks (e.g. Kovalev et al. 2007). Thus, this discrep-
ancy (a gap between sub-luminal and superluminal motions
along the jet axial distance) has been commonly recognized.
Asada et al. (2014) discovered a series of superluminal com-
ponents upstream of HST-1 (z/rg ⇠ 105–106), providing the
missing link in the jet kinematics of M87.

Very recently, superluminal motions on the scale of z/rg '
103–104 were finally discovered by Mertens et al. (2016);
Hada et al. (2017). These observations give a diversity
to the velocity picture, and suggests the hypothesis that the
systematic bulk acceleration is taking place if the observed
proper motions indeed represent the underlying bulk flow. A

183C273 43 GHz RMc c cD ~ D + D ~ o n. Regarding M87, its
EVPA uncertainty in 86 GHz images would be somewhat
larger than this value, since the lower S/N of polarization
signals (S/N∼4.5; see Section 3.4) from this source gives
another non-negligible thermal error term. This can be
estimated as Pradian 2therm p( )c sD ~ where ps and P are
rms noise level and polarized intensity in the polarization
map(e.g., Roberts et al. 1994). With S/N=P ps ∼4.5, we
obtain 6therm,M87cD ~ n. Assuming that 3C273cD and

therm,M87cD are statistically independent, we estimate a total
error budget for M87 to be M87cD ∼± 20°.

2.3. Lower-frequency Data

As supplementary data sets, we additionally made VLBA-
only observations of M87 at 24 and 43 GHz close in time with
the 86 GHz sessions. The observations were carried out on
2014 March 8, 26, and May 8, where both 24 and 43 GHz were
used quasi-simultaneously by alternating the receivers quickly.
On March 26 and May 8, all the VLBA stations were present,
while on March 8 the antennas at Mauna Kea and Fort Davis
were absent. We received only RR polarization signals with a
total bandwidth of 128MHz (on March 8) or 256MHz (on
March 26 and May 8). Among these sessions, the data on
March 26 were the best in overall quality, while the data on
March 8 were relatively poor. The initial data calibration
(a priori amplitude correction, fringe-fitting, and bandpass) was
made in AIPS, and the subsequent image reconstruction was
performed in Difmap based on the usual CLEAN/self-

calibration procedure. The basic information of these data is
also tabulated in Table 1.

3. RESULTS

3.1. New 86 GHz Images

In Figure 3 we show a representative 86 GHz image of the
M87 jet obtained by our VLBA+GBT observations. For a
better visualization, the image is produced by combining the
visibility data over the two epochs, and restored with a
convolving beam of 0.25 mas ×0.08 mas at a position angle
(PA) of 0°. A contour image with a natural weighting scheme is
also displayed in the top panel of Figure 4.
Thanks to the significant improvement in sensitivity, a

detailed jet structure was clearly imaged down to the weaker
emission regions. The resulting image rms noise of the
combined image was ∼0.28 mJy beam−1. In this period the
extended jet was substantially bright down to ∼1 mas from the
core. The weak emission was detected (particularly in the
southern limb) down to ∼3 mas from the core at a level of 3σ,
and another ∼1–2 mas at 2σ. The peak surface brightness of the
image was 500 mJy beam−1 at this resolution, corresponding to
an image dynamic range greater than 1500 to 1 (the detailed
value varies slightly as a function of the weighting scheme and
convolving beam). This is the highest image dynamic range
obtained so far at 86 GHz for this jet, and is quite comparable
to typical dynamic ranges in VLBA images at 43 GHz(e.g., Ly
et al. 2007). We describe a comparison of our 86 and 43 GHz
images in the next subsection.

Figure 3. VLBA+GBT 86 GHz false-color total intensity image of the M87 jet. The image is produced by combining the visibility data over the two epochs on 2014
February 11 and 26. The restoring beam (0.25 mas ×0.08 mas at PA 0°) is shown in the bottom-right corner of the image. The peak intensity is 500 mJy beam−1 and
the off-source rms noise level is 0.28 mJy beam−1, where the resulting dynamic range is greater than 1500 to 1.
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• Brightness distribution depends on 
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• -> Observed images would 

constrain these quantities
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183C273 43 GHz RMc c cD ~ D + D ~ o n. Regarding M87, its
EVPA uncertainty in 86 GHz images would be somewhat
larger than this value, since the lower S/N of polarization
signals (S/N∼4.5; see Section 3.4) from this source gives
another non-negligible thermal error term. This can be
estimated as Pradian 2therm p( )c sD ~ where ps and P are
rms noise level and polarized intensity in the polarization
map(e.g., Roberts et al. 1994). With S/N=P ps ∼4.5, we
obtain 6therm,M87cD ~ n. Assuming that 3C273cD and

therm,M87cD are statistically independent, we estimate a total
error budget for M87 to be M87cD ∼± 20°.

2.3. Lower-frequency Data

As supplementary data sets, we additionally made VLBA-
only observations of M87 at 24 and 43 GHz close in time with
the 86 GHz sessions. The observations were carried out on
2014 March 8, 26, and May 8, where both 24 and 43 GHz were
used quasi-simultaneously by alternating the receivers quickly.
On March 26 and May 8, all the VLBA stations were present,
while on March 8 the antennas at Mauna Kea and Fort Davis
were absent. We received only RR polarization signals with a
total bandwidth of 128MHz (on March 8) or 256MHz (on
March 26 and May 8). Among these sessions, the data on
March 26 were the best in overall quality, while the data on
March 8 were relatively poor. The initial data calibration
(a priori amplitude correction, fringe-fitting, and bandpass) was
made in AIPS, and the subsequent image reconstruction was
performed in Difmap based on the usual CLEAN/self-

calibration procedure. The basic information of these data is
also tabulated in Table 1.

3. RESULTS

3.1. New 86 GHz Images

In Figure 3 we show a representative 86 GHz image of the
M87 jet obtained by our VLBA+GBT observations. For a
better visualization, the image is produced by combining the
visibility data over the two epochs, and restored with a
convolving beam of 0.25 mas ×0.08 mas at a position angle
(PA) of 0°. A contour image with a natural weighting scheme is
also displayed in the top panel of Figure 4.
Thanks to the significant improvement in sensitivity, a

detailed jet structure was clearly imaged down to the weaker
emission regions. The resulting image rms noise of the
combined image was ∼0.28 mJy beam−1. In this period the
extended jet was substantially bright down to ∼1 mas from the
core. The weak emission was detected (particularly in the
southern limb) down to ∼3 mas from the core at a level of 3σ,
and another ∼1–2 mas at 2σ. The peak surface brightness of the
image was 500 mJy beam−1 at this resolution, corresponding to
an image dynamic range greater than 1500 to 1 (the detailed
value varies slightly as a function of the weighting scheme and
convolving beam). This is the highest image dynamic range
obtained so far at 86 GHz for this jet, and is quite comparable
to typical dynamic ranges in VLBA images at 43 GHz(e.g., Ly
et al. 2007). We describe a comparison of our 86 and 43 GHz
images in the next subsection.

Figure 3. VLBA+GBT 86 GHz false-color total intensity image of the M87 jet. The image is produced by combining the visibility data over the two epochs on 2014
February 11 and 26. The restoring beam (0.25 mas ×0.08 mas at PA 0°) is shown in the bottom-right corner of the image. The peak intensity is 500 mJy beam−1 and
the off-source rms noise level is 0.28 mJy beam−1, where the resulting dynamic range is greater than 1500 to 1.
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Current GRMHD models

Steady axisymmetric force-free model

A&A 586, A38 (2016)

Fig. 5. Evolution of the intensity profile across (left panel) and along (right panel) the jet at λ = 7 mm (ν = 43 GHz). Color lines represent intensity
at various times spaced by 20M ≡ 7 days.

Fig. 6. Contour maps of the model images (RH100) at λ = 7 mm (ν = 43 GHz) for viewing angles of i = 20◦ (left panel) and i = 160◦ (right
panel) convolved with the telescope beam to simulate observations by Hada et al. (2011). The contour levels were chosen to match those from
observations (contours decrease by a factor of 21/2 from the maximum intensity). The image size here is 480 × 480GMBH/c2 ≡ 1.8 × 1.8 mas,
which is about twice the size used in Fig. 4 (images at λ = 7 mm).

brightness assymetry is due to Doppler boosting. In both cases
shown in Fig. 4, the emission from the counter-jet is strongly
suppressed.

The edge-brightening of the jet images is illustrated in Fig. 5
(left panel), which shows the radiation intensity profile across
the jet axis at a distance of 25GMBH/c2 away from the SMBH.
Figure 5 (left panel) shows how the intensity profile evolves in
time. Lines with different colors indicate the intensity profile at
various times. The time span between the black and magenta
lines corresponds to about 28 d. The ratio of the intensity of the
two rims is about two and is roughly constant in time. Figure 5
(right panel) also shows the evolution of intensity profile along
the jet. The profile along the jet shows two intensity enhance-
ments that apparently move upstream of the jet (“knots” located
at x ∼ 45 and 65GMBH/c2). We find that these two intensity
“knots” have subluminal apparent speeds of v/c = 0.13 and 0.4,
which indicate jet acceleration.

A robust comparison of Fig. 4 to observations of the source
at 7 mm is presented in Hada et al. (2011). In Fig. 6, we convolve
our theoretical intensity maps (Fig. 4) with the telescope beam
size (FWHMbeam = 0.3 and 0.14 mas, see Hada et al. 2011) and
contour them in the same fashion as Fig. 3b in Hada et al. (2011).
There is overall good qualitative agreement, but also some re-
maining differences. Our jet model is somewhat more compact
in the direction along the jet axis to account for the extended
low-surface brightness jet features observed at 7 mm. Also our
jet model does not display the characteristic two rims when con-
volved with the telescope beam, even though the underlying the-
oretical model is clearly edge-brightened. An even better agree-
ment between our model and observations could probably be
achieved (1) by using GRMHD models with a higher spatial res-
olution that resolves the jet boundary better; (2) by increasing the
size of the computational domain since we are only simulating
the innermost parts of the jet at 43 GHz; and (3) by including

A38, page 6 of 15
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where the equality holds for g(✓, ⌫) = 1 and R|⌦F|/c = 1. We also note that the azimuthal speed is bound by c/2,
which can be shown in the same manner.
Equations (A19) and (A20) give the asymptotic relations of the fluid velocity for R|⌦F|/c ⌧ 1 as follows:
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where �p := |vp|/c and �� = |v�|/c are the normalized poloidal and toroidal speeds, respectively. That is, the fluid
velocity is non-relativistic and dominated by the toroidal component. For R|⌦F|/c � 1, on the other hand, the
following relations are obtained:
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That is, the fluid velocity is dominated by the poloidal component, which becomes relativistic as g(✓, ⌫) approaches
unity. We note here that, as g(✓, ⌫) ! 1, the leading terms in Eqs. (A25) and (A26) approach those in the asymptotic
relations in steady axisymmetric cold outflows in ideal MHD (Toma & Takahara 2013):
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which holds for R|⌦F|/c � 1 and �� �̃ ⇠ 1, where the letters with tilde denote quantities at the inlet.

