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Introduction

In the last decade the theory of completely integrable non lincar
systems, the so called “soliton theory”, has made remarkable progress,
in which intensive rescarches have been done by many physicists and
mathematicians. Among them the Toda lattice [36) has always been, to-
gether with the Korteweg-de Vries (KdV) equation, one of the most classi-
cal and important objects to be investigated from various points of vicw,
both physical and mathematical.

Several varieties of methods have been developed to reveal the pro-
found mathematical structure in the Toda latticce: Inverse scattering
method, spectral theory, Bicklund transform [5, 7, 9, 18, 27, 37], algebro-
geometric method (3, 5, 6, 7, 8, 13, 28, 29, 30}, Hirota’s method {10, 11, 19],
orbit mcthod, group representation theory [2, 3,4, 14, 15, 16, 17, 30, 31,
32, 35).

In the present paper, inspired by the recent developments in the study
on the Kadomtsev-Petviashvili (KP) hicrarchies [20-25, 34), a hierarchy (a
series of mutually commutative higher evolutions) for the two dimensional
infinite Toda lattice is introduced. 1Its algebraic structure, the lineariza-
tion, the bilinearization in terms of the ¢ function, the reductions and the
special solutions arc investigated in detail. Also its analogues of the B
and C types and the multi-component type are considered. Our method,
which is closely related with those used in [12, 20-26, 33, 34], has the ad-
vantage of making the treatment of the infinite lattice extremely clear and
algebraic.

Our investigation in the present paper is motivated by the following
observations:

The two dimensional infinite Toda lattice (hereafter we shall call it
simply the “Toda lattice” (TL)) is, by definition, the non linear wave
equation

(0. l) a‘lahu(s) =euu)- u(s=1) _cu(n l)-u(l)’
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where u(s) =u(s; x,, y,), 8, =dfox, 3, =d/dy, a

; _ X0 1)y Oy, s> 0, =0d/dy, and s runs over Z, the
totality of mfegers. Notice that (0.1) is subholonomic in the sense that the
general sol.utxons depend on arbitrary functions of two variables,

(0.1) is represented in the form

(0-2) ahB;-a_,‘C,-*-[B,, C]]=0’

where the symbol [, ] denotes the commutator a C :
nd B,
(of size ZX.Z) ’ ,» Cy are the matrices

Bi=(01s-Drsez+ @, u(i)3, )15

-a,lu(—l)' 1

= av‘u(O) 1 s
d,,u(1)
Cx=(e“m-"('-!’5",4.,)‘.’62 :
( .
0
= eu(ﬂ)-u(-l) 0
B -u 0
., ]

If a = function =(s)=1(s; x,, y,) is introduced by

d;,u(s)=3, log T_(:';TI)— , evtn-ueen, TG+ lzr)(:'— 1) ,
s

(0.1) is transformed into the bilinear equation of the Hirota type-
{0.3) 3D, D, (s) - o(s)+(s+ (s — 1)=0,

xyhere I?,ID,,‘ i§ one of Hirota’s D-operators [10] which are defined for
linear differential operators F(3,) by

0.4 FD)f(1)-8()=F@.)f(1+1)g(t~1")y oo

In}roducing another ¢ function t(s)=e""1r(s), we ;:an rewrite (0.3) into
Hirota’s original form [11]
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©.5) D, D, (s)-/(s)+'(s+ 1)e'(s— 1) — ' (s)*=0.

The N soliton solution to (0.5) was obtained in [11]. A parametrization
of 7'(s) in terms of the Clifford operators was discussed in [19].

Starting from these observations, we shall develope our consider-
ation.

The plan of the present paper is as follows.

In Chapter 1 a hierarchy for (0.1) is investigated. In Section 1 our
hierarchy is defined by the equations of the Lax type

a:..L=[Bm L]! ay,.L=[Cm L]’

©.6)
ang—__[Bm M), avnM=[Cm M}, n=12,---,

or equivalently by the equations of the Zakharov-Shabat type

aanm_az.Bn+[Bms Bn]"—'o)
0.7 87.Cn—8yaCa+[Cn, Ci]=0,
9, Bpn—0.,Cp+[Ba, C,]=0, mn=1,2 ...

which contain (0.2) as a special one. Here x=(x),x;, --+) and y=
(3 Yo + - -) are independent variables, while L, M, B, and C, are matrices
of infinite size in certain algebraic relations stated in Section 1, and serve
as unknown dependent variables. In Section 2 the linearization is
achieved by the linear equations

LW=W4, MW=WA", A=, 520z

(0.8)
3, ,W=B,W, 3, W=C,W, n=1,2, ---.

Two types of matrix-solutions W} and W of infinite size are con-
structed and called “wave matrices” as analogues of the wave functions
in the classical inverse scattering theory. They are characterized by the
bilinear equation

(0.9) WX, YW N (x, y)™' = WO, yIW O (x, y)~.

In Section 3 the = functions =(s; x, ) and z’(s; x, y) are consistently intro-
duced, and the hierarchy is transformed into an infinitc number of bilincar
equations of the Hirota type. Also a close relation with the two com-
ponent KP hierarchy is revealed. Finally in Section 4 the reductions to
the periodic lattice and the hierarchy in the one dimensional sector are
discussed.

In Chapter 2 the hierarchies of the B and C types are investigated.
In Section 1 the Lie algebras 0(oo0), 8p(oo) and their subalgebras o(co),,
8p(oo),, which were introduced in [23] in the study of the KP hierarchies
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of the B and C types, are reviewed. In Section 2 and Section 3 the Toda
lattice hierarchies of the B and C types are introduced in the “odd sector™
{x:n=Y2=0,n=1,2, - - -} by imposing the conditions B,, C, &€ 0(c0) for
n=1,3,5, .- (Btype), By, C, € 3p(c0) for n=1,3,5, --- (C type) re-
spectively. Also the linearization, the ¢ functions and the pcriodic reduc-
tions associated with o(oo), and 8p(co); are discussed. In Section 4
another definition of the = functions is remarked.

In Chapter 3 the multi-component hicrarchy is considered. In Sec-
tion 1 the hierarchy is formulated as an analogue of the multicomponent
KP hierarchy [22,34]. The non abelian Toda lattice is recovered in a special
sector of the dependent and independent variables. In Section 2 the
lincarization, the characterization of wave matrices and a close connection
with the multicomponent KP hierarchy are discussed. In Section 3 a
generalization of the AKNS hierarchy (1] is derived as a reduction.

