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STAR PRODUCT FORMULA OF THETA FUNCTIONS

HIROSHIGE KAJIURA

Abstract. As a noncommutative generalization of the addition formula of theta functions, we

construct a class of theta functions which are closed with respect to the Moyal star product of a

fixed noncommutative parameter. These theta functions can be regarded as bases of the space of

holomorphic homomorphisms between holomorphic line bundles over noncommutative complex tori.
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1. Introduction

Theta functions are associated with various algebraic relations. One of them is the addition formula,

which also appears in the context of the homological mirror symmetry [14] for elliptic curves [14, 20],

abelian varieties [4] and noncommutative real two tori with complex structures [9, 19, 12, 10]. It

is known that the bases of the space of sections of a holomorphic line bundle on an abelian variety

are described by theta functions. However, in the context of homological mirror symmetry, theta

functions are regarded rather as the bases of the space of holomorphic homomorphisms between two

holomorphic line bundles. The composition of two holomorphic homomorphisms is just the product

of two theta functions, which by the addition formula turns out to be a linear combination of theta

functions. Homological mirror symmetry then asserts that such formulas can be reproduced in a

geometric way by the mirror dual symplectic torus (see subsection 3.3).

A noncommutative extension of these stories is given in the case of elliptic curves [9, 19, 12, 10]

based on A. Schwarz’s framework of noncommutative complex tori [21, 3]. However, the conclusion

is that the structure constants of the product are independent of the noncommutative parameter θ,
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2 HIROSHIGE KAJIURA

which implies that the derived category of holomorphic vector bundles on a noncommutative real

two-torus is independent of θ [19].

Thus, in order to obtain noncommutative deformations of the structure constants, one should

discuss higher dimensional complex tori. In this case, again, an extension of the framework of

A. Schwarz’s noncommutative complex tori gives various explicit noncommutative deformations [11],

which include the deformations described in more familiar terminologies by the Moyal star product of

theta functions. In this paper, we present the noncommutative deformation of the addition formula

of theta functions for higher dimensional tori (Theorem 4.1). For a more categorical set-up describing

these phenomena, see [11]. To explore geometric interpretations of this theorem from the mirror

dual side should be especially interesting. We hope to discuss on it elsewhere.

In section 2, we start from the commutative case; we present explicitly the addition formula

of theta functions corresponding to the composition of holomorphic homomorphisms between holo-

morphic line bundles on the n-dimensional complex torus T 2n := Cn/(Zn ⊕
√
−1Zn). In section 3,

we explain various aspects of the addition formula. Though the readers can move ahead to section

4 directly, this section provides us with interesting and pedagogical backgrounds on the product of

these theta functions, together with an introduction to the approach by noncommutative complex

tori. In subsection 3.1, we explain the relation of these theta functions with the theta vectors in-

troduced by A. Schwarz [21, 3] (see also [2]) in the framework of (non)commutative complex tori.

The framework of the theta vectors provides us with an underlying key structure in the addition

formula in the commutative case and its noncommutative generalization in section 4. In subsection

3.2, these theta functions or the theta vectors are interpreted in terms of holomorphic line bundles

on complex tori. In subsection 3.3, we give explicitly a geometric realization of the addition for-

mula in the commutative case by the mirror dual symplectic torus based on the homological mirror

symmetry [14]. This result can be regarded as a consequence of [4], but still it should be valuable

enough to give such a correspondence in our situation together with the addition formula explicitly

as we do. In section 4, we give a noncommutative generalization of this addition formula, the main

theorem of this paper (Theorem 4.1). Of course, we can replace the product of the addition formula

in the commutative case by the Moyal star product. However, the result is no longer described by

any linear combination of the theta functions. The important point is that we should and in fact

can find a class of theta functions which are closed with respect to the Moyal star product. Finally,

an example of these noncommutative theta functions in the case of complex two-tori is presented in

section 5.

Throughout this paper, any (graded) vector space stands for the one over the field k = C.

Acknowledgments: I would like to thank A, Kato, T. Kawai and K. Saito for valuable discussions

and useful comments. The author is supported by JSPS Research Fellowships for Young Scientists.