A.4. Non-thermal Electrons

The number density of the non-thermal electrons, n, is assumed to be given by the continuity equation for fluid,
r · (nv) = 0, by following BL09, although it is not so obvious whether the non-thermal electrons obey the equation.
For RB�⌦F 6= 0, the continuity equation is reduced to

B ·r
⇣ n

B2

⌘
= 0, (A30)

which means that n scales with B2 along a given magnetic field. In this paper, we assume the following ring-shaped
distribution of the non-thermal electrons on the planes z = ±z1 (z1 � 0):

n(R,±z1) = n0 exp


� (R�Rp)2

2�2

�
, (A31)

where Rp is the radius where n have the peak on the plane and � gives the width of the ring while n0 is the number
density at the peak. We note that BL09 considered only Rp = 0, where the non-thermal electrons are concentrated
on the jet axis at z = ±z1.
Equations (A30) and (A31) give the number density of the non-thermal electrons at a given point on a magnetic

field labeled by  0 as follows:

n(R, z) = n0
B2(R, z)

B2(R1, z1)
exp


� (R1 �Rp)2

2�2

�
, (A32)

where R1( 0) denotes the radial coordinate of the intersections of  =  0 and z = ±z1. We omit an artificial factor
of (1� exp[�r2/z21 ]) in Eq. (A32) that was introduced in BL09 to reduce plasma in the innermost region r < z1. Our
results are not qualitatively di↵erent, however, even if the factor is taken into account.
We assume that the distribution of the non-thermal electrons is isotropic in the fluid rest frame and the energy

distribution is described by a single power law with an index p:

f(�0) =

⇢
Cn0�0�p (�0

min  �0  �0
max)

0 otherwise , (A33)
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- z1 = Δ = 5 rg : fixed
- Rp: varied

A constant fraction of electrons are 
assumed to have power-law energy 
distribution 
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FIG. 11.— Distribution of the jet radius R as a function of the jet axial distance z (de-projected with M = 6.2⇥ 109M� and ✓v = 14�) from the SMBH in
units of rg (cf. Asada & Nakamura 2012; Nakamura & Asada 2013; Hada et al. 2013, labeled as AN12, NA13, and H13, respectively). Additional data points
are taken from Doeleman et al. (2012); Akiyama et al. (2015); Hada et al. (2016) (labeled as D12, A15, and H16, respectively). The (vertical) dashed-dotted
line denotes the Bondi radius rB, located at ' 6.9⇥105 rg and the HST-1 complex is around 106 rg. Filled black region denotes the black hole (inside the event
horizon), while the hatched area represents the ergosphere for the spin parameter a = 0.99. The light gray area denotes the approximate solution (e.g. NMF07,
TMN08) of the FFE genuine parabolic jet (outermost BZ77-type streamline: z / R2 at R/rg � 1), while the dark gray area is the case of the parabolic jet
(outermost BP82-type streamline: z / R1.6 at R/rg � 1), respectively. In both of the outermost streamlines, which are anchored to the event horizon with
✓fp = ⇡/2, a variation from a = 0.5 (upper edge) to a = 0.99 (lower edge) is represented as a shaded area.

wavelength VLBI and optical observations reveal both sub-
luminal and superluminal features in proper motion, provid-
ing a global distribution of the jet velocity field V in M87.
We display the value of �� in Figure 12 by using simple alge-
braic formulas with the bulk Lorentz factor � ⌘ (1��

2)�1/2

and � = �app/(�app cos ✓v + sin ✓v), where � = V/c, and
�app is the apparent speed of the moving component in units
of c, respectively. The value of �� approaches � in the non-
relativistic regime (� ! 1) and represents � in the relativistic
regime (� ! 1), thereby representing simultaneously the full
dynamic range in velocity over both regimes.

Superluminal motions (�app > 1) have been frequently ob-
served at relatively large distances beyond rB. Furthermore,
these components seem to originate at the location HST-1
(Biretta et al. 1999; Cheung et al. 2007; Giroletti et al.
2012). On the other hand, no prominent superluminal fea-

tures inside rB have been confirmed in VLBI observations
over decades (Reid et al. 1989; Kellermann et al. 2004; Ly
et al. 2007). Instead, sub-luminal features are considered as
non-bulk motions, such as growing instability patterns and/or
standing shocks (e.g. Kovalev et al. 2007). Thus, this discrep-
ancy (a gap between sub-luminal and superluminal motions
along the jet axial distance) has been commonly recognized.
Asada et al. (2014) discovered a series of superluminal com-
ponents upstream of HST-1 (z/rg ⇠ 105–106), providing the
missing link in the jet kinematics of M87.

Very recently, superluminal motions on the scale of z/rg '
103–104 were finally discovered by Mertens et al. (2016);
Hada et al. (2017). These observations give a diversity
to the velocity picture, and suggests the hypothesis that the
systematic bulk acceleration is taking place if the observed
proper motions indeed represent the underlying bulk flow. A

M. Nakamura, Asada, Hada, Pu, Tseng, KT, Kino, Nagai, K. Takahashi, et al. submitted



GRMHD simulations

Fig. 3.—Initial (left) and final (right) distribution of A!. Level surfaces coincide with magnetic field lines, and field line density corresponds to poloidal field
strength. In the initial state field lines follow density contours if "0 > 0 :2 "0 ; max .
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FIG. 1.— Outermost streamlines of the steady axisymmetric solution of
the FFE jet (NMF07, TMN08), which are anchored to the event horizon (r =
rH) with the maximum colatitude angle at the footpoint ✓fp = ⇡/2. A
typical value of a = 0.9375 (in GRMHD simulations; Gammie et al. 2004;
McKinney & Gammie 2004; McKinney 2006) is specified as a reference.
The dotted line show the genuine paraboloidal streamline with  = 1.0 (z /
R2 at R � rg; e.g. Blandford & Znajek 1977), while the solid line show
the paraboloidal streamline with  = 0.75 (z / R1.6 at R � rg; e.g.
Blandford & Payne 1982). The black hole and the ergosphere are represented
as the filled and the hatched areas.

In magnetized RIAF simulations about a non-spinning
black hole (Igumenshchev 2008), the poloidal magnetic field
distribution takes the shape of an “hourglass” shape and has an
insignificant vertical component on the equatorial plane out-
side the black hole. This feature becomes more prominent
in the case of spinning black holes as is shown in GRMHD
simulations of the ergospheric disk with a vertical magnetic
flux (the Wald vacuum solution; Wald 1974); as the poloidal
magnetic flux and mass accretes onto the black hole, all mag-
netic lines threading the ergospheric disk develop a turning
point in the equatorial plane resulting in an azimuthal current
sheet (Komissarov 2005).

Due to strong inertial frame dragging inside the ergosphere,
all plasma entering this region is forced to rotate in the same
sense as the black hole. Thus, the poloidal field lines around
the equatorial plane are strongly twisted along the azimuthal
direction. The equatorial current sheet develops further due to
the vertical compression of the poloidal field lines caused by
the Lorentz force acting toward the equatorial plane at both
upper and lower (z ? 0) directions. Magnetic reconnection
(although numerical diffusion is responsible for activating the
event in an ideal-MHD simulation) will change the field topol-
ogy; all poloidal field lines entering the ergosphere penetrate
the event horizon. A similar result is obtained in GRFFE sim-
ulations (Komissarov & McKinney 2007).

We speculate that the situation is qualitatively unchanged
even if the weakly magnetized RIAF exists in the system.
Strong poloidal fields in the ergosphere compress the inner-
most black hole accretion flow vertically and reduce the disk
thickness down to H/R ' 0.05, while H/R & 0.3 (H: the
vertical scale height) is the reference value of the disk body
outside the plunging region (e.g. Tchekhovskoy 2015).

Based on the physical picture above, we assume no poloidal
magnetic flux penetrates the equatorial plane at R > rH.
Therefore, the outermost field line, which is anchored to the
event horizon with the maximum colatitude angle at the foot-
point ✓fp = ⇡/2, can be defined as

 (rH,⇡/2) = 1 (3)

in Equation (2). Figure 1 shows the outermost streamlines
of  (r, ✓) = 1 with different  ( = 1: BZ77 or  = 0.75:
BP82) with a fiducial black hole spin (a = 0.9375: McKinney
& Gammie 2004; McKinney 2006). Let us compare the
outermost streamline of the funnel jet in GRMHD simulations
with Equation (3) at a quasi-steady state.

2.2. Our Prospective in GRMHD Simulations
The public version of the two-dimensional (2D) axisym-

metric GRMHD code HARM (Gammie et al. 2003; Noble
et al. 2006) is used in our examinations. The code adopts
dimensionless units GM = c = 1. We, however, occasion-
ally reintroduce factors of c for clarity. Lengths and times are
given in units of rg ⌘ GM/c

2 and tg ⌘ GM/c
3, respec-

tively. We absorb a factor of
p
4⇡ in our definition of the

magnetic field. HARM implements so-called modified Kerr-
Schild coordinates: x0, x1, x2, x3, where x0 = t, x3 = �

are the same as in Kerr-Schild coordinates, but the radial
r(x1) and colatitude ✓(x2) coordinates are modified (McK-
inney & Gammie 2004). The computational domain is ax-
isymmetric, expanding in the r-direction from rin = 0.98 rH
to rout = 40 rg and the ✓-direction from ✓ = 0 to ✓ = ⇡.
An outflow boundary condition is imposed at r = rout; all
primitive variables are projected into the ghost zones. The in-
ner boundary condition is identical at r = rin < rH (no back
flow into the computational domain). A reflection boundary
condition is used at the poles (✓ = 0, ⇡).

Typical 2D axisymmetric GRMHD simulations (e.g. Gam-
mie et al. 2003; McKinney & Gammie 2004; McKinney
2006) adopt a dense “Polish Doughnut”-type torus (Fishbone
& Moncrief 1976; Abramowicz et al. 1978), which is in a
hydrodynamic equilibrium supported by the centrifugal and
gas pressure (p) gradient forces. The torus is surrounded by
an insubstantial, but dynamic, accreting spherical atmosphere
[the rest-mass density ⇢ and the internal energy density u are
prescribed in power-law forms as ⇢min = 10�4(r/rin)�3/2

and umin = 10�6(r/rin)�5/2] that interacts with the torus.
This is the so-called “floor model” that forces a minimum on
these quantities in the computational domain to avoid a vac-
uum. The initial rest-mass density ⇢0 in the system is normal-
ized by the maximum value of the initial torus ⇢0,max on the
equator.

A poloidal magnetic loop, which is described by the
toroidal component of the vector potential as a function of
the density A� / max (⇢0/⇢0,max � 0.2, 0), is embedded in
the torus. The field strength is normalized with the ratio of
gas to magnetic pressure [the so-called plasma-�, hereafter
�p ⌘ 2(� � 1)u/b2, where b

2
/2 = b

µ
bµ/2 is the magnetic

pressure measured in the fluid frame]. The inner edge of the
torus is fixed at (r, ✓) = (6 rg, ⇡/2) and the pressure maxi-
mum is located at (r, ✓) = (rmax, ⇡/2), where rmax = 12 rg
is adopted. �p0,min = 100, where �p0,min denotes the mini-
mum plasma-� at t = 0, is chosen5 for our fiducial run. An

5 The magnetic field strength is normalized by �p0,min by finding the



Long-term simulation

• All simulations so far stop at 
t < 2000
• We confirmed the steady state 

is reached at t > 3000.
• The funnel edge consistent 

with the jet width profile (!)
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FIG. 3.— Time evolution of the fiducial run (a = 0.9375); from top
to bottom, t/tg = 1000, 3000, and 9000, respectively. Contours (gray)
represent poloidal magnetic field lines. Other components in the panels are
identical to those in Figure 2.

2012), we confirmed that the funnel jet-wind/corona bound-
ary can be identified to be where b2/⇢ ' 1. At the early stage
t/tg = 1000 (top panel), the PFD funnel region (b2/⇢ � 1,
where the red color is assigned) is tightly confined around the
polar axis (z). This is much narrower compared with radii of
the outermost streamlines shown in Figure 1. The MRI is still
growing at this time. At the middle stage t/tg = 3000 (mid-
dle panel), the MRI is well developed and thus the magnetized
material in the RIAF body is swallowed by the black hole. A
certain amount of the poloidal flux, which falls into the er-
gosphere, is twisted along the azimuthal direction and power-
ful PFD jets are formed toward the polar directions. Conse-
quently, the funnel expands laterally by the magnetic pressure
gradient and its outer boundary (b2/⇢ ' 1; orange between
red and yellow on the contour map) shapes a non-conical ge-
ometry, which is quantitatively similar to the parabolic outer-
most streamline z / R

1.6 (BP82; see Figure 1).
After this phase, the MRI-driven turbulence in the

wind/corona region above the RIAF body decays gradually.
The bottom panel shows the final stage (t/tg = 9000) of the
system; the turbulent structure is saturated in the wind/corona
region, but it survives near the equator in the RIAF body. It
is notable that the BP82-type parabolic structure of the fun-
nel jet-corona/wind boundary is still sustained until this phase
(unchanged at the quantitative level during t/tg ' 3000–
9000), suggesting the PFD funnel jet is entering a quasi-
steady state, while the outside region (wind/corona and RIAF
body) still evolves dynamically. The distribution of b

2
/⇢

can be divided into the following three regions; i) the fun-
nel (& 1), ii) the wind/corona (' 10�3–10�1), and iii) the
RIAF body (. 10�3), respectively. Thus, we clearly identi-
fied that the PFD funnel jet (orange to red) is outlined with the
BP82-type parabolic shape, rather than the genuine parabolic
shape (BZ77: z / R

2). It is also notable that the boundary
of the funnel follows b2/⇢ ' 1 during the whole time of the
quasi-steady state at t/tg & 3000.

Figure 3 displays the poloidal magnetic field line distribu-
tion at the same times chosen for Figure 2. We can see that the
ordered, large-scale poloidal magnetic flux only exists inside
the PFD funnel jet region where b

2
/⇢ & 1 (Figure 2) during

the quasi-steady state t/tg & 3000. There seems to be no
such coherent poloidal magnetic flux penetrating the equato-
rial plane at R > rH. This is also examined in Komissarov
(2005); Komissarov & McKinney (2007). At the middle

stage t/tg = 3000, a lateral alignment of the poloidal mag-
netic flux ends at around the outermost parabolic streamline
z / R

1.6. This holds until the final stage of t/tg = 9000.
Thus, the distribution of poloidal magnetic field lines also in-
dicates the funnel interior reaches a quasi-steady state with
insignificant deviation when t/tg & 3000.