In Chapter 4 special solutions are constructed by two algebraic
methods. In Section 1 the aspect of the Riemann-Hilbert problem is
applied to the Toda lattice hierachies. Actually (0.7) implies

(010) W(O)(x’ y)= W(“)(xi y)A: Ae GL(OO)’

which is regarded as an analogue of the Riemann-Hilbert problem. In
this way the soliton solutions arc recovered. Also a class of the poly-
nomial = functions of the KP hierarchy is constructed in the same way.
In Section 2 another algebraic method is discussed, which originates in the
construction of rational solutions [33] to the KP hierarchy.

In Appendix the recent results [12, 20-25, 33, 34] in the study of the
KP hierarchies are briefly summarized for the reader’s convenience.

In the recent preprint [40] we announced the results of Chapter 1. In
the present paper we shall discuss more fully the derivations and further
developments of these results.

The authors cxpress their thanks to Professors M. Sato, K. Kashi-
wara, E. Date and Doctors T. Miwa, M. Jimbo for useful discussions and
encouragement. Also one of the authors (K. T.) thanks Professor H.
Komatsu for hearty care and encouragement, and the staff of RIMS for
hospitarity.

1. The Toda Lattice Hicrarchy

1.1. Notations and preliminaries

First of all we fix notations to be used throughout this chapter, and
explain some elementary facts about the formal Lie algebra gl((c0)). -
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'l.et A’ be the j-th shift matrix, 4’=(3,.,..)s..¢2> and E,; be the @, j)-
matrix unit, E,;=(5,0,,)s.qz- Let gl((c0)) be the formal Lie algebra
consisting of all Z X Z matrices;

af((oo))={‘_,Z€12 ayE,la,eC}.
A matrix 4 ¢ g{((c0)) is written in a convenient form as
(1.1.1) A =1§ diag [a,(s)] 4
where diag [a,(s)] denotes a diagonal matrix diag(- - -a,(—1), a,(0).a,(1),

.++), and diag[a,(s))4’ is defined as the usual product of matrices.
Namely the expression (1.1.1) indicates

.
. a(=1 a(=1)

A=| a0 af0) af0) L
a.(l) afl)
| ) )

We call diag[a,(s)] the j-th coefficient of 4.

A matrix 4 e gl((e0)) is said to be a (strictly) lower triangular matrix
if a,(s)=0 for j =0 (resp. j >0), while it is said to be a (strictly) upper
triangular matrix if a,(s)=0 for j <0 (resp. j<0). We dcfine the (&)
part of a matrix 4 by

112 .= _ E:w diagla,(s)14’, (4). = -29« diag[a,(s))4’ .

gl((0)) is equipped with two gradations with respect to the order of
A I A= o 5n diagla,(s))4, it is said to be of order less than m,
it being denoted by ord A<m. On the other hand, if A=3 .c/cse
diag[a,(s))4’, it is said to be of order larger than m, and it being denoted
by ord 4 = m. In particular, if A=) .z,5x diagla,($)]4’, it is called
bounded.

When matrices 4 and B are of order less (or larger) than m, the product
AB is well-defined. We remark further that A=3]_.c;5n diag[a(s)]4’
(resp. A=z <. diagla,(s))4?) with non-zero leading entries (i.e.
a.(s)#0 for any s) has an inverse matrix of a form such as 3 _.c;5-m
diag by())A? (eSP. 3 nzcow diaglb,(4Y).

A matrix 4 (1.1.1) naturally corresponds to a difference operator
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(1.1.3) (s; €)=Y, as)e!™,
JEZ

where the action of the operator e/ is defined by

et f(s)=f(s+j) foranys.

The () part of &/(s, e*) is defined in a similar fashion as (1.1.2).
Throughout this article, the differentiation will be denoted by 4.,
etc., namely, 3., B=2B/dx,, and so on.

1.2, Definition of the Toda lattice hierarchy

Set two copies of time flows x=(x;, X, -+ -), y=(yu J» - -*). Let
L, M, B, C, ¢ gl((c0)) be

= Zj“x diag[b,(s)]4’
3
(1.21) M= g] diag[c,(s)]4’  with c_(s)#0 for any 5,
~18J 4o
B,=(L"),, Co=(M")_.

with b,(s)=1 for any s,

Each entry of L, M is a function in x, y ie. b(s)=>b(s; x, y), c,(s)=
c/(s; x, y), and plays the role of unknown functions to be solved in our
scheme. Since L and M are assumed to have non-zero leading entrics,
they are invertible.

The Toda lattice (hereafter we will abbreviate it to TL) hierarchy is
formulated as a system of infinitely many equations of the Lax-type

9,,L=[B., L), 9.,M=[B,, M],

2.
(l 2) av.L=[Cnr L]v ay.M=[Cm M] n= l, 2: M

Since B,, C, are bounded, and ord LL1, ord M = —1, the Lie brackets
above are well-defined.

The following theorem states that our system (1.2.2) is consistent,
namely, that the flows induced by this system mutually commute.

Theorem 1.1 (cf. [12, 20, 33]). The TL hierarchy (1.2.2) is equivalent
to a system of equations of the Zakharov-Shabat type,

ax.Bm —ax.Ba + [Bim Bn] = 0:
(1.2.3) 3,.Ca—2,.Ca+[Cny Cil =0,
Bn—3. C,+[Bn, C.]=0, m,n=1,2, -

Proof. First we show that (1.2.2) reduces to (1.2.3). Let us intro-
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duce 1-forms w, &, 2, 5, etc., by

m=Z Ldx,, &= Z Mrdy,,

n=1

Q=(w)” Q¢=—'(a’)-9 = -®., &.=()-.
Note that
9., L?=[B,, L?]

follows from (1.2.2) for any positive integer p. Hence the first equations
in (1.2.2) are encapsulated into the Pfaffian system,

do=[2, 0" (=2,0+w,92),

where d. (resp. d,) stands for the exterior differentiation with respect to x
(resp. ). (Henceforth we will abbreviate the symbol of the exterior pro-
duct.) Since [w, L?}==0 for any p, the above equation reduces to

d.0—dQ.=0'-0.

Since d.2, £2* are upper triangular while d,Q2,, ? are strictly lower trian-
gular, the above equation breaks up into

d.0=0, d.0.=2.

The former equation yields the first one in (1.2.3).
Likewise one obtains

dE=5, d5.=

The latter yields the second equation in (1.2.3).
Next we deduce the third equation in (1.2.3) from (1.2.2). The
second and third ones among (1.2.2) are rewritten as

do=I8, o), d&=[2,8
which further leads to
(1.2.4) d0Q—[8., 9 =d 2. —[E, 2],
(1.2.5) d.8.—[02,58])=d.5-[9, 5)°.
Using these equations, one sees that

dwg’i'dzge_lgn Q= —d,E‘-I-d,Q,—[E‘, 2] (by (1.24)
=—d2—d5—[5, Q. (by (1.2.5).
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All the matrices in the second line above are strictly lower triangular, while
those in the third line are upper triangular. Hence

dvg"'dxgc_lgu Q]’ =0,

from which the third equation in (1.2.3) is derived.
Now we show the converse way. Note that the first equation in
(1.2.3) reads

9., L™ —[B,, L*1=0,,(L")-+3,,B,~[B,, (L™).]