2. Commutative theta functions

The theta function ϑ : (Rn/Zn × Rn/Zn)× H× Cn → C is defined by

ϑ[c1, c2](Ω, z) :=
∑

m∈Zn

exp(π
√
−1(m + c1)

tΩ(m + c1) + 2π
√
−1(m + c1)

t · (z + c2)) , (2.1)
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where c1, c2 ∈ Rn/Zn and H is the Siegel upper half plane, that is, the space of C valued n by n

symmetric matrices whose imaginary parts are positive definite. Here, for two symmetric matrices

Aa, Ab ∈Matn(Z) such that Aab := Ab −Aa is positive definite, we define

e
µ
ab(z) =

1√
det(Aab)

ϑ[0,−A−1
ab µ](

√
−1A−1

ab , z) , µ ∈ Zn/AabZ
n , (2.2)

where ](Zn/AabZ
n) = det(Aab). One obtains the following addition formula:

Theorem 2.1. Given three symmetric matrices Aa, Ab, Ac ∈ Matn(Z) such that Aab, Abc are positive

definite, the following product formula holds:

(
e
µ
ab · eν

bc

)
(z) =

∑

ρ∈Zn/AacZn

Cµν
abc,ρe

ρ
ac(z) ,

where the structure constant Cµν
abc,ρ ∈ C is given by

Cµν
abc,ρ =

∑

u∈Zn

δ[Aab]
µ
−u+ρ

δ[Abc]
ν
u
exp

(
−π(u−AbcA

−1
ac ρ)t(A−1

ab + A−1
bc )(u−AbcA

−1
ac ρ)

)
. (2.3)

As explained in the next section, in particular, in subsection 3.2, the collection of these theta

functions {eµ
ab}µ∈Zn/AabZn can be interpreted as the basis of holomorphic homomorphisms between a

holomorphic line bundle specified by Aa and the one specified by Ab on the n-dimensional complex

torus T 2n = Cn/(Zn +
√
−1Zn). The addition formula above is then interpreted as the composition

of the holomorphic homomorphisms.

Let Ob := {a, b, · · · } be a finite collection of labels, where any a ∈ Ob is associated with a

nondegenerate symmetric matrix Aa ∈ Matn(Z) such that, for any a, b ∈ Ob, Aab is nondegenerate

if a 6= b. For any a, b ∈ Ob, define a vector space H0(a, b) over C as follows:

• If Aab is positive definite, H0(a, b) is the det(Aab)-dimensional vector space spanned by the

theta functions {eµ
ab}.

• If a = b, then H0(a, b) := C.

• If otherwise, then we set H0(a, b) = 0.

For any a, b ∈ Ob, Hom(a, a) and Hom(b, b) act on Hom(a, b) from the left and the right, respectively,

as the trivial multiplication by complex numbers. Then, the product formula in Theorem 2.1 defines

an algebraic structure on ⊕a,b∈ObH
0(a, b). This can be in fact described by the zero-th cohomology

of an appropriate differential graded category (see [11]).

The main result of this paper is a noncommutative generalization of Theorem 2.1 by the Moyal

star product (Theorem 4.1).

For the proof of Theorem 2.1, it is convenient to prepare the following notion.

Definition 2.2. Given two symmetric matrices Aa, Ab ∈ Matn(Z) such that Aab is nondegenerate,

let µ be an element in Zn/AabZ
n and we define a linear map T µ

Aab
: S(Rn)→ C∞(T n) by

(T µ
Aab

ξ)(x) =
∑

w∈Zn

ξ(x + w −A−1
ab µ) , x ∈ Rn .

Here, S(Rn) is the Schwartz space, that is, the space of smooth functions on Rn whose derivatives

tend to zero faster than any polynomial on Rn (see [8], p.40).
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Lemma 2.3. Let Aa, Ab, Ac ∈ Matn(Z) be symmetric matrices such that Aab, Abc and Aac are

nondegenerate. For ξab, ξbc ∈ S(Rn), the following formula holds:

(T µ
Aab

ξab) · (T ν
Abc

ξbc) =
∑

ρ∈Zn/AacZn

(T ρ
Aac

ξρ
ac) ,

where ξρ
ac ∈ S(Rn) is defined by

ξρ
ac(x) :=

∑

u∈Zn

δ[Aab]
µ
−u+ρ

δ[Abc]
ν
u
ξab(x + A−1

ab (u−AbcA
−1
ac ρ)) · ξbc(x−A−1

bc (u−AbcA
−1
ac ρ)) . (2.4)

Here, δ[Aab]
µ
ρ

is the Kronecker’s delta mod Zn/AabZ
n, that is,

δ[Aab]
µ
ρ

=





1 ρ− µ ∈ AabZ
n ,

0 otherwise .