The density of contours in Figure 3 directly represents the
poloidal field strength (it may be a quantitatively reasonable
interpretation at least in the funnel area). At the interior of
the funnel jet, the lateral spacing of each field line decreases
(R/rg ! 0) at around the event horizon (r/rg . a few),
suggesting an accumulation of the poloidal flux around the
polar axis (z). This is caused by the enhanced magnetic hoop
stress by the toroidal field component and it is prominent if
the black hole spin becomes large (a ! 1; Tchekhovskoy et
al. 2010). On the other hand, we may also see this effect in
the downstream region (r/rg & 20) along the polar axis, but
a concentration of the poloidal flux is rather smooth and weak
compared with the innermost region around the event horizon.
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FIG. 3.— Time evolution of the fiducial run (a = 0.9375); from top
to bottom, t/tg = 1000, 3000, and 9000, respectively. Contours (gray)
represent poloidal magnetic field lines. Other components in the panels are
identical to those in Figure 2.

2012), we confirmed that the funnel jet-wind/corona bound-
ary can be identified to be where b2/⇢ ' 1. At the early stage
t/tg = 1000 (top panel), the PFD funnel region (b2/⇢ � 1,
where the red color is assigned) is tightly confined around the
polar axis (z). This is much narrower compared with radii of
the outermost streamlines shown in Figure 1. The MRI is still
growing at this time. At the middle stage t/tg = 3000 (mid-
dle panel), the MRI is well developed and thus the magnetized
material in the RIAF body is swallowed by the black hole. A
certain amount of the poloidal flux, which falls into the er-
gosphere, is twisted along the azimuthal direction and power-
ful PFD jets are formed toward the polar directions. Conse-
quently, the funnel expands laterally by the magnetic pressure
gradient and its outer boundary (b2/⇢ ' 1; orange between
red and yellow on the contour map) shapes a non-conical ge-
ometry, which is quantitatively similar to the parabolic outer-
most streamline z / R

1.6 (BP82; see Figure 1).
After this phase, the MRI-driven turbulence in the

wind/corona region above the RIAF body decays gradually.
The bottom panel shows the final stage (t/tg = 9000) of the
system; the turbulent structure is saturated in the wind/corona
region, but it survives near the equator in the RIAF body. It
is notable that the BP82-type parabolic structure of the fun-
nel jet-corona/wind boundary is still sustained until this phase
(unchanged at the quantitative level during t/tg ' 3000–
9000), suggesting the PFD funnel jet is entering a quasi-
steady state, while the outside region (wind/corona and RIAF
body) still evolves dynamically. The distribution of b

2
/⇢

can be divided into the following three regions; i) the fun-
nel (& 1), ii) the wind/corona (' 10�3–10�1), and iii) the
RIAF body (. 10�3), respectively. Thus, we clearly identi-
fied that the PFD funnel jet (orange to red) is outlined with the
BP82-type parabolic shape, rather than the genuine parabolic
shape (BZ77: z / R

2). It is also notable that the boundary
of the funnel follows b2/⇢ ' 1 during the whole time of the
quasi-steady state at t/tg & 3000.

Figure 3 displays the poloidal magnetic field line distribu-
tion at the same times chosen for Figure 2. We can see that the
ordered, large-scale poloidal magnetic flux only exists inside
the PFD funnel jet region where b

2
/⇢ & 1 (Figure 2) during

the quasi-steady state t/tg & 3000. There seems to be no
such coherent poloidal magnetic flux penetrating the equato-
rial plane at R > rH. This is also examined in Komissarov
(2005); Komissarov & McKinney (2007). At the middle

stage t/tg = 3000, a lateral alignment of the poloidal mag-
netic flux ends at around the outermost parabolic streamline
z / R

1.6. This holds until the final stage of t/tg = 9000.
Thus, the distribution of poloidal magnetic field lines also in-
dicates the funnel interior reaches a quasi-steady state with
insignificant deviation when t/tg & 3000.

The density of contours in Figure 3 directly represents the
poloidal field strength (it may be a quantitatively reasonable
interpretation at least in the funnel area). At the interior of
the funnel jet, the lateral spacing of each field line decreases
(R/rg ! 0) at around the event horizon (r/rg . a few),
suggesting an accumulation of the poloidal flux around the
polar axis (z). This is caused by the enhanced magnetic hoop
stress by the toroidal field component and it is prominent if
the black hole spin becomes large (a ! 1; Tchekhovskoy et
al. 2010). On the other hand, we may also see this effect in
the downstream region (r/rg & 20) along the polar axis, but
a concentration of the poloidal flux is rather smooth and weak
compared with the innermost region around the event horizon.

4 Nakamura et al.

0 2 4 6 8 10
0

2

4

6

8

10

R (rg)

z(
r g)

FIG. 1.— Outermost streamlines of the steady axisymmetric solution of
the FFE jet (NMF07, TMN08), which are anchored to the event horizon (r =
rH) with the maximum colatitude angle at the footpoint ✓fp = ⇡/2. A
typical value of a = 0.9375 (in GRMHD simulations; Gammie et al. 2004;
McKinney & Gammie 2004; McKinney 2006) is specified as a reference.
The dotted line show the genuine paraboloidal streamline with  = 1.0 (z /
R2 at R � rg; e.g. Blandford & Znajek 1977), while the solid line show
the paraboloidal streamline with  = 0.75 (z / R1.6 at R � rg; e.g.
Blandford & Payne 1982). The black hole and the ergosphere are represented
as the filled and the hatched areas.

In magnetized RIAF simulations about a non-spinning
black hole (Igumenshchev 2008), the poloidal magnetic field
distribution takes the shape of an “hourglass” shape and has an
insignificant vertical component on the equatorial plane out-
side the black hole. This feature becomes more prominent
in the case of spinning black holes as is shown in GRMHD
simulations of the ergospheric disk with a vertical magnetic
flux (the Wald vacuum solution; Wald 1974); as the poloidal
magnetic flux and mass accretes onto the black hole, all mag-
netic lines threading the ergospheric disk develop a turning
point in the equatorial plane resulting in an azimuthal current
sheet (Komissarov 2005).

Due to strong inertial frame dragging inside the ergosphere,
all plasma entering this region is forced to rotate in the same
sense as the black hole. Thus, the poloidal field lines around
the equatorial plane are strongly twisted along the azimuthal
direction. The equatorial current sheet develops further due to
the vertical compression of the poloidal field lines caused by
the Lorentz force acting toward the equatorial plane at both
upper and lower (z ? 0) directions. Magnetic reconnection
(although numerical diffusion is responsible for activating the
event in an ideal-MHD simulation) will change the field topol-
ogy; all poloidal field lines entering the ergosphere penetrate
the event horizon. A similar result is obtained in GRFFE sim-
ulations (Komissarov & McKinney 2007).

We speculate that the situation is qualitatively unchanged
even if the weakly magnetized RIAF exists in the system.
Strong poloidal fields in the ergosphere compress the inner-
most black hole accretion flow vertically and reduce the disk
thickness down to H/R ' 0.05, while H/R & 0.3 (H: the
vertical scale height) is the reference value of the disk body
outside the plunging region (e.g. Tchekhovskoy 2015).

Based on the physical picture above, we assume no poloidal
magnetic flux penetrates the equatorial plane at R > rH.
Therefore, the outermost field line, which is anchored to the
event horizon with the maximum colatitude angle at the foot-
point ✓fp = ⇡/2, can be defined as

 (rH,⇡/2) = 1 (3)

in Equation (2). Figure 1 shows the outermost streamlines
of  (r, ✓) = 1 with different  ( = 1: BZ77 or  = 0.75:
BP82) with a fiducial black hole spin (a = 0.9375: McKinney
& Gammie 2004; McKinney 2006). Let us compare the
outermost streamline of the funnel jet in GRMHD simulations
with Equation (3) at a quasi-steady state.

2.2. Our Prospective in GRMHD Simulations
The public version of the two-dimensional (2D) axisym-

metric GRMHD code HARM (Gammie et al. 2003; Noble
et al. 2006) is used in our examinations. The code adopts
dimensionless units GM = c = 1. We, however, occasion-
ally reintroduce factors of c for clarity. Lengths and times are
given in units of rg ⌘ GM/c

2 and tg ⌘ GM/c
3, respec-

tively. We absorb a factor of
p
4⇡ in our definition of the

magnetic field. HARM implements so-called modified Kerr-
Schild coordinates: x0, x1, x2, x3, where x0 = t, x3 = �

are the same as in Kerr-Schild coordinates, but the radial
r(x1) and colatitude ✓(x2) coordinates are modified (McK-
inney & Gammie 2004). The computational domain is ax-
isymmetric, expanding in the r-direction from rin = 0.98 rH
to rout = 40 rg and the ✓-direction from ✓ = 0 to ✓ = ⇡.
An outflow boundary condition is imposed at r = rout; all
primitive variables are projected into the ghost zones. The in-
ner boundary condition is identical at r = rin < rH (no back
flow into the computational domain). A reflection boundary
condition is used at the poles (✓ = 0, ⇡).

Typical 2D axisymmetric GRMHD simulations (e.g. Gam-
mie et al. 2003; McKinney & Gammie 2004; McKinney
2006) adopt a dense “Polish Doughnut”-type torus (Fishbone
& Moncrief 1976; Abramowicz et al. 1978), which is in a
hydrodynamic equilibrium supported by the centrifugal and
gas pressure (p) gradient forces. The torus is surrounded by
an insubstantial, but dynamic, accreting spherical atmosphere
[the rest-mass density ⇢ and the internal energy density u are
prescribed in power-law forms as ⇢min = 10�4(r/rin)�3/2

and umin = 10�6(r/rin)�5/2] that interacts with the torus.
This is the so-called “floor model” that forces a minimum on
these quantities in the computational domain to avoid a vac-
uum. The initial rest-mass density ⇢0 in the system is normal-
ized by the maximum value of the initial torus ⇢0,max on the
equator.

A poloidal magnetic loop, which is described by the
toroidal component of the vector potential as a function of
the density A� / max (⇢0/⇢0,max � 0.2, 0), is embedded in
the torus. The field strength is normalized with the ratio of
gas to magnetic pressure [the so-called plasma-�, hereafter
�p ⌘ 2(� � 1)u/b2, where b

2
/2 = b

µ
bµ/2 is the magnetic

pressure measured in the fluid frame]. The inner edge of the
torus is fixed at (r, ✓) = (6 rg, ⇡/2) and the pressure maxi-
mum is located at (r, ✓) = (rmax, ⇡/2), where rmax = 12 rg
is adopted. �p0,min = 100, where �p0,min denotes the mini-
mum plasma-� at t = 0, is chosen5 for our fiducial run. An

5 The magnetic field strength is normalized by �p0,min by finding the
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a high-pressure (gas + magnetic) corona squeezing material
against an inner centrifugal wall, implying that the magneto-
centrifugal mechanism (Blandford & Payne 1982, hereafter
BP82) does play a minor role. Hawley & Krolik (2006)
concluded that the precise shape and collimation of the en-
tire outflow (PFD jet + funnel-wall jet + coronal wind) are
uncertain for two reasons: i) the outer boundary of the matter-
dominated funnel-wall jet is somewhat indistinct and ii) there
is a smooth transition as a function of polar angle between
mildly relativistic unbound matter and slightly slower but
bound coronal matter. On the other hand, the boundary be-
tween the low-density PFD funnel jet interior and the high-
density funnel-wall jet is sharp and clear. Properties of the
coronal wind are investigated in GRMHD simulation with
various black hole spins and different magnetic configurations
(e.g. Narayan et al. 2012; Sadowski et al. 2013; Yuan et al.
2015), but there is no unique way to discriminate the bound-

ary (Sadowski et al. 2013).
Comparisons of GRMHD simulations with steady solu-

tions of the axisymmetric force-free disk wind (McKinney &
Narayan 2007a) provide a fundamental similarity of the PFD
funnel jet. In the fiducial GRMHD simulation, the vertically
(height) integrated toroidal current, which is enclosed inside
a radius, follows a remarkably similar power-law profile with
the parabolic (or simply we use parabolic throughout this pa-
per) solution (✏ = 1.6) of the disk wind (BP82), whereas the
split-monopole (✏ = 1) or genuine paraboloidal (✏ = 2) so-
lutions are well-known (Blandford & Znajek 1977, hereafter
BZ77). This scaling is found to be maintained in a time-
averaged sense, but also at each instant of time. It is also inde-
pendent of the black hole spin. As a consequence, the poloidal
magnetic field of the PFD jet in the GRMHD simulation
agrees well with the force-free solution of a non-rotating thin
disk having the parabolic geometry. McKinney & Narayan
(2007b) performed general relativistic FFE (GRFFE) simula-
tions of the disk wind. The magnetosphere of their GRFFE
simulation with parabolic geometry also matches remarkably
well to the PFD funnel jet in the fiducial GRMHD simula-
tion, but no better than with the non-rotating force-free thin
disk solution with the BP82-type parabolic geometry. It sug-
gests that a rotation of the magnetic field leads to negligible
“self-collimation”.

