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88. A Class of Solutions to the Self-Dual
Yang-Mills Equations

By Kanehisa TAKASAKI
Department of Mathematics, University of Tokyo

(Communicated by Késaku Yosipa, M. J. A., Sept. 12, 1983)

This note presents a method for generating a class of special
solutions to the self-dual Yang-Mills equations. They are shown to be
parametrized by some matrices which serve as “frames” representing
the corresponding points of the (infinite dimensional) Grassmann
manifolds. Thus a remarkable similarity to the results of Sato [7]
and Date et al. [5] for the “soliton equations” is revealed. Also it
should be added that the method presented here is closely related with
those of Cherednik [3], Date [4] and Krichever [6].

§1. The self.dual Yang-Mills equations and the linearization.
Hereafter, in contrast to the usual formulation in the real domain
(see, for example, [1] and the references therein), we shall work with
the complex analytic theory of the self-dual Yang-Mills fields with
structure group GL(v, C) (r>2). All the functions which will appear
in what follows are supposed to be holomorphic in some complex
domains. Thus, the self-dual Yang-Mills equations which we shall
consider are, by definition, given by
(1) [6,+4,, ;:+4;]1=0, [0.+A4,, 9;+A4;1=0,

[ay_{_Ay) ay+Ay]:[az+Az’ az‘+A2];
where x=(y, ¥, z, 2} are complex independent variables in C* (¥ and 2
do not indicate the complex conjugates of y and z), 8,=09/8y, - - -, 0,
=9/0z, and A4, ---, A, are unknown matrices of size »x# of holo-
morphic functions of .

Introducing another independent complex variable 1, we can
rewrite (1) into
(2) [—2@,+A,) +@,+ A, 20,+A)+ @y +A)]=0,
so that, as pointed out first by Belavin-Zakharov [2] and Ward [8],
the linear system
(3) (=20, + 4,)+ 0.+ AN (@, H=0,

(20, + A+, + Aﬁ))y/ (x, )=0
presents a linearization of (1). Note that if (3) is fulfilled for an
invertible matrix ¥ (v, 2) of size »Xr, (2) immediately follows.

§2. Special solutions. As the data for the special solution
stated below, inspired by [4], [6], let us consider {A,(x), m,, ¢,(x, 2),
7=1, .- -, N}, where 2,{(2), /=1, - - -, N, are holomorphic functions with
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(4) [—24,(@)a,+43., 2,(x)9:48;]=0,
my, =1, ---, N, are positive integers with

N
(5) > my=rm, m is a positive integer,
J=1

and ¢,(x, 2), 7=1, .-+, N, are r-column vectors of holomorphic func-
tions, defined near (z, 2,(x)) respectively, of the form

(6) e;(x, )=2¢,(3, y+22, —Z+27),

where ¢,(4,p,q), 7=1,---,N, are r-column vectors of holomorphic
functions of three variables (1, p, ¢). Let us define ¢, (x), 1<i<N,
0<k, 1, by the expansion

(7) Xey(x, 2) = ?;o ¢5.e ()R 2,(2)).

A special solution to the self-dual Yang-Mills equations is con-
structed from the above data as follows:

Theorem 1. Suppose
( 8) det [(Cl,k,L(m))/L\t::S,-n,m-1 | et ] (cl\',k,lv(il:));\: 0 ym--1 ]};EO‘

] ol

Then, for any invertible matriz Wy(x) of size rxX# of holomorphic
functions of x, a matriz ¥(x, )=, W(2)A"* of size rXxXr is
uniquely determined by the conditions
(9)  U(e, Ve, D=0 (A—2,N") Q—2,x), =1, N.
Furthermore, the matrices A, (), - - -, A (@) defined by

A,=—0,W,- W, A= -3, W, W51,
(10) Az:_(azW()"ale—Ale)'W()_l:

Ay=—0,W,+o, W, + A W) . W;?
and ¥ (x, 2) solve equations (1)—(3).

Remark. A holomorphic function 2,(x) with condition (4) can ke
generated, for example, by solving (locally) an equation of the form
morphic function of three variables (2, p, ¢).