Since all the matrices in the right-hand side are of order less than n—1,
the order of the left-hand side should be bounded for fixed n;

{1.2.6) ord(9,, L™ —[B,, L™ Sn—1 for any m=0.

Suppose 9,,L—[B,, L]#0. Then it is casy to see that
lim ord (3,,L™ —[B,, L?])=+ oo,

which contradicts (1.2.6). Thus. we have proved the first equation in
(1.2.2). Other ones among (1.2.2) can ‘be obtained in the same manner
as above. Q.E.D.

The third equation with m=n=1 in (1.2.3) is the two-dimensional
Toda lattice, and this is the reason why we call (1.2.2) (or (1.2.3)) the TL
hicrarchy.

Equations (1.2.2) and (1.2.3) arise as the compatibility condition for
the linear problem

(127)  LWEA(x, y)=WS(x, )4, MWO(x, p)=Wx, y)4°,
(1.28) a3, W(x,y)=B.W(x,y), 9,W(x »N=CW(xy) n=12,---,

where W(x, y)=W*¥(x, ) and W®(x, y). (Hereafter we will often use

an abbreviated notation, W(z)(x, y) instead of W(x,y).) This linear
system may be regarded as an analogue of the simultaneous eigenvalue
problem in the KP theory (20, 22, 23, 34] (sce also the appendix in this
article).

We have the following theorem on an explicit expression of solution
matrices to the linear problem. The method of our proof is based upon
the ideas explored in Kashiwara’s lecture note [12].

Theorem 1.2. Suppose that L, M (1.2.1) are solutions to the TL
hierarchy. Then there exist solution matrices W*¥x, y), W(x, y) to the

]

T
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linear problem (1.2.7), (1.2.8) such that

W) (x, y)=W(x, y) exp &(x, 4),

(1.2.9) A
WO (x, y)=W®(x, y) exp &(y, 47"),
and
W, )= 5 diag(#=)s; x, A=
(1.2.10) =0

WO, -1 5 401 diaglo s+ 153

with W{=)(s; x, )= w§="*(s; x, ¥)=1 and W{(s; x, y)#£0 for any s. Here we
have set &(x, A**)=3 v X, 4%™.
The solution matrix of such forms will be called wave matrices,
Wave matrices are uniquely determined up to arbitrariness

(.2.11) s, ) —s W, 5@,

0 ]
where f (‘”)(Z)=Zj;°_° f,(“’)x*’ are formal power series in 2 with constant
scalar coefficients.

Proof. We proceed in steps. First of all we prepare the following
lemma.

Lemma 1.3. The TL hierarchy (1.2.3) is equivalent to
az-(Lm) -= a:.(Ln) -+ [(Ln)- ’ (Lm) -1=0,

(1.2.12) =8, (M™) .43, (M").+[(M")., (M™)_]=0,
02, (M ™). 43, (L") +[(L")-, (M™).]=0
or
=8, (L) s +8..(L7). +[(L7)., (L?),]=0,
(1.2.13) 3, (M™), —3, (M), +[(M7)., (M™),]=0,

05 (M7), 48, (L") s —=[(L")., (M™),]=0.

Proof. We only show that the first equation in (1.2.12) is derived
from the TL hierarchy. Since the first equation in (1.2.2) reads as [d,,+
(L")., L™}=0, the first one in (1.2.3) implies

0= [a:u —L*+ (Lu)-) a:. —L=+ (Lu)-]
= [aSu+ (Lﬂ)-s a;.+ (Lﬂ)-] _[a:. +(Lﬂ)- ’ Lm] - [L“v a‘g+(Ln)-]
=[0,,+(L")., 8,0+ (L™).).
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Thus the first equation in (1.2.12) is obtained. Other equations among
(1.2.12) or (1.2.13) can be similarly verified. Q.E.D.

Applying this lemma we deduce the following proposition.

Proposition 1.4. Let L, M (1.2.1) be solutions to the TL hierarfhy.
Then there exist matrices W(x, y), WO(x, y) of the form (1.2.10) satisfy-
ing the following equations;

(1.2.14) L=We(x, DAW N x, )~ M=W(x, WA WO(x, ),
and

3. W =), )+ (L)W x, y)=0,

av-W(Q)(x! y)—(Mn)-W(n)(xs »N=0, n= L2
a:.Wm(x: y) _(Ln)+ W‘m(x, y)= 0,

3,7 O(x, )+ (M) WO(x,5)=0, n=1,2,---.

(1.2.15)

(1.2.16)

Proof. Thanks to Lemma 1.3, both (1.2.15) and (1.2.16) are com-
patible systems. Hence the Cauchy problems for them have unique

(0
solutions. We observe that there exist W.,(“’)(x, y) of the form (1.2.10)
satisfying

L= W, AW, 3),  M=WPG, A7 WO, )™

Let us consider the Cauchy problems for (1.2.15) and (1.2.16) with
initial conditions W (%, »)|seyao=Wi=(X, })|z=5e0 2nd WO (x, P)sayo=
W(x, ¥)|s=peo- The previous remark assures that m§e problems have
unique solutions of the form (1.2.10). Then, by making use of (1.2.2)
and (1.2.15), one sees that
3. (LW — W= 4)
=[B,, LW —L(L*). W= 4 (L") W4
= —[(L*)., LW —L(L) . W 4 (L)W 4
= — (). - 1),
and also that
3, (LW — W= 4)
=[(M")., L]W + L3, W —3, WA
=L@, W™ —(M")_ W) +(M7). LW
_(a"p"y(a) YW
=(M") (LW — W™ /).

i o
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Hence one finds LW — W4 to solve the Cauchy problem (1.2.15)
with the initial condition

LW — W“”’A) l:-v-o=(LW§°’ - Wé”’A)L-v-o:o'

The uniqueness of solutions shows it to be a null solution, i.e. LW —
W 4=0. Likewise one can prove MW® — W® A-1=(, QE.D.

We proceed to the proof of Theorem 1.2.