Notable agreement of the BP82-type parabolic shape of the
PFD funnel jet between GRMHD simulations and force-free
(steady/time-dependent and/or non-rotating/rotating) models
indicates that gas plus magnetic pressure of the wind/corona
in GRMHD simulations is similar to the magnetic pressure
in the FFE disk wind outside the funnel region. Note that
McKinney & Narayan (2007b) considered only the portion
of i) the steady solution of the axisymmetric FFE disk wind
and ii) the GRFFE simulation of the disk wind (both winds
are in the parabolic shape) that overlap the funnel jet region in
the GRMHD simulation. So far, the boundary condition and
the shape of the funnel edge are poorly constrained. It is also
unclear where the footpoint of the outermost streamline of the
PFD funnel jet will be anchored in the quasi-steady states of
GRMHD simulations.

The collimation of the PFD funnel jet is still the issue.
GRMHD simulations in the literature exhibit jet collimation
ceasing at ⇠ 50 rg (Hawley & Krolik 2006). The largest
simulations to date extend up to r = 104 rg (McKinney
2006) and show �1 . 10 saturated beyond ⇠ a few of
100 rg (despite b

2
/⇢ � 1), where the jet collimation ter-

minates, following a conical expansion downstream. Global
SRMHD or (GR)FFE simulations with a “fixed” curvilin-
ear boundary wall (i.e., parabolic; Komissarov et al. 2007,
2009; Tchekhovskoy et al. 2008, 2010) show bulk accel-
eration up to �1 ⇠ 101–103, whereas it is still unclear
how such a highly relativistic flow can be stably confined
in a realistic environment. A recent semi-analytical model
shows that the collimation of PFD jets may take place by
the wind in RIAFs, if the total wind power Pwind exceeds
about 10% of the jet power Pjet (Globus & Levinson 2016),
while Pwind/Ṁc

2 ⇡ 10�3 (where Ṁ denotes the mass accre-
tion rate at the horizon) is obtained by a GRMHD simulation
around the Schwarzschild black hole (Yuan et al. 2015).

In this paper, we examine the structure of the PFD funnel jet
with GRMHD simulations. The funnel edge is compared with
steady self-similar solutions of the axisymmetric FFE jet and
we derive the physical conditions of the boundary between the
funnel jet and outside (wind/corona). Results are compared
with the M87 jet sheath in VLBI observations. Methods and
results for examining a parabolic jet streamline are presented
in Sections 2 and 3. Comparison with VLBI observations is
given in Section 4. Based on our results, Section 5 assigns
topical discussions and prospects for exploring the origin of
the M87 jet with mm/sub-mm VLBI observations in the near
future. Conclusions are provided in Section 6.

2. METHODS

We conduct a direct comparison between the observed jet
geometry in M87 and theoretical/numerical models. The
present paper investigates especially the part of parabolic
streams inside the SMBH’s sphere of influence. Quasi-steady
black hole ergosphere-driven jets are self-consistently gen-
erated from GRMHD simulations, and their connection to
mm/cm VLBI images is examined by utilizing steady axisym-
metric FFE jet solutions.

2.1. Funnel Jet Boundary in the FFE Approximation
According to a steady self-similar solution of the axisym-

metric FFE jet (Narayan et al. 2007; Tchekhovskoy et
al. 2008, hereafter NMF07, TMN08), we consider here
an approximate formula of the magnetic stream function
 (r, ✓) in polar (r, ✓) coordinates in the Boyer-Lindquist
frame (Tchekhovskoy et al. 2010):

 (r, ✓) =

✓
r

rH

◆

(1� cos ✓), (2)

where rH = rg(1 +
p
1� a2) is the radius of the black hole

horizon, and the dimensionless Kerr parameter a = J/Jmax
describes the black hole spin. J is the black hole angular mo-
mentum and its maximum value is given by Jmax = rgMc =
GM

2
/c, where G is the gravitational constant. 0    1.25

and 0  ✓  ⇡/2 are adopted in TMN08.  is conserved
along each field (stream-) line in a steady solution of the ax-
isymmetric MHD outflow4. If  = 0 is chosen, the asymptotic
streamline has a split-monopole (radial) shape z / R (where,
R = r sin ✓ and z = r cos ✓), whereas if  = 1 is chosen,
the streamline has the (genuine) parabolic shape z / R

2 at
R � rg (BZ77).  = 0.75 is the case of the parabolic shape
z / R

1.6 (BP82), which is important in this paper.

4 An asymptotic flow (r/rH � 1) follows z / R✏, where ✏ = 2/(2�),
which includes conical and parabolic shapes (1  ✏  2.67).
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a = 0.5 a = 0.7 a = 0.9 a = 0.99

FIG. 6.— A color filled contour of b2/⇢ for four different runs with different black hole spins (from left to right: a = 0.5, 0.7, 0.9, and 0.99). The final
snapshot (t/tg = 12000) is displayed for each run with the whole computational domain r/rg  100 and 0  ✓  ⇡. Other components in panels are identical
to those in Figure 1, but the black hole spin is adjusted.

a = 0.5 a = 0.7 a = 0.9 a = 0.99

FIG. 7.— Contours (gray) show poloidal magnetic field lines for four different runs with different black hole spins (from left to right: a = 0.5, 0.7, 0.9, and
0.99). The final snapshot (t/tg = 12000) is displayed for each run with the whole computational domain r/rg  100 and 0  ✓  ⇡. Other components in
panels are identical to those in Figure 6.
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a = 0.5 a = 0.7 a = 0.9 a = 0.99

FIG. 8.— A color filled contour of the outgoing mass flux Ṁout (similar to Figure 5) for four different runs with different black hole spins (from left to right:
a = 0.5, 0.7, 0.9, and 0.99). The final snapshot (t/tg = 12000) is displayed for each run with the whole computational domain r/rg  100 and 0  ✓  ⇡.
Navy solid line shows ur = 0, while “whiteout” regions indicate Ṁin (the ingoing mass flux). The jet stagnation is clearly displayed inside the PFD funnel
(ur = 0), and it shifts towards the black hole when a increases. �ut = 1 (Be ⇡ 0) is shown with a magenta dashed line. Other components in panels are
identical to those in Figure 6.

a = 0.5 a = 0.7 a = 0.9 a = 0.99

FIG. 9.— A color filled contour of the Lorentz factor � (only where ur > 0) for four different runs with different black hole spins (from left to right:
a = 0.5, 0.7, 0.9, and 0.99). The final snapshot (t/tg = 12000) is displayed for each run with the whole computational domain r/rg  100 and 0  ✓  ⇡.
Green solid lines show �p = 1 (in the fluid frame). Other components in panels are identical to those in Figure 6.
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a = 0.5 a = 0.7 a = 0.9 a = 0.99

FIG. 8.— A color filled contour of the outgoing mass flux Ṁout (similar to Figure 5) for four different runs with different black hole spins (from left to right:
a = 0.5, 0.7, 0.9, and 0.99). The final snapshot (t/tg = 12000) is displayed for each run with the whole computational domain r/rg  100 and 0  ✓  ⇡.
Navy solid line shows ur = 0, while “whiteout” regions indicate Ṁin (the ingoing mass flux). The jet stagnation is clearly displayed inside the PFD funnel
(ur = 0), and it shifts towards the black hole when a increases. �ut = 1 (Be ⇡ 0) is shown with a magenta dashed line. Other components in panels are
identical to those in Figure 6.

a = 0.5 a = 0.7 a = 0.9 a = 0.99

FIG. 9.— A color filled contour of the Lorentz factor � (only where ur > 0) for four different runs with different black hole spins (from left to right:
a = 0.5, 0.7, 0.9, and 0.99). The final snapshot (t/tg = 12000) is displayed for each run with the whole computational domain r/rg  100 and 0  ✓  ⇡.
Green solid lines show �p = 1 (in the fluid frame). Other components in panels are identical to those in Figure 6.

Parabolic Jets in M87 9

a = 0.5 a = 0.7 a = 0.9 a = 0.99

FIG. 6.— A color filled contour of b2/⇢ for four different runs with different black hole spins (from left to right: a = 0.5, 0.7, 0.9, and 0.99). The final
snapshot (t/tg = 12000) is displayed for each run with the whole computational domain r/rg  100 and 0  ✓  ⇡. Other components in panels are identical
to those in Figure 1, but the black hole spin is adjusted.

a = 0.5 a = 0.7 a = 0.9 a = 0.99

FIG. 7.— Contours (gray) show poloidal magnetic field lines for four different runs with different black hole spins (from left to right: a = 0.5, 0.7, 0.9, and
0.99). The final snapshot (t/tg = 12000) is displayed for each run with the whole computational domain r/rg  100 and 0  ✓  ⇡. Other components in
panels are identical to those in Figure 6.
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Table 1. Electromagnetic Power (per unit (Br )2 on horizon at poles), Lorentz factor and half-opening angle of

jet for different black hole spins and at a few radii for each model. The second to last column shows θ j at the

location of the peak in the angular power, which includes a significant power from disc at low black hole spins.

The last column shows θ j at a large radius for the field line that starts at θ j = 57◦ on the horizon, which begins

the force-free region in GRMHD numerical models that have an accretion disc up to H/R ≈ 0.3 and a corona up

to H/R ≈ 0.6.

Black hole spin study

a P P P P " θ j θ j

(r+) (rISCO) (10rg) (103rg) (103rg) (103rg) (5 × 103rg)

(Peak Power) (H/R = 0.6)

Normalized by disc field strength

0.1 0.024 15 0.5734 1.795 3.125 7 25◦ 4◦

0.2 0.1122 1.283 2.694 3.995 8 25◦ 4◦

0.5 0.7368 1.258 3.109 4.41 8 15◦–26◦ 4◦

0.8 1.893 2.632 5.721 6.92 10 15◦–26◦ 4◦

0.9 2.097 2.744 6.662 7.846 15 12◦–26◦ 5◦

0.9375 2.016 2.552 6.889 8.187 20 12◦–26◦ 5◦

Normalized by black hole field strength

0.1 0.015 62 0.3709 1.161 2.022 7 25◦ 4◦

0.2 0.054 28 0.6207 1.304 1.933 8 25◦ 4◦

0.5 0.3417 0.5835 1.442 2.045 8 15◦–26◦ 4◦

0.8 0.5478 0.7618 1.656 2.003 10 15◦–26◦ 4◦

0.9 0.4715 0.6168 1.498 1.764 15 12◦–26◦ 5◦

0.9375 0.3905 0.4942 1.334 1.586 20 12◦–26◦ 5◦

Figure 13. Field lines for the a/M = 0.1 GRFFE model with ν = 3/4 at t =
0 (initial state, non-rotating solution, dotted lines) and t = 1.2 × 103tg (final

converged rotating solution, solid lines). The field lines threading the black

hole show mild decollimation, as in the paraboloidal case, and the field lines

from the outer regions of the disc show some collimation.

models and the ν = 3/4 force-free models are in excellent agree-

ment. A monopolar, paraboloidal, or cylindrical force-free model

would not agree this well.

Figs 13 and 14 show the initial and final configurations of the field

lines for the a/M = 0.1 and 0.9375 models, respectively. We see that

the Keplerian rotation of the disc leads to some collimation of the

disc field lines. On the other hand, the spin of the black hole leads

to modest decollimation of the field lines near the poles.

Figure 14. Similar to Fig. 13, but for a rapidly spinning black hole with

a/M = 0.9375. There is again mild decollimation of the field lines threading

the black hole, and some collimation of field lines from the disc.

4.5 Dependence on the transition model

Different models of the transition region were studied and Table 2

gives the same information as Table 1 for these different models.

The first model, called ‘TModel 1’, has been already discussed in

Sections 4.3 and 4.4. It uses equation (3) for $F with $DBH/$H =
0.32 and rtrans$ = 2r+, and equation (2) for the vector potential with

rtransB = 2r+.