The structure of higher evolutions (“hierarchy”) similar to those
of the soliton equations [7], [5] can be also specified : Let us introduce
a series of independent variables ¢=(t{" ) ucr0cc,., and a diagonal
matrix
Ay T D= 3 diaglt®,, -, 12,12+ 1) (— 24 7).

vipya=0
Theorem 2. Suppose (8). Then, for any tnvertible matrix

Wola, t), a matriz ¥z, t, D)= =, W.x, D" %" of size rXr is

uniquely determined by the conditions

(12) Tz, t, Dee, D=0 (A—2,aN™) QA—2A,(x)), j=1,---,N.

¥ (x, 2) satisfies (3) for the matrices A, (x,t), - -+, A,(x, t) defined by (10)

with W,=W(z, t), W,=W,(x, t), and also the linear systems

13) U (x, t, D)ot , =B (2, ¢, D (x, t, 1), 1<alr, 0<y,p,0,

where B (x,t,2) is a matriz of size v X1 whose components are
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polynomials of A.

§ 3. Parametrization by “frames”. We shall, first, investigate
a general framework of the parametrization ; later, we shall go back
to the solutions mentioned in § 2.

Let us consider the correspondence between two matrices, ¥'(x, 2)
=200 W) 2" ¥ (of size »X1) and &) = (§2));o1.....(,, (of size oo X 1m
with &.(»), k=0, 1, - - -, being r X rm-blocks), defined by

(14) (I/va(f(’), ~w/m A~1('T’)’ tt VV{)(m)) 07 G, t )5(.’7’):0,
where ¥'(x, 2) and &(x) are supposed to satisfy the conditions
(15) det W, (x)#0, det (5:(2))e o, 0 70,

15&(7) - (‘Ex + 1(37))k-,-0,1.,~- = a(Q?)C((l‘,)

for some matrix C(2) of size rm xrm.
Here /1 denotes the block-wise shifting matrix 01100 5000,... With 1,
the unit matrix of size » X r.

(16)

Theorem 3. Fach of two matrices ¥(x, 2) and &(x) with proper-
ties (15) and (16) is determined by the other wia (14), uniquely up to
the arbitrariness ¥(x, )—>G@) (x, 2), &(@)—E@)H(x), where G(x) and
H(z) are invertible matrices of size »X1r and rm X rm respectively.
Furthermore, ()-(3) are fulfilled for the matrices A (x), -, Ay(x)
defined by (10) if and only <f
amn (— A0, 408y =E)A(x), (A0,4-0,)&(x) = &E(x)B(x)
are satisfied for some matrices A(zx) and B(x) of size rm X rm.

It should be noted that ¥(x, )—>G()¥(z, 2) corresponds to the
gauge transformation, while &(x)—&(x)H(x) defines the equivalence of
“frames” representing a common point of the Grassmann manifold as
appeared in [7], i.e. the equivalence of co X rm-matrices whose eolumn
vectors span a common linear subspace of dimension »m in the vector
space of column vectors of size oo.

The structure of higher evolutions is described as follows :

Theorem 4. Suppose (15)~(17). Then, for any invertible matrix
Wz, 1), @ matrie U(x, t, ) =30, Wz, O 5" @D of size rXr is uni-
quely determined by
(18) W,.(x, t), W, (2, t), -+, W(2, 1), 0,0, - - -)e"“D&(x)=0.

VU(x,t, ) satisfies (3) for the matrices A (x,t), ---, A, (x, t) defined by
(10) with W,=W(x, t), W,=W(x, t), and also linear systems (13).

The solutions presented in § 2 are recovered if we set

(19) E(L):[(CILI(Q))}}SI [+ -] (C‘\',k,l(ﬂ:))kl'fo,l,... 1.

I o
A(x), B{x) and C(x) are given by
(20) A(x)=—®7., diag [9,2,(x), 20,4,(), - - -, m,d,2,(x)],
B(x)=®7., diag [3,2,(x), 20,2,(x), - - -, m 0,4 ()],
C@)=®7., J(A,(x), m,),
where J(2, m) denotes the Jordan cell of size m X m with eigenvalue A.
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