{0
Proof of Theorem 1.2. Let W*)(x, ) be the solutions to (1.2.14-16)

in Proposition 1.4. For them, we set W(‘g)(x, ») as (1.2.9). Since 4 and
§(x, 4*) mutually commute, (1.2.7) obviously holds. Moreover, by
making use of (1.2.7) and (1.2.15), onc has

0, W= —(L*). Wt W= gn
=B,, Wi — [t + W gn
=B, W (since L*= W= 2w,

The other equations are proved by the same argument. Q.E.D.

Now we deduce a bilinear relation which characterizes wave matrices
of the TL hierarchy.

Let W(x, y), W%(x, y) be wave matrices. Since

35, WA x, y) WM (x, y)7' =08, W(x, y)- W(x, )" (=B,),
and

WA x, 1) WENx, y)7' =3, WO (x, y)- WO(x, y)" (=Ca),
one can show. by induction that
(12.17)  G4W (x, y)- Wx, ) =0 O(x, y)- W(x, )~

holds for any multi-indices a=(a,, ay, - - +), 8=(B,, B, -+ ), Where 2=
0203+ - -.  Furthermore the infinitely many equations in (1.2.17) are
encapsulated into a single expression

W(x, y)- WX, y) ' = WO(x, y)- WO, y)

1.2.18
( ) for any x, X’ and y, y'.

In fact, considering the Taylor expansion of (1.2.18), one easily finds
(1.2.18) to be a generating functional expression of (1.2.17), This bilinear
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relation will play the crucial role in our scheme.
The following theorem says that (1.2.18) completely characterizes
wave matrices.

Theorem 1.5. Let W« (x,y), W®(x, y) be matrices of the forms
(1.2.9), (1.2.10), and suppose them to satisfy the bilinear relation (1.2.18)
Jorany x,x’ and y, y’. Then they are wave matrices of the TL hierarchy.
That is, setting

L=Wx, pAW N x, )7, M=Wx, A~ WO(x, )7,

and B,=(L"),, C,=(M")_, we then hdve d,, _W(g)(x, y)=B, W(‘g’)(x., W,
8, W5, )=, W, 3).

Proof. Using (1.2.17) with =(0, - -+, 1,0, - - -), =0, one see that
B, W W L e R i =g O O,

Since W is a lower triangular matrix with unit diagonal entries, 3, W
W=t is strictly lower triangular. Note also that 8, W®.Wo-! js
upper triangular. Consequently, taking the (4) part of the above equa-
tion, one has

(aSnW(o) . W(o’-l)‘_ =a:'W(°) . W(D)-]
=W AW,
=(L"), (since L= W AWy,

Thus 3, W . W -l=35, WO . WO-'=B,,
Now setting =0, §=(0, - - -,T, 0, - --) in (1.2.17), one sces that
W W=, WO WO L g-njo-,
The (—) part above yields
3, W Weri=(WOL o= _=C,.
Thus 3, W - W=-'=3, WO. WO-i=C,. Q.E.D.

Remark. If matrices W(x, y)*', W®(x, )** such as (1.2.10)
. ve
satisfy the bilinear relation (1.2.18), then W(=)(x, 5)-* are automatically

~f0
inverse matrices of W(“)(x, ¥). This fact can be proved as follows:
Setting x=x’, y=)’ in (1.2.18), one has
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W) (x, YW =)(x, y)-t=WO(x, )W O(x, y)~.

But the left-hand side above is 2 lower triangular matrix all of whose
diagonal entries are 1, while the right-hand side is a upper triangular
matrix. Consequently the both sides should be the unit matrix.

The bilinear relation (1.2.18) can be considered as an analogue of the
residue formula for the wave function of the KP hierarchy [22] (see also
the appendix in this paper). To see this claim, let us define wave func-
tions by

w(s; x, ¥; A=w")s; x, y; D2 exp &(x, 2),
w*(s; x, y; A="w""¥(s; x, y; DA~ exp §(—x, 2),
wO(s; x, y; H=ws; x, y; Y2 exp £(y, 27,
wO¥(s; x, y; =0%(s; x, y; DA'6(—y, A7),

(1.2.19)

Here #w'™¥(s; x, y; 2), etc. are introduced through the entries of the wave
matrices as follows;

#)s; x, 3 D=5 95 x, y)ae,
(1.2.20) . =
ﬁ:("")*(s; X, ¥; 2)=, o;?z(“’) *(s; x, )R,
&(x, 2) is defined by &(x, D=2 muy XaA™
By a direct calculation, we obtain the following formula.

Proposition 1.6. The bilinear relation (1.2.18) is equivalent to the
Jollowing residue formulae;

W s; x, y; IR X, Y5 A) —‘2,
2ri

(1.2.21) i

2ri

for any x, X', y, ¥ and any integers s, 5'.

= § wO(s; x, y; - WOH ¥, '3 A7)

Here the integration contours are taken to be a small circle around 2=co.

At the end of this section, we give a brief comment concering a link
between the linear problem of the 7L hierarchy and that of the XP hier-
archy. For the purpose, we rewrite our linear problem (1.2.7), (1.2.8) in
terms of difference operators (§ 1.1).

It is easy to see that the first equation in (1.2.7) reads as
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(1.2.21) L(s; e s; x, y; H=2w'(s; X, y; 2),

where the difference operator L{s; ¢%) is introduced through the entries
by(s) of L (1.2.1) as follows;

Ls; )= 3 bs)e'.
-Zi5t
Set B,(s; e*)=(L(s; €*)"),. The first equation in (I.2.8) now reduces to

1.2.22) 3,,w(:)(s; x, y; A)=B,(s; ea')'w(g)(s; % ;2.

There also exist difference operators M (s; e*), C,(s; %), which correspond
to M and C,, such that

(1.2.23) M(s; e Iw(s; x, y; D=2"'w®(s; x, y; 3),
[}
(1.2.24) a,_w(‘”)(s; x,¥; D)=C.(s; e")w(:) (s;%,7: 2.

Equations (1.2.21-24) constitute a difference operator version of the linear
problem of the 7L hierarchy.
By the way, (1.2.22) with n=1,

3, w)s; x, y; D=(e?+by(sHW™(s; x, y; 2)

means that the action of the operator e/ on wi)(s; x, y; 2) is identified
with (@,,~by(s+j—1))- - -(9.,,—bu(s)). Thus we find a differential opera-
tor B,(s; 9,) of order n such that

as.w‘w)(S; x,Y; R)=§n(s; a,l)W(m)(S; X, Y 2)’ n=2p 3: trt

This is just the linear problem for the XP hierarchy [20, 34), so the com-
patibility condition for this gives the XP hierarchy.

