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Tidal Disruption Events (TDEs)
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Introduction

BH star

When a star passes close to a BH, if 

tidal force                           star’s self gravity,
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Sequence of TDE
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! > 1

MacLeod + (2016)

SMBHs. 
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Sequence of WD – BH TDE 
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Sequence of WD – BH TDE 
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MacLeod + (2016)
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Interests of WD – BH TDEs

• Range of !"# is restricted
1. tidal disruption condition

2. WD is not swallowed by BH

→ good probe to study IMBHs
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Rt > Rp > RS , RWD

MWD = 0.2M�

MWD = 0.6M�

MWD = 1.2M�

MBH & 106M�

• Strong compression at the pericenter
→ Shock heating, ρ & T increase
→ Thermonuclear reactions
→ SN Ia-like transients?

SMBHs w/
cannot disrupt WDs

Rt > Rp > RS , RWD



Observations of WD – BH TDEs
So far, few possible (but still uncertain) candidates
Optical counterparts from nuclear burning have not been found yet.
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Future surveys may detect ~10 events / yr
Templates of observational signatures are important.

GRB

X-ray transient

Swift J1644+57 / GRB 110328A (Krolik & Piran 2011)
GRB060218 + SN2006aj (Shcherbakov et al. 2013)
GRB111209A (Ioka et al. 2016)

XRT 000519 (Jonker et al. 2013)
CDF-S XT1 (Bauer et al. 2017) 

: ZTF, LSST

: LOFT, Einstein Probe

: SKA

: LISA, DECIGO, BBO, (Advanced LIGO, KAGRA)

Optical

X-ray

radio

GW

(MacLeod+ 2016)



Observational signatures
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Light curve

Spectra at t = 20 days• Similar to SNe Ia

• Strong viewing angle dependence

• Key feature: 
Doppler shift ~ 104 km s-1
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CO WD, !"# = 0.6!⨀, !*+= 500!⨀, - = 5.0 (Rosswog + 2009)
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Giving answer to these questions is the aims of this research

• Similar to SNe Ia

• Strong viewing angle dependence

• Key feature: 
Doppler shift ~ 104 km s-1
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Questions

• How about variety of observational signatures?

→ Observational signatures for other parameter cases?
• How much fraction of WD – BH TDEs experience nuclear burning?
→ In which parameter space nuclear burning occur?



Methods
• Systematic and comprehensive parameter study varying 
!"#, !$%, &

→ focus on the nucleosynthesis in the WD – BH TDEs
• 3D SPH simulations coupled with nuclear reactions.
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Methods

• BH

• WD represented with 0.8 M SPH particles
self-gravity fluid
still inadequate to correctly follow the shock heating 
(→ discuss later)

：
：

'()= *
0.2 '⨀
0.6 '⨀
1.2 '⨀

(4He 100%)
(12C 50% 16O 50%)
(16O 60% 20Ne 35% 24Mg 5%)

3 types of WDs

fixed gravity source (Schwarzschild BH)



Simulation methods

Basic equations
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Methods

Equation of motion

Energy equation

Nuclear reactions

• BH gravity: approximation of Schwarzschild BH gravity 
Tejeda & Rosswog (2013)

• EOS: HELMHOLTZ EOS
• Nuclear reactions: α-Chain Network from 4He to 56Ni (13 species)
• Initial condition: parabolic orbits in Schwarzschild metric



Results
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WD – BH TDEs with explosive nuclear reactions
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Interests of WD – BH TDEs
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WD – BH TDEs with explosive nuclear reactions

Results



17Mean Atomic Weight

Results

TDEs w/ explosive nuclear reactions



Nuclear burning yields
• We derive the abundances of nuclear burning yields for a lot of 

cases. → useful as templates
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Results



Interesting cases: Helium WD – BH TDEs

Ca-rich gap transients
• Similar to SNe Ia

• Fainter, faster than SNe Ia

• Large calcium abundance

• High velocity

(6000 - 11000 km/s)

• In the outskirts of galaxies

• Small nickel abundance
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Results

MNi . 0.015M�

Sell et al. considered the helum WD TDEs may track this region, and it leads to calcium…

Garcia-Berro (2017)



Can Helium WD - BH TDEs cause Ca-rich gap 
transients? → No!

Observed Ca-rich gap transients
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Results

MWD = 0.2M�, He WD

�

MNi . 0.015M�

MNi/Mej . 5%

Helium WD - BH TDEs

MNi/Mej & 30%

of Ca –rich gap transeients

MNi & 0.03M�



Problem: 
resolution is insufficient to follow shock heating
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0.6$⨀

0.2$⨀

$'( = 1.2$⨀

# of SPH particles

SPH resolution

Tanikawa+ (2017)

Our resolution is insufficient to follow the shock structure perpendicular to 
the orbital plane.
Ø Nuclear reaction results do not converge, and may be inaccurate.

Discussion



Even so, profiles independent on shock 
heating do converge
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ρmax  : max. density of each SPH particle during simulation
~ density at the detonation point

Discussion



Nucleosynthetic yields as functions of density
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Discussion

Fink+ (2010)

derived for nucleosynthesis in SNe Ia by iterating hydrodynamic 
simulations and post-processing nuclear reaction calculations

density [g cm-3]



Results independent on numerical resolutions

• We additionally perform hydro-
simulations uncoupled with nuclear 
reactions, and obtain ρmax distribution.

• We assume that the whole WD burns 
with the ρmax distribution, and derive 
nucleosynthetic yields with the 
functions of Fink+ (2010).

Ø Upper limits of nucleosynthetic yields

• This method is not suffered from the 
resolution issue.

• Both results given the 2 different ways 
are well consistent.
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Summary

• WD-BH TDEs are interesting transients: thermonuclear transients, good 
probe to study IMBH.

• We perform SPH simulations coupled with nuclear reactions 

• We derive templates of nuclear burning yields for a lot of cases.

• Helium WD-BH TDEs are not the origin of Ca-rich gap transients.
• We check our results of nucleosynthesis by comparing the amounts of 

the synthesized elements with the upper limits of them derived in a way 
where we can avoid uncertainties due to low resolution. 
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