Jet and Shock Breakouts in Cosmic Transients

Early Emission in Shock Breakout of Binary Neutron Star Merger

Ayako Ishii (University of Tokyo)

Toshikazu Shigeyama (University of Tokyo) Masaomi Tanaka (Tohoku University)

Emission from Binary Neutron Star Merger

(Li & Paczynski 1998, B. D. Metzger et al. 2010, …)

GW170817

Electromagnetic emission was detected over wide wavelength range

http://aasnova.org/2015/10/28/what-do-you-get-when-two-neutron-stars-merge/

Observed emission could be almost explained by kilonova model

- Neutron star matter is ejected at merging (Neutron-rich ejecta for r-process nucleosynthesis)
- Emission by radioactive decay is detected

Early Emission from Neutron Star Merger

(M. Tanaka et al. 2017, Y. Utsumi et al. 2017, I. Arcavi 2018, …)

- Observations started in ~11 h after merging event
- Observed early emission (~1 day) is more luminous and bluer than model computation

Early emission can provide us with rich information \rightarrow It relates to the shock breakout

Emission in Shock Breakout

(C. D. Matzner and C. F. McKee 1999)

	NS merger	Supernova	long GRB
timescale (R/v)	~10 ⁻⁴ s	10~10 ⁴ s ? (depends on progenitor)	a few 10 ⁻² s ? (~R/cΓ)
nuclear reaction	occur	not occur	not occur
velocity	mildly relativistic	non relativistic	highly relativistic
opacity source	heavy elements H or He in outer region	depends on progenitor (H, He, O, C, Si, Fe, Ti, Ca…)	fully ionized gas e^{\pm}

- The timescale may relate to the observability
- Radiation mediated shock should be considered
 (→ it is neglected in subsequent topic for simplicity)

Free Neutron Precursor

(B. D. Metzger et al. 2015, Metzger 2017)

relativistic

region

iet

- Outermost ejecta is accelerated to relativistic speed in shock breakout (K. Kyutoku et al. 2014)
- Outermost ejecta expands sufficiently rapidly that neutrons
 avoid capture (M~10⁻⁴ M_{sun}) (Goriely et al. 2014, Just et al. 2014)
 Most neutrons are captured by nuclei
 Free neutrons can survive (?)
 - β-decay of free neutron powers "precursor" to kilonova

peaks at ~ few hours

Smoothed Particle Hydrodynamics (SPH) simulation (Just et al. 2015) \rightarrow Can the similar result be obtained in grid-based simulations?

Objectives

Examining early emission by free-neutron-powered precursor in shock breakout of binary neutron star merger

- Step 1
 - Developing relativistic Lagrangian hydrodynamics code and reproducing shock breakout of neutron star merger

jet

relativistic

region

- Step 2
 - Estimating surviving free neutron mass fraction with e⁺ and e⁻ captures and some nuclear reactions
- Step 3
 - Calculating mass of region where reasonable amount of free neutron is surviving

• Calculating emission from β -decay of free neutron

Simulation Condition

- Relativistic Lagrangian hydro simulation
- 1D spherical symmetric coordinate
- 500 computational cells in radial direction
- $E_{final} = 10^{47} 10^{50} \text{ erg}$
- R = 15, 20, 25, 30 km
- $M_{shell} = 10^{-3} M_{sun}$
- $\rho \propto (R r)^3$ (K. Kyutoku et al. 2014)

Shock wave propagates through merging NS Shock breakout occurs when it reaches NS surface

Estimation of free neutron rate

- Free neutron rate X_n is set to be 0.9 initially ($Y_e=0.1$) (beta equilibrium of cold dense matter)
- e^{\pm} is generated by shock heating

$$n + e^+ \to p + \bar{\nu_e}$$
$$p + e^- \to n + \nu_e$$

- Time scale of positron and electron capture processes are obtained depending on temperature ($\tau_+(T), \tau_-(T)$) (L. Kawano 1992, B. D. Metzger et al. 2015)
- Time evolution of X_n is calculated by $\frac{dX_n}{dt} = -\frac{X_n}{\Gamma \tau_+(T)} + \frac{(1-X_n)}{\Gamma \tau_-(T)}$
- Nuclear reaction network calculations are performed after temperature decreases down to 10¹⁰ K (Shigeyama et al. 2010) 8/17

Results in Shock Breakout

- Accelerated shock wave in breakout can be reproduced
- Ejecta in outermost region has relativistic speed

