63. Toda Lattice Hierarchy. II

By Kimio UENO*) and Kanehisa Takasaki**)

(Communicated by Kôsaku Yosida, M. J. A., June 14, 1983)

0. Introduction. This note is a sequel to the preceding paper [1]. Here we shall discuss the l-reduced family, $(TL)_l$, of the Toda lattice (TL) hierarchy, and shall construct the N-soliton solutions by making use of the Riemann-Hilbert decomposition, which is an infinite dimensional generalization of the classical Riemann-Hilbert problem.

The TL hierarchy was introduced in [1] as follows: Let $x=(x_1, x_2, \dots)$, $y=(y_1, y_2, \dots)$ be two time flows. Let L, M, B_n , C_n $(n=1, 2, \dots)$ be matrices of size $Z \times Z$ of the form

(1)
$$L = \sum_{\substack{-\infty < j \le 1 \ M = \sum_{-1 \le j < +\infty}}} \operatorname{diag}[b_j(s\,;\,x,\,y)] A^j, \qquad b_1(s\,;\,x,\,y) = 1, \ C_{-1}(s\,;\,x,\,y) \ne 0,$$

(2)
$$B_n = (L^n)_+, C_n = (M^n)_-.$$

(As for the notations, the readers should refer to [1].) Then the TL hierarchy is defined by the following Zakharov-Shabat equations;

(3)
$$\begin{array}{ll} \partial_{x_n} B_m - \partial_{x_m} B_n + [B_m, B_n] = 0, & \partial_{y_n} C_m - \partial_{y_m} C_n + [C_m, C_n] = 0, \\ \partial_{y_n} B_m - \partial_{x_m} C_n + [B_m, C_n] = 0, & m, n = 1, 2, \dots. \end{array}$$

The hierarchy is linearized by the equations

(4)
$$LW^{(\infty)} = W^{(\infty)} \Lambda$$
, $MW^{(0)} = W^{(0)} \Lambda^{-1}$, $\partial_{x_n} W = B_n W$, $\partial_{y_n} W = C_n W$, $W = W^{(\infty)}$, $W^{(0)}$, $n = 1, 2, \cdots$.

As fundamental solution matrices to these equations, one may choose matrices of the form

$$W^{\scriptscriptstyle(\infty)}(x,y) = \hat{W}^{\scriptscriptstyle(\infty)}(x,y) \exp \xi(x,\Lambda),$$

(5)
$$W^{(0)}(x, y) = \hat{W}^{(0)}(x, y) \exp \xi(x, H),$$

$$\hat{W}^{(0)}(x, y) = \hat{W}^{(0)}(x, y) \exp \xi(y, A^{-1}), \qquad \xi(x, A^{\pm 1}) = \sum_{n=1}^{\infty} x_n A^{\pm n},$$

$$\hat{W}^{\binom{0}{\infty}}(x, y) = \sum_{j=0}^{\infty} \operatorname{diag}[\hat{w}_j^{\binom{0}{\infty}}(s; x, y)] A^{\pm j}.$$

Such fundamental solution matrices will be referred to as wave matrices.

The linearization (4) equivalently leads to the bilinear relation (6) $W^{(\infty)}(x,y)W^{(\infty)}(x',y')^{-1} = W^{(0)}(x,y)W^{(0)}(x',y')^{-1}$ for any x, x', y, y'.

^{*} Department of Mathematics, Yokohama City University, 22-2 Seto, Yokohama 236.

^{**}Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo 113.

From this relation, we deduce the existence of τ functions, $\tau(s; x, y)$, defined by

(7)
$$\hat{w}_{j}^{(\infty)}(s; x, y) = p_{j}(-\tilde{\delta}_{x})\tau(s; x, y)/\tau(s; x, y), \\ \hat{w}_{j}^{(0)}(s; x, y) = p_{j}(-\tilde{\delta}_{y})\tau(s+1; x, y)/\tau(s; x, y)$$

where $p_j(x)$ is introduced through $\sum_{j=0}^{\infty} p_j(x) \lambda^j = \exp \xi(x, \lambda)$. Substituting (7) to (6), the TL hierarchy is converted to Hirota's bilinear equations.

1. l-periodic reduction. Let l be a positive integer. Let us consider a subfamily of the TL hierarchy with the additional constraints

(8)
$$L^{l} = A^{l}, \qquad M^{-l} = A^{-l}.$$

This subfamily will be referred to as the l-periodic Toda lattice $((TL)_l)$ hierarchy. One easily sees that the l-periodic condition (8) yields

(9)
$$[L, \Lambda^n] = [M, \Lambda^n] = 0, \quad [W^{(\infty)}, \Lambda^n] = [W^{(0)}, \Lambda^n] = 0, \\ \partial_{x_n} L = \partial_{y_n} L = 0, \quad \partial_{x_n} M = \partial_{y_n} M = 0 \quad \text{for } n \equiv 0 \text{ mod } l.$$