Proof. By direct calculation, the left hand side is

(T µ
Aab

ξab) · (T ν
Abc

ξbc)(x) =
∑

v∈Zn

δ[Aab]
µ
−v

ξab(x + A−1
ab v)

∑

v′∈Zn

δ[Abc]
ν
−v′

ξbc(x + A−1
bc v′) .

By the transformation (
v

v′

)
=

(
1n Aab

−1n Abc

)(
u

w

)
−
(

ρ

0n

)
,

the equation above is rewritten as

(T µ
Aab

ξab) ·(T ν
Abc

ξbc)(x) =
∑

ρ∈Zn/AacZn

∑

u,w∈Zn

δ[Aab]
µ
−u+ρ

δ[Abc]
ν
u
ξab(x+w+A−1

ab (u−ρ))ξbc(x+w−A−1
bc u) .

On the other hand, the right hand side can be computed directly as

(T ρ
Aac

ξρ
ac)(x) =

∑

ρ∈Zn/AacZn

∑

u,w∈Zn

δ[Aab]
µ
−u+ρ

δ[Abc]
ν
u

ξab(x + w −A−1
ac ρ + A−1

ab (u−AbcA
−1
ac ρ)) · ξbc(x + w −A−1

ac ρ−A−1
bc (u−AbcA

−1
ac ρ))

=
∑

u∈Zn

δ[Aab]
µ
−u+ρ

δ[Abc]
ν
u
ξab(x + w + A−1

ab (u− ρ)) · ξbc(x + w −A−1
bc u) .

Thus, the left hand side coincides with the right hand side. �

For Aa, Ab such that Aab ∈ Matn(Z) is positive definite, define a function eab ∈ S(Rn) by

eab(x) = exp
(
−πxtAabx

)
. (2.5)

Then, by the Poisson resummation formula (see [17], p.195-197), one can rewrite the theta functions

{eµ
ab} as

e
µ
ab(z) := T µ

Aab
(eab)(z) , µ ∈ Zn/AabZ

n , (2.6)

where, for T µ
Aab

(eab) ∈ S(Rn), T µ
Aab

(eab)(z) stands for the holomorphic extension.

Thus, for symmetric matrices Aa, Ab, Ac ∈ Matn(Z) such that Aab and Abc are positive definite,

apply Lemma 2.3 with ξab = eab, ξbc = ebc, and the holomorphic extension leads to Theorem 2.1.
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3. Various interpretations of the product formula

In this section, we give various interpretations of Theorem 2.1.

3.1. The tensor product of Heisenberg modules. Theorem 2.1 can be understood directly in

A. Schwarz’s framework of noncommutative complex tori [21, 3]. A noncommutative torus Ad
θ is an

algebra defined by unitary generators U1, · · · , Ud with relations

UiUj = e−2π
√
−1θijUjUi , θij = −θji ∈ R (3.1)

for i, j = 1, · · · , d. Now, we shall consider 2n-dimensional commutative torus A2n := A2n
θ=0. Namely,

A2n is thought of as the space of functions on a 2n-dimensional commutative torus T 2n. Thus, the

generators U1, · · · , U2n now commute with each other.

A pair Ea := (EAa ,∇a) of a finitely generated projective module EAa , called a Heisenberg

module (see [13]), with a constant curvature connection ∇a is constructed as follows. The Heisenberg

module is defined by

EAa := S(Rn × (Zn/AaZn))

for a fixed nondegenerate symmetric matrix Aa ∈ Matn(Z). The left action of A2n on EAa is defined

by specifying the left action of each generator; for ξa ∈ EAa , it is given by

(Uiξa)(x;µ) = e2π
√
−1(xi+(A−1

a µ)i))ξa(x;µ) ,

(Un+iξa)(x;µ) = ξa(x + A−1
a ti;µ− ti) , i = 1, · · · , n ,

(3.2)

where x := (x1 · · · xn)t ∈ Rn (t indicates the transpose), µ ∈ Zn/AaZn and ti ∈ Rn is defined by

(t1 · · · tn) = 1n. A constant curvature connection ∇a,i : EAa → EAa, i = 1, · · · , 2n, is given by

(∇a,1 · · · ∇a,2n)t =

(
1n

−Aa

)(
∂x

2π
√
−1x

)
, (3.3)

where ∂x :=
(

∂
∂x1
··· ∂

∂xn

)t
, whose curvature Fa := {

√
−1
2π [∇a,i,∇a,j ]}i,j=1,··· ,2n is

Fa :=

(
0n Aa

−Aa 0n

)
.