4.5.1 TModel 2

The second model, called ‘TModel 2’, uses equation (4) for $F

with $DBH/$H = 0.32, rtrans$ = 3r+ and r0 = 2r+, and equation (2)
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a high-pressure (gas + magnetic) corona squeezing material
against an inner centrifugal wall, implying that the magneto-
centrifugal mechanism (Blandford & Payne 1982, hereafter
BP82) does play a minor role. Hawley & Krolik (2006)
concluded that the precise shape and collimation of the en-
tire outflow (PFD jet + funnel-wall jet + coronal wind) are
uncertain for two reasons: i) the outer boundary of the matter-
dominated funnel-wall jet is somewhat indistinct and ii) there
is a smooth transition as a function of polar angle between
mildly relativistic unbound matter and slightly slower but
bound coronal matter. On the other hand, the boundary be-
tween the low-density PFD funnel jet interior and the high-
density funnel-wall jet is sharp and clear. Properties of the
coronal wind are investigated in GRMHD simulation with
various black hole spins and different magnetic configurations
(e.g. Narayan et al. 2012; Sadowski et al. 2013; Yuan et al.
2015), but there is no unique way to discriminate the bound-

ary (Sadowski et al. 2013).
Comparisons of GRMHD simulations with steady solu-

tions of the axisymmetric force-free disk wind (McKinney &
Narayan 2007a) provide a fundamental similarity of the PFD
funnel jet. In the fiducial GRMHD simulation, the vertically
(height) integrated toroidal current, which is enclosed inside
a radius, follows a remarkably similar power-law profile with
the parabolic (or simply we use parabolic throughout this pa-
per) solution (✏ = 1.6) of the disk wind (BP82), whereas the
split-monopole (✏ = 1) or genuine paraboloidal (✏ = 2) so-
lutions are well-known (Blandford & Znajek 1977, hereafter
BZ77). This scaling is found to be maintained in a time-
averaged sense, but also at each instant of time. It is also inde-
pendent of the black hole spin. As a consequence, the poloidal
magnetic field of the PFD jet in the GRMHD simulation
agrees well with the force-free solution of a non-rotating thin
disk having the parabolic geometry. McKinney & Narayan
(2007b) performed general relativistic FFE (GRFFE) simula-
tions of the disk wind. The magnetosphere of their GRFFE
simulation with parabolic geometry also matches remarkably
well to the PFD funnel jet in the fiducial GRMHD simula-
tion, but no better than with the non-rotating force-free thin
disk solution with the BP82-type parabolic geometry. It sug-
gests that a rotation of the magnetic field leads to negligible
“self-collimation”.

Notable agreement of the BP82-type parabolic shape of the
PFD funnel jet between GRMHD simulations and force-free
(steady/time-dependent and/or non-rotating/rotating) models
indicates that gas plus magnetic pressure of the wind/corona
in GRMHD simulations is similar to the magnetic pressure
in the FFE disk wind outside the funnel region. Note that
McKinney & Narayan (2007b) considered only the portion
of i) the steady solution of the axisymmetric FFE disk wind
and ii) the GRFFE simulation of the disk wind (both winds
are in the parabolic shape) that overlap the funnel jet region in
the GRMHD simulation. So far, the boundary condition and
the shape of the funnel edge are poorly constrained. It is also
unclear where the footpoint of the outermost streamline of the
PFD funnel jet will be anchored in the quasi-steady states of
GRMHD simulations.

The collimation of the PFD funnel jet is still the issue.
GRMHD simulations in the literature exhibit jet collimation
ceasing at ⇠ 50 rg (Hawley & Krolik 2006). The largest
simulations to date extend up to r = 104 rg (McKinney
2006) and show �1 . 10 saturated beyond ⇠ a few of
100 rg (despite b

2
/⇢ � 1), where the jet collimation ter-

minates, following a conical expansion downstream. Global
SRMHD or (GR)FFE simulations with a “fixed” curvilin-
ear boundary wall (i.e., parabolic; Komissarov et al. 2007,
2009; Tchekhovskoy et al. 2008, 2010) show bulk accel-
eration up to �1 ⇠ 101–103, whereas it is still unclear
how such a highly relativistic flow can be stably confined
in a realistic environment. A recent semi-analytical model
shows that the collimation of PFD jets may take place by
the wind in RIAFs, if the total wind power Pwind exceeds
about 10% of the jet power Pjet (Globus & Levinson 2016),
while Pwind/Ṁc

2 ⇡ 10�3 (where Ṁ denotes the mass accre-
tion rate at the horizon) is obtained by a GRMHD simulation
around the Schwarzschild black hole (Yuan et al. 2015).

In this paper, we examine the structure of the PFD funnel jet
with GRMHD simulations. The funnel edge is compared with
steady self-similar solutions of the axisymmetric FFE jet and
we derive the physical conditions of the boundary between the
funnel jet and outside (wind/corona). Results are compared
with the M87 jet sheath in VLBI observations. Methods and
results for examining a parabolic jet streamline are presented
in Sections 2 and 3. Comparison with VLBI observations is
given in Section 4. Based on our results, Section 5 assigns
topical discussions and prospects for exploring the origin of
the M87 jet with mm/sub-mm VLBI observations in the near
future. Conclusions are provided in Section 6.

2. METHODS

We conduct a direct comparison between the observed jet
geometry in M87 and theoretical/numerical models. The
present paper investigates especially the part of parabolic
streams inside the SMBH’s sphere of influence. Quasi-steady
black hole ergosphere-driven jets are self-consistently gen-
erated from GRMHD simulations, and their connection to
mm/cm VLBI images is examined by utilizing steady axisym-
metric FFE jet solutions.

2.1. Funnel Jet Boundary in the FFE Approximation
According to a steady self-similar solution of the axisym-

metric FFE jet (Narayan et al. 2007; Tchekhovskoy et
al. 2008, hereafter NMF07, TMN08), we consider here
an approximate formula of the magnetic stream function
 (r, ✓) in polar (r, ✓) coordinates in the Boyer-Lindquist
frame (Tchekhovskoy et al. 2010):

 (r, ✓) =

✓
r

rH

◆

(1� cos ✓), (2)

where rH = rg(1 +
p
1� a2) is the radius of the black hole

horizon, and the dimensionless Kerr parameter a = J/Jmax
describes the black hole spin. J is the black hole angular mo-
mentum and its maximum value is given by Jmax = rgMc =
GM

2
/c, where G is the gravitational constant. 0    1.25

and 0  ✓  ⇡/2 are adopted in TMN08.  is conserved
along each field (stream-) line in a steady solution of the ax-
isymmetric MHD outflow4. If  = 0 is chosen, the asymptotic
streamline has a split-monopole (radial) shape z / R (where,
R = r sin ✓ and z = r cos ✓), whereas if  = 1 is chosen,
the streamline has the (genuine) parabolic shape z / R

2 at
R � rg (BZ77).  = 0.75 is the case of the parabolic shape
z / R

1.6 (BP82), which is important in this paper.

4 An asymptotic flow (r/rH � 1) follows z / R✏, where ✏ = 2/(2�),
which includes conical and parabolic shapes (1  ✏  2.67).

κ = 0.75

McKinney & Narayan 2007
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GRMHD simulation (P13, a=0.7-0.98)

GRMHD simulation (This paper, a=0.5-0.99)

HST-1

FIG. 12.— Distribution of �� as a function of the jet axial distance z (de-projected with M = 6.2 ⇥ 109M� and ✓v = 14�) from the SMBH in units of
rg. The data of proper motions is taken from the literature (Reid et al. 1989; Biretta et al. 1995; Biretta et al. 1999; Kellermann et al. 2004; Kovalev et al.
2007; Ly et al. 2007; Cheung et al. 2007; Giroletti et al. 2012; Meyer et al. 2013; Asada et al. 2014; Hada et al. 2016; Mertens et al. 2016; Hada et al.
2017, labeled as R89, B95, B99, K04, K07, L07, C07, G12, M13, A14, H16, M16 and H17, respectively). Theoretical expectation by utilizing the FFE parabolic
(z / R1.8) jet solutions (NMF07, TMN08) is also displayed with varying Kerr parameters (a = 0.5: dotted line, a = 0.7: dashed line, a = 0.9: dashed-three
dotted line, and a = 0.99: solid line, respectively). The vertical solid line with horizontal bars (cyan) indicates a range of maximum values in the jet sheath
(between two outermost streamlines; z / R2 and z / R1.6), which are obtained in our GRMHD simulations at around rout = 100 rg (a = 0.5–0.99, see
Figure 9). For our reference, the maximum value in McKinney (2006, labeled as M06) with a = 0.9375 is marked with a filled star. Also, the vertical solid line
with horizontal bars (black) indicates a range of maximum values in Penna et al. (2013, labeled as P13) with a = 0.7–0.98. The horizontal gray line corresponds
to �� = cos ✓v with ✓v = 14�, at which the Doppler beaming has a peak (see also Figure 14).

smooth acceleration from subliminal to superluminal motions
upstream of HST-1 is argued in the context of the MHD jet
with an expanding parabolic nozzle (Nakamura & Asada
2013; Asada et al. 2014; Mertens et al. 2016; Hada et al.
2017), while observed proper motions exhibit a systematic

deceleration in the region downstream of HST-1 (Biretta et al.
1995; Biretta et al. 1999; Meyer et al. 2013) where the jet

forms a conical stream.
Paired sub-/superluminal motions in optical/radio observa-

tions at HST-1 (Biretta et al. 1999; Cheung et al. 2007)
(see Figure 12 at around ⇠ 106 rg) are modeled by the quad
relativistic MHD shock system with a coherent helical mag-
netic field (Nakamura et al. 2010; Nakamura & Meier 2014).
Taking the complex 3D kinematic features of trailing knots
downstream of HST-1 (Meyer et al. 2013) into account, a
growing current-driven helical kink instability associated with
forward/reverse MHD shocks in the highly magnetized rela-
tivistic jet (Nakamura & Meier 2004) may be responsible for
organizing the conical jet in M87 at kpc scale.

We examine here the jet kinematics with observations far
upstream of HST-1 at z/rg ' 103–104 (Kellermann et al.
2004; Kovalev et al. 2007; Hada et al. 2016, 2017; Mertens

et al. 2016). The distribution of �� reaches a maximum
level of ' 3 and extends to a lower value by more than two
orders of magnitude as is shown in Figure 12. Mertens et
al. (2016) interpret that the flow consists of a slow, mildly
relativistic (�� ⇠ 0.6: sub-luminal) layer (the exterior of the
jet sheath), associated either with instability patterns or winds,
and a fast, relativistic (�� ⇠ 2.3: superluminal) layer (the jet
sheath), which is an accelerating a cold MHD jet from the
Keplerian disk (i.e., the BP mechanism). Note that �app ' 1
corresponds to �� ' 1.46 with ✓v = 14� in M87.

In our numerical results, maximum values of �� ' 0.8–2.6
[the solid cyan vertical line in Figure 12] is obtained at around
rout/rg = 100 (✓ . 10�), depending on the black hole spin.
This range covers most of the higher part of observed proper
motions. For sufficiently high spins (a � 0.9), bulk speeds
of �� ' 1.7–2.6 could be associated with knotty structures
(see, Figure 9). Thus, we give an additional interpretation that
superluminal motions could be interpreted as moving blobs in
the underlying flow of the jet sheath. Regarding highly sub-
luminal motions, as is shown in Figures 8 and 9, we confirm
a non-relativistic coronal wind universally exists for a = 0.5–
0.99 with �� & 0.1 (see also Yuan et al. 2015, for a =
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FIG. 5.— The final snapshot of the fiducial run (a = 0.9375); t/tg =
9000. The outgoing mass flux Ṁout =

p
�g⇢ur(> 0), where

p
�g =

⌃ sin ✓ and ⌃ ⌘ r2 + a2 cos2 ✓, is shown with a color filled contour (the
upper computational domain; 0  ✓  ⇡/2). Contours with navy solid
lines show ur = 0, while “whiteout” regions indicate the ingoing mass flux
Ṁin =

p
�g⇢ur(< 0). The jet stagnation surface is clearly displayed

inside the PFD funnel (ur = 0). �ut = 1 (Be ⇡ 0) is shown with a
magenta dashed line. Other components are identical to those in Figure 2.

(MAD: e.g. Narayan et al. 2003; Igumenshchev 2008;
Tchekhovskoy et al. 2011) although the accretion flow in
our HARM fiducial run is identified as the “standard and nor-
mal evolution” (SANE: Narayan et al. 2012) without having
an arrested poloidal magnetic flux on the equatorial plane at
R > rH (see Figure 3). Anyhow, as a consequence of this
combination of effects, we could expect that the PFD jet to be
deformed into a non-conical geometry. Note that the funnel
structure becomes radial (i.e., conical) if the magnetic pres-
sure in the funnel is in equilibrium with the total pressure in
the corona and the RIAF body in 3D GRMHD simulations
(e.g. Hirose et al. 2004). We also remark that the low-density
funnel edge with b

2
/⇢ ' 1 is established even in the MAD

state with 3D runs (Ressler et al. 2017).
Finally, Figure 5 provides further examination of outflows

(and inflows as well) in the system. The outgoing mass flux
Ṁout exists both inside and outside the funnel, but Ṁout in
the corona is significantly higher than the funnel with ⇠ 1–3
orders of magnitude, which is quantitatively consistent with
other 3D simulations in the SANE state (e.g. Sadowski et al.
2013; Yuan et al. 2015). Aside from the terminology in McK-
inney & Gammie (2004), we consider outflows in the funnel
as jets, while those in the corona as winds (e.g. Sadowski et
al. 2013), as is labeled. The former is highly magnetized
with considerable poloidal magnetic flux and powered by the
spinning black hole, but the latter is not (see, Figures 2 and
3). A division boundary of these outflows lies on Be ⇡ 0
contour along the outermost BP82-type parabolic streamline.
That is, the black hole-driven PFD funnel jet is unbound, but
the RIAF-driven coronal wind is bound (at least in our simu-
lation up to rout/rg = 100).