Results in Shock Breakout

Inner region

Neutrons are captured by nuclei to produce heavy elements

Middle region

• $p(n,\gamma)d$ reactions consume all neutrons to produce ⁴He

Outermost region

Inner region

• Neutrons are captured by nuclei to produce heavy elements

Middle region

• $p(n,\gamma)d$ reactions consume all neutrons to produce ⁴He

Outermost region

Inner region

• Neutrons are captured by nuclei to produce heavy elements

Middle region

• $p(n,\gamma)d$ reactions produce ⁴He with $X_n \sim 0.5$

Outermost region

Inner region

• Neutrons are captured by nuclei to produce heavy elements

Middle region

• $p(n,\gamma)d$ reactions consume all neutrons to produce ⁴He

Outermost region

Total Mass of Free Neutron

 $M_n = \Sigma_i (X_{n,i} \times m_i)$ (Total mass of free neutron layer)

- Preferred energy that yields maximum amount of free neutrons is 10⁴⁸ erg
- M_n value is smaller than previous SPH work by more than 2 orders (~10⁻⁴ M_{sun})

R [km] ($E_f = 10^{48} \text{ erg}$)	15	20	25	30
M _n [M _{sun}]	9.2×10 ⁻⁷	2.1×10 ⁻⁶	3.6×10 ⁻⁶	5.2×10 ⁻⁶

Emission from free neutron layer

 $M_{ej} = 10^{-5} M_{sun}$, $E_{final} = 10^{48} erg$, ejecta velocity ~c/3, opacity ~0.4 cm² g⁻¹

- Photon diffusion velocity becomes comparable to expansion velocity (c/3) at \sim 1,500 s
- Energy density at neutron decay time (~800 s) is

 $\epsilon_0 \sim 10^6 \text{ erg cm}^{-3} (M_{\rm n}/3.6 \times 10^{-6} M_{\rm sun})$

 Considering subsequent adiabatic expansion up to 1,500 s, luminosity L is estimated by

$$L \sim 7.6 \times 10^{41} \text{ erg s}^{-1} \left(\frac{t}{1,500 \text{ s}}\right)^{-2} \left(\frac{M_{\text{n}}}{3.6 \times 10^{-6} M_{\text{sun}}}\right)$$
 (Ultraviolet, timescale of ~30 min)

This is detectable with Swift if observations start immediately after the merger

Summary

- Shock breakout in neutron star merger was reproduced by relativistic Lagrangian hydrodynamics code
- Free neutrons can survive especially with $E_f \sim 10^{48} \mbox{ erg}$
- Total mass of neutron surviving region is ~10⁻⁶ M_{sun} (two orders smaller than previous SPH work)
 →due to the different ejecta component or low resolution with a small number of SPH particles
- Luminosity of free neutron emission is $\sim 7 \times 10^{41}$ erg s⁻¹ in optical band at ~ 30 min after merger event

Future work

 Monte Carlo Radiative transfer computation (A. Ishii et al. 2017) with thermal photons from free neutron decays

17/17 Thank you for your attention!

Reaction timescales

timescale for positron capture

$$\tau_+ \simeq 2.1 \left(\frac{kT}{\text{MeV}}\right)^{-5} \text{ s}$$

(B. D. Metzger et al. 2015)

(L. Kawano 1992)

timescale for electron capture

$$\tau_{-} \simeq \frac{\tau e^{qz}}{\left(\frac{5.252}{z} - \frac{16.229}{z^2} + \frac{18.059}{z^3} + \frac{34.181}{z^4} + \frac{27.617}{z^5}\right)}$$

$$\tau$$
: neutron lifetime

q: $(m_n-m_p)/m_e$ z: m_ec^2/kT

Grid Convergence Test

- Computation was performed with 1,000 cells
- Distribution extends to larger Γv_r region than 500 cells
- M_n values are almost equivalent

 (1.4 × 10⁻⁶ M_{sun} and 1.3 × 10⁻⁶ M_{sun})
 →Computation with 500 cells are converged

Endothermic reaction

- Disintegration for the heavy element nuclei is endothermic reaction
- The energy density: $a_r T^4/\rho \sim 3\,\times\,10^{19}$ erg g $^{-1}$ (T $\sim\,2.5\,\times\,10^{11}$ K)
- The energy of the endothermic reaction for Fe: ~9 MeV per nucleon \rightarrow Energy density for the reaction: 9 MeV/mu ~ 8.6 × 10¹⁸ erg g⁻¹
- Thus the energy is brought out by the endothermic reaction by a few tens of a percent
- The expelled energy might be decreased with the realistic composition of the merging neutron stars