The relationship between the TL hierarchy and the KP hierarchy can
be also described as follows: Let y=)’ and s=s"in (1.2.21), Then we
have

:f w)s; x, y; Ywi¥(s; X, y; 2) ?—.=0,
Tl

which is nothing but the residue formula in the XP theory. Hence each
w=)(s; x, y; 2) (resp. w™*(s; x, y; 2) is, viewed as a function in x, a wave
function (resp. a dual wave function) of the KP hierarchy [20] (see also
the appendix 1 in this article).
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1.3. 7 functions and Hirota’s bilinear equations

As was seen in the introduction, = functions of the Toda lattice satisfy
the Hirota’s bilinear equations (0.3). In this section we will formulate ¢
functions for the hierarchy, and show the hierarchy to be bi-linearized by
means of ¢ functions. The existence of = functions for the KP hierarchy
{or the multi-component KP hierarchy) was formulated in [20, 22],
however any algebraic proof for this has not been presented.

Let w(s; x, y; ), etc. be the formal power series defined by (1.2.20)
for the wave matrices. The main theorem in this section is the following.

Theorem 1.7. 7 functions t(s)=1(s; x,y) of the TL hierarchy are
uniquely determined up to a constant multiple factor so that

o(s; x—¢(2""), 5)
ws;x, )
o(s; x+e(27%, »)
wsix%y)
t(s+1; x, y—e(2)
;%9
WOK(s; x, y; D)= s _:(; x;yj:l)- ) ,

WeNs; x, y; A=

Wk(s; x, 3 )=

(1.3.1)
Wo(s; x, y; )=

where (D)=, 25,32, - --).

The proof will proceed in steps. By virtue of the bilinear relation
(1.2.18) and the identities

(13.2) expé(E(2), H=U~-2"4)",

(133 (=D -5a) =2 (-2 ay -,

we deduce the following proposition.

Lemma 1.8. For any X, y, 4, 4, we have

WS x, p; AW (5415 x—e(A75), y—6(2); 2)
=W0s; x, p; V¥ (s+1; x—e(Ar"), y—e(d); ),

WX (s; X, 3 A)¥(s; x—e(A7) — (25, ¥; 4)
=WNs; X, ¥3 P*(s; x—e(Ar) = (), y; ),

(1.3.4)

13.5)
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(1.3.6) WOs; x, y; AWOHs+2; x, y—e()—e(R); 4)
=WwO(s; x, y; WWO¥(s42; x, y—e(A) —£(A); 2.
Proof. Letting x’=x—¢(47"), ¥ =y—e(2,) in (1.2.18), one has
(13.7) W=(x, y) exp £((7), HW ) (x—e(47), y—e(2))

Applying (1.3.2), one sces that

the l.hs. of (1.3.7)
=W x, Y1 =27 A) W x— (A7), y—e(A)

=3, dingl947(s; x, A~ T, 7' A)*

X ZI A~ diag[w=*(s+1; x—e(A7), y—e(A)]
={ 2 (Z A7 diag[§=I(s; x, y)N4*

=oall n-l-

( 3 A7t diaghwi™X(s; x, YDA}

0gn<+o nek-4
Jok0

X i A" diag [P (s 1; x—e(ArY), y—e(i)]
={ 2 (Z‘. ATt diag[wi(s; x, )DA"

—eand0 u-t
+3 27" diag[#(s; x, y; )47}
nel

X f;o A= diag[Ws s+ 1; x— (A7), y— ().

Hence

the 0-th coefficient of the 1.h.s. of (1.3.7)
=We(s; x, p; V¥ (s 1; x—e(37), y—e(4); 2).

Likewise one has

the O-th coefficient of the r.h.s. of (1.3.7)
=Wws; x, ¥; WWO¥(s+1; x—e(A7?), y—e(d); 2y).

Thus we have proved (1.3.4).

Next we set X’ =x—e(A7")—e(2:), Y=y in (1.2.18). Then

=WO(x, y) exp &(e(d,), AW O(x—e(27"), y—e(A)~".

W_ L et Ly
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138 W (x, y) exp §(A7) +e(35), HW O (x—e(4') —e(357), »)
38 o, yyroge—etar) e )
By means of (1.3.3), one has

the Lh.s. of (1.3.8)

=2k 3 diagls; x, A1 35 (G )~ YY)

Z, | I=0

X:Zr., A7 diag[wf=*(s; x—e(27) —e(3"), )}~

Consequently
the (—1)-th coefficient of the I.h.s. of (1.3.8)
= (s x, y; %55 X =)=, 73 2)

—WN(s; x, y; WV¥(s; x—e(A7) —e(4), y; 2}
On the other hand, the (—1)-th coefficient of the r.h.s. of (1.3.8)=0.
Thus we conclude (1.3.5). Equation (1.3.6) can be similarly verified.
QED.
Corollary 1.9. For any x, y, 4, A, 2, we have

WX (s; x, y; DWI*(s4-1; x—e(7Y), y; 2)

(1.3.9)

=W(s; x, YEP*(s+1; x—e(27), »),
(1.3.10) W=N(s; x, y; D8 (s; x—e(27Y), y; D=1,
(1.3.11) WwO(s; x, y; DwO*(s4-1; x, y—e(d); D=1,

¥ (s 15 x4+ (477, Y)I*(s; x, y; &)

1.3.12) ) X (5415 x+e(277, 5 A1)

=WwO*(s41; x+e(27), IV *(s; x, 3 4)

X ¥ (5415 x+e(A7"), v; ),

(1.3.13) WO(s; x, y+e(); L)*(s+1; x, y; 4)

=w%(s; x, y+e(); IVO*(s+1; x, 3; 2.

Proof. Equations (1.3.9) and (1.3.11) follow from (1.3.4) with 2,= oo
and 2,=0, respectively. (1.3.10) is deduced from (1.3.5) with 2,=0. By
making use of (1.3.5) and (1.3.9), one sees that
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W (5415 x—e(A7%), YI0¥(s; x—e(A7) —e(A5), ¥ 2)
X w515 x—e(2), ¥; 2)
=W+ 1; x—e(A7), Y)%(s; x—e(A7) —e(4577), ¥; 4)
KW= ¥(s41; x—e(A7D), y; 2).

Replacing x—e(27')—e(2;) by x in the above, one obtains (1.3.11). One
can show (1.3.12) in the same way. Q.E.D.