That is, solutions of the (TL)_l hierarchy are independent of x_n , y_n $(n \equiv 0 \mod l)$. Let us introduce τ functions, $\tau'(s; x, y)$, by $\tau'(s; x, y) = \exp\left(\sum_{n=1}^{\infty} n x_n y_n\right) \tau(s; x, y)$ (cf. [1]). Then we obtain

Proposition 1. Under a suitable choice of elementary multipliers of τ functions (cf. [1], Theorem 4), one finds that the l-periodic condition (8) equivalently reads

(10)
$$\begin{aligned} \partial_{x_n} \tau'(s; x, y) &= \partial_{y_n} \tau'(s; x, y) = 0, \\ \tau'(s; x, y) &= \tau'(s+l; x, y), \quad \text{for any } s, n \equiv 0 \text{ mod } l. \end{aligned}$$

In order to investigate the linearization scheme for the $(TL)_t$ hierarchy (cf. [4]), let us recall some basic facts about Lie algebras. Let $\mathfrak{gl}((\infty))$ be the formal Lie algebra of matrices of size $\mathbb{Z} \times \mathbb{Z}$, and $\mathfrak{gl}((\infty))_t$ be a subalgebra of $\mathfrak{gl}((\infty))_t$ defined by

$$\mathfrak{gl}((\infty))_i = \{A \in \mathfrak{gl}((\infty)) | [A, A^n] = 0 \quad \text{for } n \equiv 0 \mod l\}$$

$$\mathfrak{gl}(l, C[[\zeta, \zeta^{-1}]]) \text{ is isomorphic to } \mathfrak{gl}((\infty))_l \text{ under the correspondence}$$

(11)
$$g[(l, C[[\zeta, \zeta^{-1}]]) \longrightarrow g[((\infty))_{l}]$$

$$A(\zeta) = \sum_{j \in \mathbb{Z}} \operatorname{diag}[a_{j}(0), \dots, a_{j}(l-1)] \Lambda_{l}(\zeta)^{j}$$

$$\longmapsto A = \sum_{j \in \mathbb{Z}} \operatorname{diag}[a_{j}(0), \dots, a_{j}(l-1)]_{l} \Lambda^{j},$$

where

$$A_t(\zeta) = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ \zeta & & & 0 \end{bmatrix},$$

and diag[$a_j(0)$, \cdots , $a_j(l-1)$], denotes a diagonal matrix diag(\cdots , $a_j(0)$, \cdots , $a_j(l-1)$, $a_j(0)$, \cdots , $a_j(l-1)$, \cdots]. Under this isomorphism, L, M, $W^{(\infty)}(x, y)$, $W^{(0)}(x, y)$ are identified with $L(\zeta)$, $M(\zeta)$, $W^{(\infty)}(x, y; \zeta)$, $W^{(0)}(x, y; \zeta) \in \mathfrak{gl}(l, C[[\zeta, \zeta^{-1}]])$, which take the form

sition.

$$\begin{split} L(\zeta) &= W^{(\infty)}(x,\,y\,;\,\zeta) \varLambda_{l}(\zeta) W^{(\infty)}(x,\,y\,;\,\zeta)^{-1}, \\ M(\zeta) &= W^{(0)}(x,\,y\,;\,\zeta) \varLambda_{l}(\zeta)^{-1} W^{(0)}(x,\,y\,;\,\zeta)^{-1}, \\ W^{(\infty)}(x,\,y\,;\,\zeta) &= \hat{W}^{(\infty)}(x,\,y\,;\,\zeta) \exp\,\xi(x,\,\varLambda_{l}(\zeta)), \\ W^{(0)}(x,\,y\,;\,\zeta) &= \hat{W}^{(0)}(x,\,y\,;\,\zeta) \exp\,\xi(y,\,\varLambda_{l}(\zeta)^{-1}), \\ \hat{W}^{\binom{0}{\infty}}(x,\,y\,;\,\zeta) &= \sum_{j=0}^{\infty} \mathrm{diag} \big[\hat{w}_{j}^{\binom{0}{\infty}}(0\,;\,x,\,y),\, \ldots,\, \hat{w}_{j}^{\binom{0}{\infty}}(l-1\,;\,x,\,y)\big] \varLambda_{l}(\zeta)^{\pm j}. \end{split}$$

Proposition 2. $W^{\binom{0}{\infty}}(x, y; \zeta)$ solve the linear equations (12) $\partial_{x_n}W(\zeta) = B_n(\zeta)W(\zeta)$, $\partial_{y_n}W(\zeta) = C_n(\zeta)W(\zeta)$, $n=1, 2, \cdots$, where $B_n(\zeta) = [L(\zeta)^n]_+$, $C_n(\zeta) = [M(\zeta)^n]_-$. The symbols $[A(\zeta)]_+$ stand for the part of $A(\zeta)$ of non-negative order, and of strictly negative order with respect to $A_l(\zeta)$, respectively. The compatibility condition for (12) gives the (TL) hierarchy, and $B_n(\zeta)$, $C_n(\zeta)$ belong to $\mathfrak{Sl}(l, C[\zeta, \zeta^{-1}])$.