The generators of the endomorphism algebra is the same as Ui, i = 1, · · · , 2n:

(ξaZi)(x;µ) = ξa(x;µ) e2π
√
−1(xi+(A−1

a µ)i)) ,

(ξaZn+i)(x;µ) = ξa(x + A−1
a ti;µ− ti) , i = 1, · · · , n .

Namely, the endomorphism algebra also forms a commutative torus A2n.

Given Ea and Eb such that Aab is nondegenerate, the space Hom(Ea, Eb) is defined again as

the Schwartz space Hom(Ea, Eb) := S(Rn × (Zn/AabZ
n)). For ξab ∈ Hom(Ea, Eb), the left action of

A2n, generated by Ui, i = 1, · · · , 2n, and the right action of A2n, generated by Zi, i = 1, · · · , 2n, are

defined by

(Uiξab)(x;µ) = e2π
√
−1(xi+(A−1

ab
µ)i)) ξab(x;µ) , (Un+iξab)(x;µ) = ξab(x + A−1

ab ti;µ− ti) ,

(ξabZi)(x;µ) = ξab(x;µ) e2π
√
−1(xi+(A−1

ab
µ)i)) , (ξabZn+i)(x;µ) = ξab(x + A−1

ab ti;µ− ti) ,
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where µ ∈ Zn/AabZ
n. In fact, all these generators Ui and Zi, i = 1, · · · , 2n, commute with each

other. The constant curvature connection ∇i : Hom(Ea, Eb)→ Hom(Ea, Eb), i = 1, · · · , 2n, is given

by

(∇1 · · · ∇2n)t :=

(
1n

−Aab

)(
∂x

2π
√
−1x

)
.

For ξab ∈ Hom(Ea, Eb) and ξbc ∈ Hom(Eb, Ec), the tensor product m : Hom(Ea, Eb)⊗Hom(Eb, Ec)→
Hom(Ea, Ec) is defined by

m(ξab, ξbc)(x, ρ) =
∑

u∈Zn

ξab(x + A−1
ab (u−AbcA

−1
ac ρ),−u + ρ) · ξbc(x−A−1

bc (u−AbcA
−1
ac ρ), u) . (3.4)

One can see that this tensor product formula is just the definition of ξρ
ac in eq.(2.4). This tensor

product is in fact associative and the connection ∇i : Hom(Ea, Eb) → Hom(Ea, Eb) satisfies the

Leibniz rule with respect to this product (see [11]). 1

Now suppose we consider a n-dimensional complex torus T 2n := Cn/(Zn ⊕
√
−1Zn). For

Ea = (EAa ,∇a) a Heisenberg module with the constant curvature connection, the holomorphic

structure ∇̄a,i : EAa → EAa , i = 1, · · · , n, is defined by

∇̄a,i = ∇a,i +
√
−1∇a,n+i .

Also, for given Ea, Eb, the holomorphic structure ∇̄i : Hom(Ea, Eb)→ Hom(Ea, Eb), i = 1, · · · , n, is

defined in the same way:

∇̄i := ∇i +
√
−1∇n+i , i = 1, · · · , n .

When Aab is positive definite, the space H0(Ea, Eb) := ∩n
i=1Ker(∇̄i : Hom(Ea, Eb)→ Hom(Ea, Eb))

forms a det(Aab)-dimensional vector space. The bases eµ
ab, µ ∈ Zn/AabZ

n, are called A. Schwarz’s

theta vectors [21] (see also [2]), which are just the function eab ∈ S(Rn) defined in eq.(2.5):

eµ
ab(x, ρ) = δ[Aab]

µ
ρ

exp
(
−πxtAabx

)
. (3.5)

The Leibniz rule of ∇̄ then guarantees that the tensor product m(eµ
ab, e

ν
bc) turns out to be the linear

combination of eρ
ac, ρ ∈ Zn/AacZ

n.

This approach by Heisenberg modules allows us various noncommutative deformations of these

structures (see [11]), but some of such deformations can be lifted to theta functions as the Moyal

star product; the consequence is the one presented in section 4.

3.2. Holomorphic line bundles on tori. In this subsection, the theta functions {eµ
ab} in eq.(2.6),

or equivalently, the theta vectors {eµ
ab} in eq.(3.5), are interpreted in terms of holomorphic line

bundles on complex tori.