Set
log =¥ (s; x, y; =21 1)1,
=1
log WO*(s; x, y; )= tO(s).
J=0
We note that the action of the nonlocal operator exp (§(3,, 2~%)
©@.=(,,, +0.,, 4., - - -)) is given by
exp (6(0,, 2-NS(x)=f(x+€(2").
Let p,(x) (j=0, 1, - - -) be a polynomial introduced through

(1.3.14) et = 3° p ().
=0

More explicitly,
x‘l'l. . .x}l
nttnres et yle ooyt

Pix)=
Now we are in position to prove Theorem 1.7.
Proof of Theorem 1.7. (1) First we show
(13.15)  p@NP(s)=t{(—D)—t5(s)  for j21,
(13.16)  pf@)7(s)=Pu@)15(s) for j, k=1,
(1.3.17) 9, log W¢*(s; x, y; )=(exp (€@., 2~))— Dt{s).
Taking the logarithm of the both sides of (1.3.12), one gets

exp (60;, &) log W*(s+1; x, y)+log w*(s; x, u; 1)
+exp (§(,, A7) log W*(s+1; x, y; )
=exp (§(0., A7) log W*(s+1; x, y)+log W%(s; x, y; 2)
+exp (6@., 25Y) log w*(s+1; X, ¥; 2,).
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Expanding the both sides into power series in 2, and 2,, one sees that

,io PENOG+ DA+ ;i. 15 s+ 1)2;?

(1.3.18) B N .

=105+ 1)+ 3 143s)45,
J=1

and

> @A+ 3 PO s+ DA
(1319 7 ke
=2, PO+ DA+ 53 3% pu0) s+ DAE

Equations (1.3.15) and (1.3.16) are derived from (1.3.18) and (1.3.19),
respectively. Equation (1.3.17) is a generating functional expression for
the special case of (1.3.16), 3.,15™)(s) = p,(3.)t{=Y(s) (G =1).

(2) A similar consideration for (1.3.13) as (1) enables us to obtain

(13200 p@G () =10()—tO(s+1)  for j21,
(1.3.21) PN (s)=py(3,)(s) for j k21,

WO*(s; x, y; A)
Wk (s; x, )

(1.3.22) a,,(log )=(exp (€@, )= Dr{s).

(3) We wish to prove
(1.3.23) P ()= p, (3 )t O (s+ 1) for j, k=1.
Notice that (1.3.4) leads to
WX s; x+e(A07), y+e(@); AWV ¥ s+ 15 x, y; 2)
=WOs; x+e(A7), y+e(d), 2)0O* (5415 x, y; 2).
On the other hand, replacing x, y by x—e&(4"), y+2(2,) in (1.3.10) (resp.
by x+4e(2"), y—e(2) in (1.3.11)), one gets

W s; x4-e(A77), y+e(); 2) =¥ (s; x, y+e(2); 2.)°,

WO(s; x42(27"), y+e(R); ) =w"*(s+1; x+e(dr)y; )",
Substituting these into (1.3.24) and taking the logarithm of the both sides,
one sces that

—exp (§(9,, &) log W™"%(s; x, y; ) +log ¥ (s+1; x, y; 2,)
= —exp (§(3,, A7) log WO*(s+1; x, y; 1) +log WwOK(s+1; x, y; ).

(1.3.24)
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Compairing the coefficients of 2772 (j, k=1) in the Laurent cxpansions
of the both sides, we conclude (1.3.23).
(4) Consider the following equations;

log W<"*(s; x, y; )=(exp (§(3:, 1)) —1) log =(s; x, ),

nm* . . =
log _ng@ﬂ =(exp (£(@,» D)—1)log o(s—1; x, »),
“’g (s! x) y)

WO*(s; x, y)=r—(‘:.(%‘l;—x}:)}—’)—, seZ

Equations (1.3.15-17) and (1.3.20-23) constitute the compatibility condi-
tion for the above equations to be solved. (We should obscrve that p,(3.),
p,@,) =1,2, - ) form generators of the ring of differential operators,
Cl0s 0z0r =+ *» Byr Oys - - -).)  Consequently the solutions {z(s; x, Whez
are uniquely determined up to a constant multiple factor. Then we have

WK (s; x, 3 D= o(s; x+¢(27"), ) ,

(55 %, ¥)
WOX(s; x, ¥; H= (s; x, y+¢(2) .
(s; x,¥)
Substituting these into (1.3.10) and (1.3.11), we obtain the rest of equations
among (1.3.1). This completes the proof. Q.E.D.

Remark 1. Theorem 1.7 can be also proved by means of the residue
formula (1.2.21).

Remark 2. The arbitrariness (1.2.11) of the wave matrices corre-
sponds to modifying ¢ functions as

(s; x, y)——>a’ exp (b+ i (cnxs +dnyn)) o(s; %, V)
where a, b, ¢, and d, are constants independent of 5.

Now let us discuss the bilinear cquations of the Hirota-type satisfied
by ¢ functions of the TL hicrarchy. We prepare a lemma,

Lemma 1.10. Let a=(ay, a,, - - -) be indeterminates, and p,(x) be as in
(1.3.14). Then

(1325 35 pOIux—0)-pe-BIux-+a)=p Gl —a)(x+ )}
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holds for any integer k=0.

Proof. One sees that
the 1.h.s.=§x'-*u(x—a—e(z-*))v(x+a+e(z-*)).2£’.L
e ]
=§ 2 exp (6B, 2 Nalx—a)plx+a)} 2

=§ 2 2 p G Hutx —aol -+ @)}
et 2ri
=the r.hs.
Here the integration contour is a small circle around 1=c0. Q.E.D.

Tlfeorem 1.11. Leta=(a,, as, - - ), b=(by, b, - - -) be indeterminates.
¢ functions of TL hierarchy solve the following Hirota's bilinear equations

é Pr.(—20)p(D.) exp ({a, D.)+{b, D, D)e(s+m-+1)-=(s)

(13260 =3 p-n.(~2002D,) exp Ka Di+<b, D, Yels+m)-<(s++1)
for s,me Z,

where D,=(D.,, }D.,, - - ) are Hirota's operators, and
<a’ Dl>= Zl aHDJn'
n=

Proof. Letting xr>x—a, X'—x+a, y—»y—b, y—y+b in the bi-
linear relation (1.2.18), it reduces to
Wl x—a, y— (=) -1
1.3.27) (x—a, y—b)WNx+a, y+b)
=WO(x—a, y—b)WO(x+a, y+b).