In the coronal wind (bound), a considerable mass is sup-
plied from the RIAF and thus the outflow does not possess
sufficient energy to overcome the gravitational potential. On
the other hand, the funnel jet (unbound), which carries very

little mass, becomes relativistic quite easily (due to the mag-
netic acceleration along the poloidal magnetic field) and could
escape to infinity. However, the bound wind may not exist per-
manently at large distance; Be is presumably not a constant
(in the non-steady flow) and the sign can be positive with a 3D
turbulent environment (Yuan et al. 2015). The jet stagnation
surface in the PFD funnel, at which the contravariant radial
component of the plasma 4-velocity becomes zero (ur = 0;
McKinney 2006; Pu et al. 2015; Broderick & Tchekhovskoy
2015), is clearly identified.

In Figure 5, we can see that the jet stagnation surface
does reasonably coincide with the bound/unbound boundary:
Be ⇡ 0 (�ut = 1) except for the polar region (✓ ⇠ 0) of the
V-shaped geometry. Outside the PFD funnel jet, the coronal
wind can be identified with an outflowing gas where Ṁout ex-
ists, but there is an accreting gas (Ṁin) around ✓ ' ⇡/4. On
the other hand, we have an outflowing gas (Ṁout) in the RIAF
body at ⇡/3 . ✓ . 2/3⇡ (see Figure 4). This is not a wind,
but associated with turbulent motions. Thus, both inflows and
outflows are mixed up in the corona and RIAF body, suggest-
ing the adiabatic inflow-outflow solution (ADIOS: Blandford
& Begelman 1999, 2004). Note that ur does not vanish along
the jet/wind boundary and thus the wind plays a dynamical
role in confining the PFD jet (see also Figure 8).

The origin of the wind is beyond the scope of our consid-
eration here, but the magneto-centrifugal mechanism (BP82)
would be unlikely to operate; it is because of the absence of
a coherent poloidal magnet field outside the PFD funnel (see
Figure 3), where the toroidal magnetic field is dominant and
the plasma is not highly magnetized (b2/⇢ ⌧ 1 and �p & 1;
see Figures 2 and 4). Note that a dominant toroidal magnetic
field may be also true in the SANE state with 3D runs (e.g.
Hirose et al. 2004). Regarding the funnel-wall jet (Haw-
ley & Krolik 2006), which could be driven by a high-total
pressure corona squeezing material against an inner centrifu-
gal wall, does not seem to appear in our fiducial simulation.
We do not find any significant evidence of it; no pileup of the
mass flux and/or the total pressure at the funnel edge along
the BP82-type parabolic outermost streamline. There is a key
difference between the coronal wind and the funnel-wall jet;
the former is bound, while the later is unbound at least in the
vicinity of the black hole (De Villiers et al. 2003). The outer
boundary of the matter-dominated coronal wind (b2/⇢ < 0.1;
see Figures 2 and 5) is somewhat indistinct as is indicated by
Hawley & Krolik (2006).

3.2. Parameter Survey: (In)dependence on Black Hole Spins
Based on our fiducial run, we further examine the BP82-

type parabolic structure (z / R
1.6) of the PFD funnel jet

against the varying black hole spin. Different Kerr param-
eters are examined with same value of �p0,min = 100 in
the extended computational domain rout/rg = 100 (with
a grid assignment Nx1 ⇥ Nx2 = 512 ⇥ 512). We pre-
scribe rmax/rg=12.95, 12.45, 12.05, and 11.95, for a =
0.5, 0.7, 0.9, and 0.99, respectively.

3.2.1. Funnel Structure

Figure 6 exhibits b
2
/⇢ at the final stage t/tg = 12000 for

various black hole spins. First of all, we confirmed that the
overall structure outside the funnel seems to be unchanged
with different spins; b

2
/⇢ ' 10�3–10�1 is obtained in the

wind/corona region, while the RIAF body sustains b
2
/⇢ .

10�3. The MRI-driven turbulence has decayed in both the
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FIG. 5.— The final snapshot of the fiducial run (a = 0.9375); t/tg =
9000. The outgoing mass flux Ṁout =

p
�g⇢ur(> 0), where

p
�g =

⌃ sin ✓ and ⌃ ⌘ r2 + a2 cos2 ✓, is shown with a color filled contour (the
upper computational domain; 0  ✓  ⇡/2). Contours with navy solid
lines show ur = 0, while “whiteout” regions indicate the ingoing mass flux
Ṁin =

p
�g⇢ur(< 0). The jet stagnation surface is clearly displayed

inside the PFD funnel (ur = 0). �ut = 1 (Be ⇡ 0) is shown with a
magenta dashed line. Other components are identical to those in Figure 2.

(MAD: e.g. Narayan et al. 2003; Igumenshchev 2008;
Tchekhovskoy et al. 2011) although the accretion flow in
our HARM fiducial run is identified as the “standard and nor-
mal evolution” (SANE: Narayan et al. 2012) without having
an arrested poloidal magnetic flux on the equatorial plane at
R > rH (see Figure 3). Anyhow, as a consequence of this
combination of effects, we could expect that the PFD jet to be
deformed into a non-conical geometry. Note that the funnel
structure becomes radial (i.e., conical) if the magnetic pres-
sure in the funnel is in equilibrium with the total pressure in
the corona and the RIAF body in 3D GRMHD simulations
(e.g. Hirose et al. 2004). We also remark that the low-density
funnel edge with b

2
/⇢ ' 1 is established even in the MAD

state with 3D runs (Ressler et al. 2017).
Finally, Figure 5 provides further examination of outflows

(and inflows as well) in the system. The outgoing mass flux
Ṁout exists both inside and outside the funnel, but Ṁout in
the corona is significantly higher than the funnel with ⇠ 1–3
orders of magnitude, which is quantitatively consistent with
other 3D simulations in the SANE state (e.g. Sadowski et al.
2013; Yuan et al. 2015). Aside from the terminology in McK-
inney & Gammie (2004), we consider outflows in the funnel
as jets, while those in the corona as winds (e.g. Sadowski et
al. 2013), as is labeled. The former is highly magnetized
with considerable poloidal magnetic flux and powered by the
spinning black hole, but the latter is not (see, Figures 2 and
3). A division boundary of these outflows lies on Be ⇡ 0
contour along the outermost BP82-type parabolic streamline.
That is, the black hole-driven PFD funnel jet is unbound, but
the RIAF-driven coronal wind is bound (at least in our simu-
lation up to rout/rg = 100).

In the coronal wind (bound), a considerable mass is sup-
plied from the RIAF and thus the outflow does not possess
sufficient energy to overcome the gravitational potential. On
the other hand, the funnel jet (unbound), which carries very

little mass, becomes relativistic quite easily (due to the mag-
netic acceleration along the poloidal magnetic field) and could
escape to infinity. However, the bound wind may not exist per-
manently at large distance; Be is presumably not a constant
(in the non-steady flow) and the sign can be positive with a 3D
turbulent environment (Yuan et al. 2015). The jet stagnation
surface in the PFD funnel, at which the contravariant radial
component of the plasma 4-velocity becomes zero (ur = 0;
McKinney 2006; Pu et al. 2015; Broderick & Tchekhovskoy
2015), is clearly identified.

In Figure 5, we can see that the jet stagnation surface
does reasonably coincide with the bound/unbound boundary:
Be ⇡ 0 (�ut = 1) except for the polar region (✓ ⇠ 0) of the
V-shaped geometry. Outside the PFD funnel jet, the coronal
wind can be identified with an outflowing gas where Ṁout ex-
ists, but there is an accreting gas (Ṁin) around ✓ ' ⇡/4. On
the other hand, we have an outflowing gas (Ṁout) in the RIAF
body at ⇡/3 . ✓ . 2/3⇡ (see Figure 4). This is not a wind,
but associated with turbulent motions. Thus, both inflows and
outflows are mixed up in the corona and RIAF body, suggest-
ing the adiabatic inflow-outflow solution (ADIOS: Blandford
& Begelman 1999, 2004). Note that ur does not vanish along
the jet/wind boundary and thus the wind plays a dynamical
role in confining the PFD jet (see also Figure 8).

The origin of the wind is beyond the scope of our consid-
eration here, but the magneto-centrifugal mechanism (BP82)
would be unlikely to operate; it is because of the absence of
a coherent poloidal magnet field outside the PFD funnel (see
Figure 3), where the toroidal magnetic field is dominant and
the plasma is not highly magnetized (b2/⇢ ⌧ 1 and �p & 1;
see Figures 2 and 4). Note that a dominant toroidal magnetic
field may be also true in the SANE state with 3D runs (e.g.
Hirose et al. 2004). Regarding the funnel-wall jet (Haw-
ley & Krolik 2006), which could be driven by a high-total
pressure corona squeezing material against an inner centrifu-
gal wall, does not seem to appear in our fiducial simulation.
We do not find any significant evidence of it; no pileup of the
mass flux and/or the total pressure at the funnel edge along
the BP82-type parabolic outermost streamline. There is a key
difference between the coronal wind and the funnel-wall jet;
the former is bound, while the later is unbound at least in the
vicinity of the black hole (De Villiers et al. 2003). The outer
boundary of the matter-dominated coronal wind (b2/⇢ < 0.1;
see Figures 2 and 5) is somewhat indistinct as is indicated by
Hawley & Krolik (2006).

3.2. Parameter Survey: (In)dependence on Black Hole Spins
Based on our fiducial run, we further examine the BP82-

type parabolic structure (z / R
1.6) of the PFD funnel jet

against the varying black hole spin. Different Kerr param-
eters are examined with same value of �p0,min = 100 in
the extended computational domain rout/rg = 100 (with
a grid assignment Nx1 ⇥ Nx2 = 512 ⇥ 512). We pre-
scribe rmax/rg=12.95, 12.45, 12.05, and 11.95, for a =
0.5, 0.7, 0.9, and 0.99, respectively.

3.2.1. Funnel Structure

Figure 6 exhibits b
2
/⇢ at the final stage t/tg = 12000 for

various black hole spins. First of all, we confirmed that the
overall structure outside the funnel seems to be unchanged
with different spins; b

2
/⇢ ' 10�3–10�1 is obtained in the

wind/corona region, while the RIAF body sustains b
2
/⇢ .

10�3. The MRI-driven turbulence has decayed in both the
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Figure 10. Model L: time-averaged spectral energy distribution. Two lines show
the model with ṁ = 10−6 and Ti/Te = 1. ṁ is chosen to normalize to 1.7 Jy
at 230 GHz. The heavy solid line corresponds to a run in which synchotron and
free–free cooling are taken into account as described in Appendix C. Dotted line
is a free–free process spectrum. Model that does not account for any cooling in
the MHD simulation is marked as thin-solid line (also this model is not shown
in the table). Observational points are taken from Reynolds et al. (1996a), Tan
et al. (2008; 230 GHz), Perlman et al. (2001; 10.8 µm), Harms et al. (1994; 7 ×
1014 Hz), and Di Matteo et al. (2003; 2–10 keV).
(A color version of this figure is available in the online journal.)

Because of the shortcomings of the model, however, it is
useful to use a more nearly model-independent estimate of
the total pair production rate based on Equation (31). For
LX ≃ 3 × 1041 (7 × 1040 from Di Matteo et al. (2003) corrected
upward to an isotropic X-ray luminosity because our models
beam X-rays into the equatorial plane) and αX = 0, Ṅ± ≃
1045 s−1. This implies LK = fjetṄ±mec

2Γjet = 8×1038Γjetfjet.
The implied pair density exceeds nGJ for model L by ∼108.
Since nGJ ∝ B ∝ ṁ1/2 and n± ∝ L2

512 the implied pair
density will fall below the Goldreich–Julian density only for
(ṁ/10−6)1/2(L512/1041.5)−2 < 108. Even if ṁ ∼ 10−4 this
would require L512 ∼ 1038, which seems implausibly low
given the ∼1040 erg s−1 TeV luminosity (Aharonian et al. 2006).
Therefore, the main conclusion of this section does not change
even if a more self-consistent model is found.