2. The Riemann-Hilbert decomposition and its application. We define $\hat{V}^{\binom{0}{\infty}}(x,y)$ for wave matrices $W^{\binom{0}{\infty}}(x,y)$ by $W^{\binom{0}{\infty}}(x,y)$ = $\hat{V}^{\binom{0}{\infty}}(x,y)\exp(\xi(x,A)+\xi(y,A^{-1}))$. They take the form $\hat{V}^{\binom{0}{\infty}}(x,y)=\sum\limits_{j=0}^{\infty}\operatorname{diag}[\hat{v}_{j}^{\binom{0}{\infty}}(s:x,y)]A^{\pm j}$, and $\hat{v}_{0}^{(\infty)}(s;x,y)=1$. Then the bilinear relation (6) implies that there exists an invertible matrix A of size $Z\times Z$ such that

(13) $\hat{V}^{(0)}(x,y) = \hat{V}^{(\infty)}(x,y)H(x,y)$ where $H(x,y) = \exp(\xi(x,A) + \xi(y,A^{-1}))$ $A \exp(\xi(-x,A) + \xi(-y,A^{-1}))$. This implies decomposition of H(x,y) to the upper triangular matrix $\hat{V}^{(0)}$ and the lower triangular matrix $\hat{V}^{(\infty)}$, and is regarded as an infinite dimensional generalization of the classical Riemann-Hilbert (RH) problem. In fact, if $A \in \mathfrak{gl}((\infty))_t$ then (13) reduces to the classical RH problem. Therefore (13) will be called the RH decomposition

Proposition 3. Let $A = I + \sum_{j=1}^{N} a_{j} X_{p_{j}q_{j}}$ in (13), where $X_{pq} = \sum_{m \mid p \in \mathbf{Z}} p^{m} q^{-n} E_{mn} (E_{mn} = (\delta_{mi} \delta_{nj})_{i,j \in \mathbf{Z}})$

is the so-called vertex operator [3]. Suppose $a_j > 0$, and $0 < q_N < \cdots < q_1 < p_1 < \cdots < p_N$. Then the RH decomposition has a unique pair of solutions $\hat{V}^{\binom{0}{\infty}}(x, y)$, and their entries are expressed in the form

$$\hat{v}_{j}^{(\infty)}(s; x, y) = p_{j}(-\tilde{\delta}_{x})\tau'(s; x, y)/\tau'(s; x, y), \hat{v}_{j}^{(0)}(s; x, y) = p_{j}(-\tilde{\delta}_{y})\tau'(s+1; x, y)/\tau'(s; x, y).$$

Here the τ functions, $\tau'(s; x, y)$, is given by

(14) $\tau'(s; x, y) = \sum_{l=0}^{N} \sum_{i_1 < \dots < i_l} c_{i_1 \dots i_l} a_{i_1}(s) \dots a_{i_l}(s) \exp\left(\sum_{\mu=1}^{l} \eta(p_{i_\mu}) - \eta(q_{i_\mu})\right)$ where

$$\begin{split} &\alpha_i(s) = \alpha_i(p_i/q_i)^s q_i/(p_i - q_i), \\ &c_{i_1 \dots i_t} = \sum_{1 \le \mu < \nu \le i} c_{i_\mu i_\nu}, \quad c_{ij} = (p_i - p_j)(q_i - q_j)/(p_i - q_j)(q_i - p_j), \\ &\gamma(p) = \xi(x, p) + \xi(y, p^{-1}). \end{split}$$

The τ function (14) coincides with the τ function introduced in [5], [6].

- 3. Remarks. (1) Setting $A = I + \sum_{j=1}^{r} a_j E_{m_j n_j}$ and y = 0 in (13), one can obtain rational solutions of the KP hierarchy (cf. Theorem 5 in [1]).
- (2) The TL hierarchies of orthogonal or symplectic type, and the multi-component TL hierarchy can be also considered.

These topics are investigated in detail in [2].

Acknowledgement. The authors would like to thank Profs. Mikio Sato and Masaki Kashiwara for stimulating discussions. One of the authors (K. T.) thanks Prof. Hikosaburo Komatsu for hearty cares.

References

- [1] K. Ueno and K. Takasaki: Toda lattice hierarchy I. RIMS preprint (1983).
- [2] —: Toda lattice hierarchy. RIMS preprint (1983) (to appear in Advanced Study in Pure. Math.).
- [3] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa: Transformation groups for soliton equations II. Proc. Japan Acad., 57A, 387-392 (1981); ditto. III. J. Phys. Soc. Japan, 40, 3806-3812 (1981).
- [4] A. V. Mikhailov, M. A. Olshanetsky, and A. M. Perelomov: Two-dimensional generalized Toda lattice. Commun. Math. Phys., 79, 473-488 (1981).
- [5] R. Hirota: Discrete analogue of the generalized Toda equation. J. Phys. Soc. Japan, **50**, 3875 (1981); Tech. Rep., A-6, A-9, Hiroshima Univ. (1981).
- [6] T. Miwa: On Hirota's difference equation. Proc. Japan Acad., 58A, 8-11 (1982).