1In [11], left modules in this paper is flipped to be right modules. The relation of the conventions between this

paper and [11] is as follows. First, consider a bimodule Hom(Ea, Eb) in this paper. Replace Aa by −Ab and Ab by

−Aa. Then, one gets a bimodule in [11]. In both cases, a left/right module EAb
is obtained by setting Aa = 0.
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Given a d-dimensional-torus T d = Rd/Zd, let π : Rd → Rd/Zd be the projection. The space Ẽ

of sections of a vector bundle of rank q ∈ Z>0 is described by the space of q copies of functions on

the covering space Rd equipped with a Zd 3 λ action

ξ̃(x + λ) := cλ(x)ξ(x) , ξ̃ ∈ Ẽ ⊂ (C∞(Rd))⊕q , cλ ∈ U(q;C∞(Rd)) (3.6)

satisfying the following condition:

cλ′(x + λ)cλ(x) = cλ+λ′(x) .

Thus, cγ is regarded as a transition function of the vector bundle. A connection ∇i : Ẽ → Ẽ,

i = 1, · · · , d, is defined so that the following compatibility conditions hold:

(∇i)(x + λ) = cλ(x)(∇i)(x)c−1
λ (x) , (3.7)

where the curvature is defined by

F = {Fij}i,j=1,··· ,d , Fij :=

√
−1

2π
[∇i,∇j ] .

Now, consider a complex torus T 2n := Cn/(Zn ⊕
√
−1Zn), where the coordinates of the covering

space Cn is denoted z := (z1 · · · zn)t, zi := xi +
√
−1yi, i = 1, · · · , n. For a nondegenerate symmetric

matrix Aa ∈ Matn(Z), the space of sections ẼAa of a line bundle (q = 1 case) on T 2n is constructed

by setting

c(λx,0)(x, y) = 1 , c(0,λy)(x, y) = e−2π
√
−1xtAaλy · 1 ,

where x := (x1 · · · xn)t, y := (y1 · · · yn)t and λx, λy ∈ Zn such that λ = (λx, λy) ∈ Zd=2n. The

general form of sections in ẼAa is given by

ξ̃a(x, y) =
∑

w∈Zn

∑

µ∈Zn/AZn

exp
(
2π
√
−1yt (−Aa (x + w) + µ)

)
ξµ
a

(
x + w −A−1

a µ
)

, ξµ
a ∈ S(Rn) ,

as a natural extension of the two dimensional case ([5, 7, 15] and see [13], the vector bundles

constructed there are called twisted bundles). For ξµ
a (x) =: ξa(x, µ), ξa ∈ S(Rn⊗(Zn/AaZn)) = EAa ,

we regard ˜ in the formula above as the isomorphism from EAa to ẼAa which sends ξa to ξ̃a.

This line bundle can be equipped with the following constant curvature connection {∇a,i : ẼAa →
ẼAa}i=1,··· ,2n with its curvature Fa:

(∇a,1, · · · ,∇a,n)t = ∂x + 2π
√
−1Ay , (∇a,n+1, · · · ,∇a,2n)t = ∂y , Fa =

(
0n Aa

−Aa 0n

)
,

where ∂x := ( ∂
∂x1
· · · ∂

∂xn
)t, ∂y := ( ∂

∂y1
· · · ∂

∂yn
)t. Let us define the generators of the space C∞(T 2n)

of functions by

Ũi = eπ
√
−1xi , Ũn+i = eπ

√
−1yi , i = 1, · · · , n .

Then, the relationship of Ẽa := (ẼAa ,∇a) with Ea = (EAa ,∇a) in the previous subsection can be

summarized as follows: for ξa ∈ EAa ,

Ũiξ̃a = Ũiξa , Ũn+iξ̃a = Ũn+iξa , ∇a,iξ̃a = ∇̃a,iξ , ∇a,n+iξ̃a = ∇̃a,n+iξa , i = 1, · · · , n .
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In a similar way, for given Ẽa and Ẽb such that Aab is nondegenerate, the space Hom(Ẽa, Ẽb) of

homomorphisms from Ẽa from Ẽb is the space whose elements are described of the form:

ξ̃ab(x, y) =
∑

w∈Zn

∑

µ∈Zn/AabZn

exp
(
2π
√
−1yt (−Aab (x + w) + µ)

)
ξµ
ab

(
x + w −A−1

ab µ
)

, (3.8)

for ξµ
ab ∈ S(Rn), where the compatible constant curvature connection∇i : Hom(Ẽa, Ẽb)→ Hom(Ẽa, Ẽb),

i = 1, · · · , n, is given by

(∇1, · · · ,∇n)t := ∂x + 2π
√
−1Aaby , (∇n+1, · · · ,∇2n)t := ∂y , Fab =

(
0n Aab

−Aab 0n

)
.