There are significant limitations on the model. We have
considered only one value of a∗; estimates and preliminary
models not described here show that the pair production rate is
a steeply increasing function of a∗. Further preliminary models
and a comparison of the Ti/Te = 3 model for Sgr A* with
the scaling relation for Ti/Te = 1 models also show that
the pair production rate declines sharply as Ti/Te increases.
But the allowed values of Ti/Te are strongly constrained by
submillimeter VLBI (Fish & Doeleman 2010), because as Ti/Te

increases so does the size of the synchrotron photosphere.
After submission of this article, Levinson & Rieger (2010)

released a paper focused on modeling TeV emission and pair
production in M87 (and Sgr A*). These authors use an ADAF
model, assume that Te saturates at few×109 K (Θe ∼ 1), and
set ṁ ≈ 10−4. The model is semianalytic and does not include
general relativistic effects. Bremsstrahlung is the dominant

source of photons near the pair-production threshold, and the
resulting radiation field is inadequate to raise the pair density
above nGJ. Levinson & Rieger (2010) therefore invoke a gap/
pair cascade model to produce pairs.

We have investigated the Levinson & Rieger (2010) model by
calculating images and an SED for a GRMHD/radiative transfer
model with Θe = 1 everywhere, ṁ = 10−4, and a∗ = 0.94. The
model includes synchrotron, Compton, and bremsstrahlung. We
find f230 GHz = 1 Jy (at i = 30 deg), and LBZ = 1043 erg s−1,
consistent with observations. Free–free cooling dominates over
synchrotron cooling only at r > 20 GM/c2. Levinson &
Rieger neglect Compton cooling, but we find that Compton
y = Aτ ≈ 12 and that with Compton cooling included the
model efficiency is ≈ 200%. The parameter space is large and the
spectrum is parameter sensitive, so there may be nearby models
(with different a∗, Θe, ṁ, i) that are radiatively inefficient. The
main point, however, is that self-consistent models can contain
surprises that might not be anticipated in quasi-analytic esti-
mates. Comptonization, in particular, occurs close to the ISCO,
is therefore sensitive to the spin, and requires proper treatment of
gravitational lensing. We concur with Levinson & Rieger’s con-
clusion that the pair production rate due to γ γ collisions is small.

The model is also constrained by VLBI measurements. An
optically thick spherical source of radius r and distance D in the
Rayleigh–Jeans regime has flux fν ≈ 2πΘemec

2(r/D)2/λ2.
Small r inferred from VLBI therefore requires high Θe. At
230 GHz Fish & Doeleman (2010) report structure on scales
of a “few Schwarzschild” radii, while we find the Levinson &
Rieger model has a photosphere at ≈ 30 GM/c2. In comparison,
our model L has a photosphere at ∼7 GM/c2. This argues against
the Levinson & Rieger model if the reported structure arises
from the accretion flow rather than the jet.

7. SUMMARY

We have studied electron–positron pair production in black
hole magnetospheres by γ γ collisions. Our pair production rate
simulations are based on a GRMHD time-dependent model of
a magnetized disk around a spinning black hole. The disk is
a source of high-energy radiation formed in multiple Compton
scatterings of synchrotron photons. The pair production rates
are calculated nearly ab initio within 40GM/c2 of the event
horizon, using Monte Carlo methods.

The main results of this work are the fitting formulae for the
rate and spatial distribution of pair production in terms of m8 and
ṁ (Equation (26)) and in terms of m8, LX , and α (Equation (30)).
These indicate that γ γ pair production is concentrated close to
the event horizon, and is sensitive to model parameters such as
ṁ. The pair production rate is also sensitive to black hole spin
a∗ and the electron–ion temperature ratio Ti/Te, but exploring
the dependence on these parameters is beyond the scope of this
paper.

We also find that the pair plasma is created with a power-
law-like energy distribution. Most of the pairs are created in
the equatorial plane of the thick disk because MeV photons
created by Compton scattering are beamed into the equatorial
plane. The pair plasma has negligible effect on the accretion
flow dynamical evolution, consistent with previous results by
Esin (1999) and Kusunose & Mineshige (1996), assuming that
it escapes on the viscous timescale.

Only a few percent of all pairs are created in the magnetized
funnel (black hole magnetosphere), and most of pairs in the
funnel are created near its wall. Pair jets will have spectra with
a turnover frequency at around νt = 10−3n±L Hz (for example,
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Figure 1. Schematic representation of the magnetosphere structure: a vacuum
gap of height h < rs accelerates particles (electrons or positrons) to high
Lorentz factors. The gap is exposed to soft radiation emitted from a source of
size Rd. Curvature emission and inverse Compton scattering of ambient radiation
produce VHE photons with a spectrum extending up to 104 TeV. Photons having
energies below a few TeV can escape freely to infinity. Interactions of IC
photons having energies well above 10 TeV with the ambient radiation initiate
pair cascades just above the gap, leading to a large multiplicity. A force-free
outflow is established just above the pair formation front and appears as the
VLBA jet. Intermittencies of the cascade process, induced by modest changes
in accretion rate, give rise to the variability of the TeV emission observed by
H.E.S.S., and the fluctuations of the resulted force-free outflow, as indicated by
the morphological changes of the VLBA jet.

at energies of up to a few TeV to freely escape the system. The
electromagnetic cascade is initiated by IC photons having much
higher energies, up to ∼104 TeV, for which the γ γ -optical depth
is much larger. The seed charges are provided by annihilation of
MeV photons from the RIAF. It is found that the gap width
is not smaller than 0.01rs if the density of seed charges is
below the Goldreich–Julian (GJ) value. The luminosity of the
VHE photons produced in the gap can account for the TeV
luminosity observed by H.E.S.S. Any intermittencies of the
cascade formation process would naturally lead to the variability
of both, the magnetospheric TeV emission and the resultant
force-free flow, as observed. A schematic illustration of the
model is presented in Figure 1.

2. THE ROLE OF A RADIATIVE INEFFICIENT FLOW

The strength of the magnetic field in a black hole magneto-
sphere is limited by the rate at which matter is accreted into
the black hole. At sufficiently low accretion rates the flow be-
comes radiative inefficient (RIAF) and the electron temperature
in the inner region of the RIAF may exceed mec

2 (Narayan & Yi
1995, hereafter NY95). Bremsstrahlung cooling then gives rise
to emission of soft gamma-ray photons that annihilate in the
magnetosphere, leading to injection of charges on open mag-
netic field lines. For sufficiently high annihilation rate the re-
sultant charge density can exceed the GJ value everywhere,
keeping the magnetosphere force-free. At lower annihilation
rates the magnetosphere will be starved. In the latter case, the
charge density produced by the annihilating photons from the
RIAF defines the multiplicity required to establish a force-free
outflow above the vacuum gap.

In what follows we give a crude estimate of the ratio of
the charge density produced by the RIAF and the GJ density,
assuming that the accreting gas is in equipartition (β = 0.5)
with the magnetic field.

Henceforth, the accretion rate is measured in units of the
Eddington rate, ṁ = Ṁ/ṀEdd, where the Eddington accretion
rate is defined as ṀEdd = LEdd/ηffc

2 = 1027M9 g s−1, with
ηff = 0.1 adopted. The ion temperature of the accreted gas is
close to virial, reaching Ti ∼ 1012 K at r = rs . The ion density
is given by

ni(r) = Ṁ

2πr2mpvr

= 5 × 1011ṁM−1
9 (r/rs)−3/2 cm−3, (1)

adopting vr = 0.1c(r/rs)−1/2 for the RIAF radial velocity. The
Thomson optical depth is

τ ≃ 102ṁ(r/rs)−1/2. (2)

Typically τ ≪ 1 for accretion rates ṁ ≪ ṁcrit, where ṁcrit is
the critical rate below which RIAF can exist.

We assume that the equipartition magnetic pressure is half
the gas pressure, viz., B2/8π = 0.5ρic

2
s , where cs ≃ c/

√
3 ×

(r/rs)−1/2 is the sound speed. This yields

B ≃ 4 × 104(ṁ/M9)1/2(r/rs)−5/4 G. (3)

The numerical values in the expressions for n i and B are in rough
agreement with the results of NY95 for a viscosity parameter
α = 0.3, adiabatic index of 4/3, and radiative efficiency
1 − f ≪ 1, where f is the advection parameter, as defined
in NY95.

At radii r < 103rs the electron–ion coupling becomes weak
by virtue of rapid cooling. In this region electron cooling is
dominated by synchrotron emission from thermal electrons. For
accretion rates near the critical rate ṁcrit the electron temperature
saturates at Te ∼ a few times 109 K. At such temperatures
only photons emitted by electrons at the tail of the thermal
distribution have energies above the pair-production threshold.
However, for much lower accretion rates, ṁ ≪ ṁcrit, the
electron temperature approaches 1010 K, and thermal photons
can annihilate.

To estimate the annihilation rate at highly sub-critical accre-
tion rates, we adopt the cooling functions for electron–ion and
electron–electron bremsstrahlung, qei and qee, from NY95. The
total cooling rate per unit volume is then given to a good ap-
proximation by qff = qee + qei ≃ 7.5 × 10−22n2

eθe erg s−1 cm−3

at electron temperatures θe = kTe/mec
2 ! 1. The numerical

value corresponds to the choice θe = 1 in the logarithmic term
in Equations (3.6) and (3.8) of NY95. Since the RIAF is opti-
cally thin, pair production does not affect the leptonic content
of the gas, and one can safely assume ne = ni . By employing
Equation (1) one arrives at

qff ≃ 1.8 × 102θeṁ
2M−2

9 (r/rs)−3 erg s−1 cm−3. (4)

The free–free luminosity emitted by the RIAF is Lff =∫
qffd

3r ≃ 2πr3qff ln(r/rs), from which we readily obtain the
number density of MeV photons in the magnetosphere:

nγ = qff2πr3 ln(r/rs)
2πcr2ϵγ

≃ 0.2qffr
3

cr2
s ϵγ

≃ 1.4 × 1011ṁ2M−1
9 , (5)

where ϵγ = 3θe(mec
2). The production rate of e± pairs inside

the magnetosphere due to γ γ -annihilation is approximately
σγγ n2

γ c(4π/3)r3
s . In steady state this rate is balanced by the

escape rate, roughly 4πr2
s n±c. Equating the two rates one has

n± = σγγ n2
γ rs/3 ≃ 3 × 1011ṁ4M−1

9 cm−3. (6)
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Figure 1. Schematic representation of the magnetosphere structure: a vacuum
gap of height h < rs accelerates particles (electrons or positrons) to high
Lorentz factors. The gap is exposed to soft radiation emitted from a source of
size Rd. Curvature emission and inverse Compton scattering of ambient radiation
produce VHE photons with a spectrum extending up to 104 TeV. Photons having
energies below a few TeV can escape freely to infinity. Interactions of IC
photons having energies well above 10 TeV with the ambient radiation initiate
pair cascades just above the gap, leading to a large multiplicity. A force-free
outflow is established just above the pair formation front and appears as the
VLBA jet. Intermittencies of the cascade process, induced by modest changes
in accretion rate, give rise to the variability of the TeV emission observed by
H.E.S.S., and the fluctuations of the resulted force-free outflow, as indicated by
the morphological changes of the VLBA jet.

at energies of up to a few TeV to freely escape the system. The
electromagnetic cascade is initiated by IC photons having much
higher energies, up to ∼104 TeV, for which the γ γ -optical depth
is much larger. The seed charges are provided by annihilation of
MeV photons from the RIAF. It is found that the gap width
is not smaller than 0.01rs if the density of seed charges is
below the Goldreich–Julian (GJ) value. The luminosity of the
VHE photons produced in the gap can account for the TeV
luminosity observed by H.E.S.S. Any intermittencies of the
cascade formation process would naturally lead to the variability
of both, the magnetospheric TeV emission and the resultant
force-free flow, as observed. A schematic illustration of the
model is presented in Figure 1.

2. THE ROLE OF A RADIATIVE INEFFICIENT FLOW

The strength of the magnetic field in a black hole magneto-
sphere is limited by the rate at which matter is accreted into
the black hole. At sufficiently low accretion rates the flow be-
comes radiative inefficient (RIAF) and the electron temperature
in the inner region of the RIAF may exceed mec

2 (Narayan & Yi
1995, hereafter NY95). Bremsstrahlung cooling then gives rise
to emission of soft gamma-ray photons that annihilate in the
magnetosphere, leading to injection of charges on open mag-
netic field lines. For sufficiently high annihilation rate the re-
sultant charge density can exceed the GJ value everywhere,
keeping the magnetosphere force-free. At lower annihilation
rates the magnetosphere will be starved. In the latter case, the
charge density produced by the annihilating photons from the
RIAF defines the multiplicity required to establish a force-free
outflow above the vacuum gap.

In what follows we give a crude estimate of the ratio of
the charge density produced by the RIAF and the GJ density,
assuming that the accreting gas is in equipartition (β = 0.5)
with the magnetic field.