Substituting (1.3.1) into the above, one has

the Lh.s. of (1.3.27)
=W (x—a, y—b) exp (§(—2a, AW (x+a, y+b)""

=5 diag ["*‘fgﬁf‘;;’fb;”)]/t-' x ZpA—2a)

S -t diag [ P20 +1; x+a, y+b)
xiz-o dnag[ o(s+1; x+a, y+b) ]
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- S dia [p;(-Za) -2iBoe(s; x—a, y—b) - p(@a)e(s +j—i—k+ 1)]
T iR o(s; x—a, y—=bye(s+j—i—k+1;x+a, y+b

X A4,

Set
*®)={z(s; x—a, y—b)c(s+m+1, x+a, y+b))L.
Then, applying (1.3.25), one gets
the m-th coefficient of the Lh.s. of (1.3.27)

o8

=03 T Pae(—20)p0.)ls; x—a, y—b)-p,(6.)
S Xt(s+m+1; x+a, y+b)
— ()3 P =200 Bl x—a, y—b)els+m-+1; x40, y+b)}

=) 35, P a(—20)pu() €XP ({0 0)+ b1 003)
™ R
x{r(s; x—c, y—d)e(s+m+1; x+¢ y+d}easuo
= (#) 32 P oi(—20)pD.) exp (Ca, D2Y+<b, D)
kel
Xe(s+m+1; x, y)-7(s; %, »),
Similarly one has -
the m-th coefficient of the r.h.s. of (1.3.27)
@) T Pome— 200 )els 15 x—a, y—5)p,00)
et " Xe(s+m; x+a, y+b)
= ()3 D-mer(—28)p,(D,) exp (&, DY+<b, D,))
- . X t(s+m; x, Pr(s+1; x, ).
This concludes the desirous result. ‘ » QED.

Equation (1.3.26) means a generating functional expression of t_he
bilinear equations of the Hirota-type satisfied by « functions. For in-
stance, non-trivial equations among (1.3.26) are

(13.28)  D,D,1(s)-o(s)+2e(s—1) - o(s+ 1)=0,

D )es—k+1)-2(s)=0,  pD)c(s+k—1)-z(s)=0
(1.3.29) for k2.3, e,
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,PA=200p10iD2) exp (Ka, DoY)E(s) - 5(s) =0,
(1.3.30) N

;z 2i(—25)p,, (D) exp ((, D,Y)e(s)-2(s)=0.

Equation (1.3.28) is nothing but the Hirota equation for the Toda lattice,
0
and (1.3.29) means the condition for W(‘”)(x, ¥)~! to be the inverse matri-

ces of W(‘?')(x, ») (see Remark after Theorem 1.5). Equation (1.3.30)
shows that our r functions become those of the KP hierarchy (see the
discussion after Proposition 1.6) [22].

We give a decisive result concering a relationship between the 7L
hierarchy and the 2-components KP hierarchy. Let z, . (x®, x®) be the
7 functions of the 2-component KP hierarchy introduced in [22]. Then
we deduce;

Theorem 1.12, Our t function t(s; x, ¥) given in Theorem 1.7 coin-
cides with ¢, _ (x™, x®) except for a simple factor;

(1.3.31)  z(s; x, )=(=)"2, _(x, xP)  with x=x®, y=y®,

Proof. Hirota’s bilinear equations satisfied by rz, _,(x", x®) [22]
coincide with (1.3.26) by the above correspondence. Q.E.D.

This theorem asserts that the TL hierarchy can be embedded into the
2-components KP hierarchy. However we should observe that the
totality of = functions of the TL hierarchy does not exhaust that of = func-
tions of the 2-components KP hierarchy because a null ¢ function
z(s; x, ¥)=0 should be excluded in our theory.

Finally we give another remark on ¢ functions.

As was mentioned in the introduction, we can slightly modify
functions as follows;

(1.3.32) o'(s; x, Y)=1(s; x, y) exp (}i nx, y,,).
Ne=l
This modification changes the expression of the wave matrices to
() 7(2)
(1.3.33) W=(x, )=V"""(x, y) exp (§(x, M)+£&(y, 47"),
where

(1.3.34) 7, yy= % diag[65Xs; x, p)1A*".
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Set
[ L 0
55 x,y; H=2, 6)s; 2, 2.
J-
Then they are represented by the new ¢ functions as
o'(s; x—e(27"), )
“(s;x,y)

(s+1; x, y—¢(2)
x5y

6)(s; x, y; D=
(1.3.35)
59(s; x, y; A=

1.4 Periodic reduction of the Toda lattice hicrarchy

Let I be a positive integer. The [-periodic Toda lattice ((TL),) is a
subfamily of the Toda lattice with the constraint u(s)=u(s+1) for any s
(or it is obtained from the Zakharov-Shabat cquation (0.2) by imposing
therein the constraint b(s)=b(s+1), c(s)=c(s+1) for any s). Thatis,
(TL), is a system of differential cquations given by

s=0,..-,1-1
with u(— D =u(l).

(l 4 l) axlanu(s)=eu(c)-u(a-l) _eu(nl)-n(n)’

We can impose a further constraint Ji-3 u(s)=0 without loss of gener-
ality.
The one-dimensional Toda lattice is defined as

(1'4'2) _‘lra:lu(s):en(n-uu-n —erUh-B se 7

where u(s)=u(s; 1,). These subfamilies are subholonomic systems in the
sense that their general solutions have arbitrariness of onec-variable func-
tions.

In this section we will study the hierarchics attached to these sub-
families. Our main interest is how the hierarchies are reduced from the
original one. '

To describe the (TL), hierarchy, we need some preliminaries about
Lie algebras.

Let us denote by gl(oo) the Lie algebra defined by

g[(m)'-:{‘%zauEulau:O for li—jl}O}.

Let gl(oo), (resp. gl((0)),) be the subalgebra (resp. formal subalgebra) of
g¥(oo0) (resp. gl((0))) given by
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9[((°°))1={‘ lZﬁIz ayE,; € gl((c0))|ay=a1.1,5., for any ihjh

gl(c0),;=g{((c0)): N gl(<0).

It is well known that the map,

gll, CIIS, & '—>gU(=))

w

. .Ao 1'41
AQ= 3 AL —> A, A A
A, Ay -

defines the Lie algebra isomorphisms gI(/, C[[{, 1)) = gl((e0)); and
al{l, C[¢, L) =5 gl(e0),. This isomorphisms can be interpreted also in
the following manner: Sect

0 1

4= egl(, CIS. &7

Then (1.4.3) reads as
AQ)= !};.zdiag(a;(o). oy a(I—1NAQY

(1.4.4)
—>A =jZ}Z diag(a 0), - - -, a,({— 1)) 4’
[:3

where diag(a,(0), - - -, a,(/—1))® stands for an l-periodic diagonal matrix
diag(- - -a,(0), - - -, @,/ —1), a,(0), - - -, a,( 1), - - -) € gl(o0).

Now we define the (7L), hierarchy. We impose on the TL hierarchy
the additional constraint
(1.4.5) L'=4A Mi=4"
The system of nonlinear differential equations (1.2.2) with this constraint
constitutes a subfamily of the TL hierarchy, and is said to be the /-periodic
TL ((TL),) hierarchy. This is a subholonomic hierarchy.
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The [-periodic condition (1.4.5) may be regarded as an analogue of
the /-reduced condition of the XP hierarchy [25]. In fact we have the
following proposition.