Again, for ξµ
ab(x) =: ξab(x, µ), ξab ∈ S(Rn ⊗ (Zn/AabZ

n)) = Hom(Ea, Eb), ˜ in eq.(3.8) is regarded

as the isomorphism from Hom(Ea, Eb) to Hom(Ẽa, Ẽb) which sends ξab to ξ̃ab.

Actually, for Ea, Eb, Ec, ξab ∈ Hom(Ea, Eb), ξbc ∈ Hom(Eb, Ec) and the corresponding elements

ξ̃ab ∈ Hom(Ẽa, Ẽb), ξ̃bc ∈ Hom(Ẽb, Ẽc), the pointwise product ξ̃ab · ξ̃bc turns out to be

ξ̃ab · ξ̃bc = ˜m(ξab, ξbc) ,

where m is the tensor product of the Heisenberg modules defined in eq.(3.4). The proof is essentially

the same as that of Lemma 2.3.

Now, for T 2n as a complex torus, the holomorphic structure {∇̄a,i : Ẽa → Ẽa}i=1,··· ,n is

defined by ∇̄a,i := ∇a,i +
√
−1∇a,n+i. Similarly, given Ẽa and Ẽb, the holomorphic structure

{∇̄i : Hom(Ẽa, Ẽb) → Hom(Ẽa, Ẽb)}n=1,··· ,n is defined by ∇̄i := ∇i +
√
−1∇n+i. The space of

holomorphic sections in Hom(Ẽa, Ẽb) is then defined by H0(Ẽa, Ẽb) := ∩n
i=1Ker(∇̄i : Hom(Ẽa, Ẽb)→

Hom(Ẽa, Ẽb)). This space H0(Ẽa, Ẽb) forms a det(Aab)-dimensional vector space spanned by {ẽµ
ab},

the extension of the theta vectors {eµ
ab}µ∈Zn/AabZn in (3.5) by eq.(3.8). Also, the explicit relation of

these ẽµ
ab with the theta functions e

µ
ab (2.6) is given by

e
µ
ab(z) = exp

(
πytAaby

)
· ẽµ

ab(x, y) .

3.3. Lagrangian submanifolds and triangles. The homological mirror symmetry [14] asserts

that the product m(eµ
ab, e

ν
bc) can also be derived from geometry of the mirror dual torus T̂ 2n, a

symplectic 2n-dimensional torus with the symplectic structure

ω =

(
0n −1n

1n 0n

)
. (3.9)

For the covering space R2n of T̂ 2n, let π : R2n → T̂ 2n be the natural projection. The coordinates for

R2n is denoted (x1, · · · , xn, ŷ1, · · · , ŷn).

The affine lagrangian submanifold mirror dual to Ea = (EAa ,∇a) over A2n, the space of

functions on T 2n, is defined by the image of the affine subspace in R2n

La : ŷ = Aax

by the projection π : R2n → T̂ 2n. Thus, we have

π−1π(La) = {ŷ = Aax + ca, ca ∈ Z} .
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Let us define the space of morphisms Hom(La, Lb) which is isomorphic to the det(Aab)-dimensional

vector space H0(Ea, Eb) in subsection 3.1. Denote the basis of Hom(La, Lb) by vµ
ab, µ ∈ Zn/AabZ

n,

to which is associated the image of the intersection point of ŷ = Abx + µ with ŷ = Aax in Cn by

π : Cn → T̂ 2n. One can see that actually the number of the intersection points of π(La) and π(Lb)

in T̂ 2n is det(Aab). For a base vab of Hom(La, Lb), we denote the corresponding point in T̂ 2n also by

vab, which defines the set Ṽab := π−1(vab) of points in the covering space R2n.

The structure constant Cµν
abc,ρ ∈ C (2.3) can be identified with the sum of the exponentials of

the symplectic areas of the triangles ṽabṽbcṽac for any ṽab ∈ Ṽab, ṽbc ∈ Ṽbc and ṽac ∈ Ṽac with respect

to the symplectic structure ω in eq.(3.9), where the triangles related by parallel transformations on

the covering space R2n are identified with each other.