Henceforth, the accretion rate is measured in units of the
Eddington rate, ṁ = Ṁ/ṀEdd, where the Eddington accretion
rate is defined as ṀEdd = LEdd/ηffc

2 = 1027M9 g s−1, with
ηff = 0.1 adopted. The ion temperature of the accreted gas is
close to virial, reaching Ti ∼ 1012 K at r = rs . The ion density
is given by

ni(r) = Ṁ

2πr2mpvr

= 5 × 1011ṁM−1
9 (r/rs)−3/2 cm−3, (1)

adopting vr = 0.1c(r/rs)−1/2 for the RIAF radial velocity. The
Thomson optical depth is

τ ≃ 102ṁ(r/rs)−1/2. (2)

Typically τ ≪ 1 for accretion rates ṁ ≪ ṁcrit, where ṁcrit is
the critical rate below which RIAF can exist.

We assume that the equipartition magnetic pressure is half
the gas pressure, viz., B2/8π = 0.5ρic

2
s , where cs ≃ c/

√
3 ×

(r/rs)−1/2 is the sound speed. This yields

B ≃ 4 × 104(ṁ/M9)1/2(r/rs)−5/4 G. (3)

The numerical values in the expressions for n i and B are in rough
agreement with the results of NY95 for a viscosity parameter
α = 0.3, adiabatic index of 4/3, and radiative efficiency
1 − f ≪ 1, where f is the advection parameter, as defined
in NY95.

At radii r < 103rs the electron–ion coupling becomes weak
by virtue of rapid cooling. In this region electron cooling is
dominated by synchrotron emission from thermal electrons. For
accretion rates near the critical rate ṁcrit the electron temperature
saturates at Te ∼ a few times 109 K. At such temperatures
only photons emitted by electrons at the tail of the thermal
distribution have energies above the pair-production threshold.
However, for much lower accretion rates, ṁ ≪ ṁcrit, the
electron temperature approaches 1010 K, and thermal photons
can annihilate.

To estimate the annihilation rate at highly sub-critical accre-
tion rates, we adopt the cooling functions for electron–ion and
electron–electron bremsstrahlung, qei and qee, from NY95. The
total cooling rate per unit volume is then given to a good ap-
proximation by qff = qee + qei ≃ 7.5 × 10−22n2

eθe erg s−1 cm−3

at electron temperatures θe = kTe/mec
2 ! 1. The numerical

value corresponds to the choice θe = 1 in the logarithmic term
in Equations (3.6) and (3.8) of NY95. Since the RIAF is opti-
cally thin, pair production does not affect the leptonic content
of the gas, and one can safely assume ne = ni . By employing
Equation (1) one arrives at

qff ≃ 1.8 × 102θeṁ
2M−2

9 (r/rs)−3 erg s−1 cm−3. (4)

The free–free luminosity emitted by the RIAF is Lff =∫
qffd

3r ≃ 2πr3qff ln(r/rs), from which we readily obtain the
number density of MeV photons in the magnetosphere:

nγ = qff2πr3 ln(r/rs)
2πcr2ϵγ

≃ 0.2qffr
3

cr2
s ϵγ

≃ 1.4 × 1011ṁ2M−1
9 , (5)

where ϵγ = 3θe(mec
2). The production rate of e± pairs inside

the magnetosphere due to γ γ -annihilation is approximately
σγγ n2

γ c(4π/3)r3
s . In steady state this rate is balanced by the

escape rate, roughly 4πr2
s n±c. Equating the two rates one has

n± = σγγ n2
γ rs/3 ≃ 3 × 1011ṁ4M−1

9 cm−3. (6)
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The GJ density can be related to the accretion rate ṁ through
Equation (3) with r = rs :

nGJ = ΩB

2πec
= 5 × 10−2ṁ1/2M

−3/2
9 cm−3. (7)

Thus, we obtain

n±/nGJ ≃ 6 × 1012ṁ7/2M
1/2
9 . (8)

As seen, below a certain accretion rate, roughly ṁ ! 2 × 10−4,
injection of charges by this mechanism cannot provide complete
screening of the magnetosphere. The ratio nGJ/n± then defines
the multiplicity required to produce a force-free flow. At higher
accretion rates a vacuum gap may not exist. However, as noted
above, the electron temperature decreases with increasing ṁ,
eventually dropping below mec

2. Detailed ADAF calculations
in Kerr spacetime (e.g., Manmoto 2000; Li et al. 2009) indicate
a cutoff in the emitted spectrum at around θe ∼ 1 even for
ṁ ≪ ṁcrit. For θe < 1 the number density of MeV photons
is suppressed by a factor of roughly 6 exp(1/θe), and n± ∝ n2

γ

by a factor of [6 exp(1/θe)]2. Thus, there is an uncertainty of
two to three orders of magnitudes in our estimate of the pair
density n±. This large uncertainty and the strong dependence
of charge injection on accretion rate motivates detailed self-
consistent calculations. A complete, self-consistent treatment
should also account for general relativistic effects, which are
important close enough to the horizon.

The strong dependence on accretion rate suggests that a gap
may form during periods of low accretion, so that emission from
the gap may be intermittent.

3. TeV EMISSION AND PAIR PRODUCTION FROM
CHARGES ACCELERATING IN A STARVED

MAGNETOSPHERE

We consider a rapidly rotating black hole of mass M =
109M9M⊙ embedded in an ambient radiation field. The radiation
source is characterized by a luminosity Ld = 1041L41 erg s−1,
a size Rd = Rrs = 3 × 1014M9R cm, and SED (i.e., νFν) peak
energy ϵ0 = 1ϵ̃0 eV. The energy density of this radiation field
is us ≃ 3L41R−2M−2

9 erg cm−3, and the corresponding number
density of photons at the peak (measured over a logarithmic
energy interval) is

ns(ϵ0) ≃ 1.8 × 1012L41R−2M−2
9 ϵ̃−1

0 cm−3. (9)

3.1. Curvature and Inverse Compton Emission

The electric potential difference across a gap of height h
generated by a maximally rotating black hole can be expressed
as

∆V = 1.7 × 1021B4M9(h/rs)2 Volts. (10)

Charges accelerating in the gap will quickly reach a terminal
Lorentz factor at which radiative losses balance energy gain,
viz., q∆V = P t = Ph/c (Levinson 2000), where the net energy
loss rate, P = Pcur + PIC, is the sum of curvature losses

Pcur = 2
3

q2cγ 4

ρ2
, (11)

here ρ is the curvature radius of magnetic field lines, and IC
(Thomson) losses

PIC = σT cγ 2us. (12)

Equating ∆V and Pcurv and using Equations (10) and (11),
one finds that curvature radiation limits the Lorentz factor of
emitting electrons (positrons) to

γcur = 5 × 1010B
1/4
4 M

1/2
9 (h/rs)1/4(ρ/rs)1/2. (13)

If the Thomson regime applies, IC scattering of electrons on the
ambient photons limits the Lorentz factor to

γIC =
(

e∆V

σT hus

)1/2

= 2 × 109B
1/2
4 M9L

−1/2
41 R(h/rs)1/2. (14)

Comparing Equations (13) and (14), it is seen that particle losses
are dominated by IC scattering, viz., γIC < γcur, if

L41/R2 > 1.6 × 10−3B
1/2
4 M9(h/rs)1/2(ρ/rs)−1. (15)

The spectrum of curvature emission peaks at an energy

ϵcr,max = 3
2

h̄cγ 3
max

ρ
" 10B

3/4
4 M

1/2
9 (h/rs)3/4(ρ/rs)1/2 TeV,

(16)
where γmax = min(γcur, γIC). The corresponding number of
curvature photons emitted by a single particle is, to a good
approximation,

Nγ = Pcurh/(cϵcr,max) # 4 × 108B
1/4
4 M

1/2
9 (h/rs)5/4

× (ρ/rs)−1/2(1 + f )−1, (17)

where f = PIC/Pcur denotes the ratio of IC and curvature loss
rates. Likewise, the maximum energy of IC photons is

ϵIC,max = mec
2γmax " 103B

1/2
4 M9L

−1/2
41 R(h/rs)1/2 TeV. (18)

The number of IC photons emitted by a single electron depends
on the spectrum of the target radiation field. A crude estimate
gives

Nγ = PICh/(cϵIC,max) # 106.2B
1/2
4 L

1/2
41 R−1

× (h/rs)3/2(1 + f −1)−1, (19)

but the actual number may be much larger, roughly by a factor
of mec

2/(γmaxhνs0) if the SED of the target radiation field peaks
at a frequency νs0 that satisfies hνs0 ≪ mec

2. Inside the gap the
field aligned electric field, E||, is unscreened. This implies that
the charge density on magnetic field lines must not exceed the
GJ value, nGJ = ΩB cos θ/2πec. The maximum gamma-ray
power that can be produced by particles accelerating in the gap,
regardless of the specific gamma-ray production mechanism, is
thus

Lγ =
∫

nGJc(e∆V )2πr2dθ ≃ 3×1047ηB2
4M2

9 (h/rs)2 erg s−1,

(20)
where η is a geometrical factor. It is worth noting that the
ratio Lγ /LBZ, where LBZ is the maximum Blandford-Znajek
(BZ) power that can be extracted by a force-free flow, scales as
(h/rs)2. If the pair density is well below the GJ density, then
the gamma-ray power in Equation (20) is reduced by a factor of
n±/nGJ.
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FIG. 5. A sketch of the global structure. The gap is represented by the yellowish stripe. The thick arrows point to the direction

of the electron (positron) beam leaving the outer (inner) gap boundary. The two arrows that emanate from the stagnation

surface show the flow directions of the plasma in the force-free region.

assume that each fluid is approximately adiabatic, u
⌫r⌫�± = 0. This assumption is reasonable if the spread in

momentum is much smaller than the bulk momentum. Under the above simplifications Eq. (B5) yields (�S±↵ +
Q±↵�@↵p±)(g↵⌫+u

↵

±u
⌫

±) = �S
⌫

±+Q
⌫

±�Qhu
⌫

±/2. Third, if newly created pairs are added to the fluid with an average
momentum that is roughly equal to the bulk momentum (as naively expected from energy-momentum conservation),
then Q

⌫

±�Qhu
⌫

±/2 = 0. With these approximations the radiative source term is orthogonal to the fluid velocity, viz.,
u
⌫

±S±⌫ = 0.

Next, we take the radial (⌫ = r) component of Eq. (B6), make use of the relation u
µ

±rµu±r = u
µ

±@µu±r��↵r�u
↵

±u
�

±
and the fact that ur�r

↵�
= u

r�r↵� , and note that for the invoked gap geometry u
µ
@µ = u

r
@r, to get

@r(u
2
±/2) =

1

2
(ur@ru

r + u
r
@rur) = �1

2
(ut

±)
2
@r↵

2 ± e

h±
Frtu

t

± + s±ru
r

±, (B7)

where s
r

± = S
r

±/(n±h±) and s±r = grrs
r

±. Noting that @' is a Killing vector we further have

� u
µrµu±' = ± e

n±h±
F'⌫u

⌫ + s±' = s±', (B8)

since F'⌫u
⌫ = F'ru

r = 0 for the split monopole geometry invoked in our gap model. Neglecting the toroidal
component of the radiative force, s±' = 0, which is reasonable for the assumed isotropic radiation field, implies
that the angular momentum of each fluid is conserved: u±' = g''(u' � !u

t) = const. For simplicity, we take the
angular momentum of the fluids to be zero (although our analysis can be readily extended to fluids with nonzero
angular momentum). Then, u'

± = !u
t, and from the normalization condition uµu

µ = �1 we readily have (↵ut

±) =
1 + grr(ur

±)
2 = 1 + u

2
±, which simply defines the Lorentz factor of the fluid measured by a ZAMO, �± = ↵u

t

±. Upon
substituting the relation �

2
± � 1 = u

2
± into Eq. (B7), using the orthogonality condition sµu

µ = s±tu
t

± + s±ru
r

± = 0,
noting that st± = g

tt
s±t + g

t'
s±' = �s±t/↵

2, since we invoke s±' = 0, and transforming to the tortoise coordinate,
we arrive at Eq. (10).

Appendix C: Radiation

1. Transport equation

In terms of the absorption coe�cient ⌫ and the emissivity g⌫ = c
2
j⌫/(h4

⌫
3), the transport equation for the photon

distribution function, f(xµ
, p

⌫), takes the covariant form:

p
↵
@↵f � �↵

��
p
�
p
�
@f

@p↵
= p

t(�⌫f + g⌫), (C1)
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Summary

• Energy source of M87 jet is suggested to be 
the rotating BH by symmetry and profile of the 
limb-brightening image
• This should be confirmed by EHT observations
• It needs detailed modeling of mass loading, 

dissipation and emission