It is calculated as follows. Consider three affine subspaces L′a, L
′
b, L
′
c in R2 as follows:

L′a : ŷ = Aax + ca , L′b : ŷ = Abx + cb , L′c : ŷ = Acx + cc .

If Aab is nondegenerate, the intersection of L′a and L′b is a point vab; the coordinates ( x
ŷ ) are:

vab =

(
−(Aab)

−1(cb − ca)

−AaA
−1
ab cb + AbA

−1
ab ca

)
.

Now, assume that Aab and Abc are positive definite. Then, Aac is also positive definite. The three

intersection points vab, vbc, vac form a triangle, where the edges (vabvbc), (vbcvac), (vacvab) belong to

L′b, L′c and L′a, respectively. The symplectic area of the triangle is given by

(vab − vac)
tω(vbc − vac) =

(
(cc − ca)

t (cb − ca)
t
)( A−1

bc A−1
ac

A−1
ab AacA

−1
bc A−1

ab

)(
cb − cc

ca − cc

)
.

Let us put ca = 0, cb = u′ and cc = −ρ so that π(vac) = vρ
ac. Then, consider

∑

u′

δ[Aab]
µ
−u′δ[Abc]

ν
u′+ρ

exp

(
(−ρt u′t )

(
A−1

bc
A−1

ac

A−1

ab
AacA−1

bc
A−1

ab

)(
u′+ρ

ρ

))
,

where δ[Aab]
µ
−u′ and δ[Abc]

ν
u′+ρ

correspond to the condition of π(vab) = vµ
ab and π(vbc) = vν

bc, respec-

tively. One can see that, by the replacement u′ + ρ =: u, this coincides with the structure constant

Cµν
abc,ρ of the product of the theta functions in eq.(2.3).

4. Noncommutative theta functions

The Moyal star product [16] is an associative noncommutative product on the space of functions

on a flat space. It gives the first example of deformation quantization [1] and is also used as a

building block of deformation quantization on arbitrary symplectic manifolds (see [18, 6]). A Moyal

star product for functions on Cn is defined by

(f ∗ g)(z) = f(z)e−
√

−1

4π

←−
∂zθ
−→
∂zg(z) ,

where
←−
∂zθ
−→
∂z :=

∑n
i,j=1

←−
∂

∂zi θ
ij
−→
∂

∂zj . Note that this skewsymmetric matrix θ ∈ Matn(R) can be thought

of as the restriction of θ = {θij}i,j=1,··· ,2n in eq.(3.1) to θ = {θij}i,j=1,··· ,n. 2

2This skewsymmetric matrix θ ∈ Matn(R) corresponds to θ1 in [11].
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Now, for two symmetric matrices Aa, Ab ∈ Matn(Z) such that Aab is nondegenerate, the

following matrix Mab ∈ Matn(C),

Mab :=

(
1n +

√
−1

2
A+

abθ

)−1

Aab , A+
ab := Aa + Ab ,

is symmetric if and only if the the following condition holds:

AaθAa = AbθAb . (4.1)

For two symmetric matrices Aa, Ab ∈ Matn(Z) satisfying the condition (4.1), the real part of Mab

is positive definite if and only if Aab is positive definite (see [8], p.5). For two symmetric matrices

Aa, Ab ∈Matn(Z) such that Aab is positive definite, define theta functions e
µ
ab, µ ∈ Zn/AabZ

n, by

e
µ
ab(z) =

det(1n +
√
−1Aaθ)

1

4 det(1n +
√
−1Abθ)

1

4

det(Aab)
1

2

ϑ[0,−Aabµ](
√
−1M−1

ab , z) . (4.2)

It is clear that these theta functions actually coincide with those in eq.(2.2) if θ = 0.

Then, we get the ∗ product formula of these noncommutative theta functions.

Theorem 4.1. For a fixed skewsymmetric matrix θ ∈ Matn(R), consider a set of symmetric matrices

Aa, Ab, Ac ∈ Matn(Z) such that AaθAa = AbθAb = AcθAc and Aab, Abc ∈ Matn(Z) are positive

definite. Then, the following product formula holds:

(
e
µ
ab ∗ e

ν
bc

)
(z) =

∑

ρ∈Zn/AacZn

Cµν
abc,ρe

ρ
ac(z) ,

Cµν
abc,ρ :=

∑

u∈Zn

δ[Aab]
µ
−u+ρ

δ[Abc]
ν
u

exp
(
−π(u−AbcA

−1
ac ρ)t

(
(A−1

ab + A−1
bc )(1 +

√
−1Abθ)−1

)
(u−AbcA

−1
ac ρ)

)
.

Note that the matrix (A−1
ab +A−1

bc )(1+
√
−1Abθ)−1 ∈ Matn(C) is symmetric due to the condition

(4.1).

Proof. Again, by the Poisson resummation formula, the theta functions {eµ
ab} in eq.(4.2) can be

rewritten as e
µ
ab(z) = T µ

Aab
(eab)(z), where

eab(x) := Cab · e−πxtMabx , Cab :=
det(1n +

√
−1Aaθ)

1

4 det(1n +
√
−1Abθ)

1

4

det(1n +
√
−1
2 A+

abθ)
1

2

∈ C .

As in the commutative case in subsection 3.1, one can consider the corresponding Heisenberg modules

with a constant curvature connection ∇, where the tensor product is given just by replacing the

product · in the right hand side of eq.(2.4) by the star product, the constant curvature connection ∇
satisfies the Leibniz rule with respect to the tensor product, and the the theta vectors are obtained

just as the function eab above [11]. The Leibniz rule of ∇ then guarantees that the tensor product

m(eµ
ab, e

ν
bc) is a linear combination of eρ

ac. The appropriate coefficients Cab ∈ C and the structure

constant Cµν
abc,ρ ∈ C are obtained by direct calculations. �

In the same way as in the commutative (θ = 0) case, the product formula above leads to the

following. Let Ob := {a, b, · · · } be a finite collection of labels, where any a ∈ Ob is associated with

a nondegenerate symmetric matrix Aa ∈ Matn(Z) such that for any a, b ∈ Ob the condition (4.1)

holds and Aab is nondegenerate if a 6= b. For any a, b ∈ Ob, define a vector space H0(a, b) as follows:



STAR PRODUCT FORMULA OF THETA FUNCTIONS 11

• If Aab is positive definite, H0(a, b) is the det(Aab)-dimensional vector space spanned by the

theta functions {eµ
ab}.

• If a = b, then H0(a, b) := C.

• If otherwise, then we set H0(a, b) = 0.

Then, the product formula in Theorem 4.1 defines an algebraic structure on ⊕a,b∈ObH
0(a, b). The

condition (4.1) has an interpretation in a categorical setting of these structures (see [11]).

5. An example

We end with showing an example for the case of noncommutative complex two-torus (n = 2).

In this case, for any fixed nonzero θ, the condition AaθAa = AbθAb reduces to

det(Aa) = det(Ab) .

In general there exist infinitely many symmetric matrices A ∈ Mat2(Z) for a fixed det(A). For

instance, let us consider symmetric matrices A ∈ Mat2(Z) with det(A) = −4. If we concentrate on

diagonal matrices A ∈ Mat2(Z) with det(A) = −4, all such matrices are given by

A1 =

(
1 0

0 −4

)
, A2 =

(
2 0

0 −2

)
, A3 =

(
4 0

0 −1

)
,

and A1′ := −A1, A2′ := −A2, A3′ := −A3. Since H0(i, j′) = H0(i′, j) = 0 for any i, j = 1,2,3, let

us concentrate on the one side {1,2,3}. Then, one obtains H0(i, j) 6= 0 if and only if i ≤ j and in

particular

dim(H0(1,2)) = 2 , dim(H0(2,3)) = 2 , dim(H0(1,3)) = 9 .

Thus, one obtains the following quiver:

1
2

&&MMMMMMMMMMMMM

9
// 3

2

2

88qqqqqqqqqqqqq

.

However, if we allow symmetric matrices with nonzero off-diagonal elements, there exist infinitely

many symmetric matrices A ∈ Matn(Z) with det(A) = −4, since the matrix gtAg has det(A) = −4

for any SL(2, Z) element g. For instance, for gα = ( 1 α
0 1 ) ∈ SL(2, Z), α ∈ Z, one has A1,α :=

gt
αA1gα =

(
1 α
α α2−4

)
. Clearly, A1,α 6= A1,α if α 6= α′. Similarly, gt

αA2gα and gt
αA3gα define new

symmetric matrices for each α ∈ Z. Then, these infinitely many symmetric matrices together with

the vector space H0(∗, ∗) in fact define a connected quiver.

The fact that one can still consider a connected quiver of infinite type, as in the commuta-

tive case (θ = 0), might imply that our approach gives an interesting model of noncommutative

deformations in particular from a viewpoint of homological mirror symmetry.
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