Proposition 1.13. Let L, M be solutions to the (TL), hierarchy, and
W (x, ), W(x, y) be the corresponding wave matrices given in Theorem

1.2, Then L, M, W) (x, y) € gl((c0)),, and

146 0=y, 3, w00 =W, 5
Jor n=0 mod /,

and
(147 4, L=3,M=0, 3, L=3,M=0 for n=0 mod/.

Hence the (TL), hierarchy involves the l-periodic Toda lattice, and its
solutions are independent of the variables x,, y,(n=0 mod I).

Proof. Since L=W AW -\ M=WO4-5W®-1 the [periodic
condition (1.4.5) implies

(47, W =[4", W®)=0 for n=0 mod /,
0
so that W(“'), L, M e gl((c0));. Thus the first assertion is proved. By the

definition of B,, C, and (1.4.5), one sees that B,=A4", C,=A"" for n=0
mod /, from which (1.4.6), (1.4.7) follows at once. Q.E.D.

Let us interpret the periodic condition (1.4.5) in terms of = functions.
Let #’(s; x, ») be = functions as in (1.3.32). Taking into account the
arbitrariness of thc wave matrices (1.2.11), we deduce the following corol-
lary to Proposition 1.13.

Corollary 1.14 (cf. [25]). Suppose L, M to be solutions to the (TL),
hierarchy. Then there exist a suitable wave matrices such that the corre-
sponding t functions are subject to the following conditions;

(1.4.8) (si x, y)=7"(s+1; x, ),
(1.4.9) 0.,7°(s; x, Y)=0,,7(s; x,y)  for n=0 mod I.

Conversely, if ¢ functions satisfy the above conditions, the corresponding L,
M solve the (TL), hierarchy.

Proof. First of all recall Remark 2 before Lemma 1.10. From the
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pericdic condition, it follows that

P,(0) log (x(s)/=(s+1))=p,(3,) log ((s)/x(s+N)=0

for any 5. Hence an appropriate modification such as /(s)—a'c’i:)
makes z functions satisfy (1.4.8). Thus we may assume (1.4.8) without
loss of generality. Set

W) = P exp @6x, A)+20, A7) (see (1.3.33)).

From (1.4.6) one obtains a,_V(3)=av_V(3)= 0 for n=0mod /. There-
fore

9, log ’(s)=Cte. (=c,),

0,,log ’(s)=Cte. (=d,) for n=0 mod/

Since the constants ¢,, 4, are independent of s, the modified = functions

exp (— §° cuxn"'dnyn)r’(s)

mod {

satisfy the both conditions. Q.E.D.

We investigate more explicitly the linecar problem for the (TL),
hierarchy. Proposition 1.13 allows us to identify L, M, W(‘?')(x, y) with
L@, M@, Wx, 7, 0) under the isomorphism (1.4.4). They take the
following form; |
(1.4.10) LEQ=Wx, y; DAQW ) (x, y; O,

MQOQ)=Wx, y; DAQ) "W (x, y; D),

and

WX(x, y; =W™(x, y; {) exp &(x, A(L),
(1.4.11)  WO(x, y; =W (x, y; {) exp &(», 4™,

W, y; 0= 35 diagl{\), - -+, 5O - D104z,
where exp §(x, 4,(0)=2 7., x.4,0)", and W{~)(s)=1{"(s; x, y) are the

entries of wave matrices.
We have the following proposition.

Proposition 1.15. (1) W®™x, y; ) and WO(x, y; {) solve the
linear problem
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(1.4.12) 2., WQ=80OW0, 8, WO=C.OWQ),

where B, (§)=(L({)")., C.({)=(M()")_. The symbols (-), stand for the
nonnegative power part and the strictly negative power part with respect to
A(Q). The compatibility condition for (1.4.12),

a:gBu(C) - ax,.Bm(C) + [Bn(O) ‘Bm(C)] = 0:
axmcﬂ(o - av.Cm(C) + [Cn(C)s Cn(Q] =0,
alIuB ﬂ(C) "ax.Cm(C) + [B n(O: Crn(O] = 0,

gives the (TL), hierarchy.
@ B.0, CO el CIL L)

Proof. (1) The assertion is clear because B,(L), C.({) are identified
with B,=(L"),, C,=(M")_ under the isomorphism (1.4.4).
(2) From (1.4.10) and trace 4,({)*'=0, we obtain (2). Q.E.D.

In particular, the proposition gives us the Zakharov-Shabat repre-
sentation for the /-periodic Toda lattice (1.4.1) [17];

9,,B(8)—3.,C(D)+1B:(0), C(D]=0,
where
b0) 1 0 £-1e(0)
ol
B{(Q)= L o=

4 b(I—1) =1 0

The one-dimensional Toda lattice (TL) hierarchy is defined as the
TL hierarchy with the additional constraint

(1.4.13) L+L'=M+M"",
First we show the following lemma.

Lemma 1.16.  The condition (1.4.13) is equivalent to

@aut 2, )0t =W 2 4 47).

Proof. Suppose (1.4.13). Then L*+L-"=M"4-M"" holds for
nz1. Considering the (=) part of the both sides, one easily gets B,+C,
=L"+L"=M"4+M"-". Hence one sees that
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@,,+3, )W =(B,+C)W*?
=(L*+ L)W
=W A+ A4-7),

and also that (3,43, )W =W(4*+4""). Thus (1.4.14) is proved.
Next we verify the converse. By making use of (1.4.14) with n=1, one
derives

@0, )W =W A+ A7)
=(L+L W,

which yields B,+C,=L+L"'. Likewise one has B+ Ci=M+M-
This completes the proof. Q.ED.

To show that the one-dimensional TL hierarchy actually contains
the one-dimensional TL, we investigate the linear problem for the
hierarchy.

@) 4) it foll

Let us express W'=’(x, ) as (1.3.33). Then from (1.4.14) it follows
that

~f0
(1.4.15) @, 43,07 x, =0  for n21,
so that V(g)(x, ») depend on only t={t,, t,, - - - )=F{x;—y), 1 (x2—y),
-«+). Namely, V) (x, p)=V(r). We set

V(e)="(1) exp (€(t, H+E(—1, 47).

Proposition 1.17. (1) If L and M solve the one-dimensional TL

hierarchy, then they depend on only t. .
(2) Under the same assumption as above, V(t) solves the linear

problem

B+ CHY(O)=V )4+ 47),

(1.4.16) 3 V() =(Ba—CV(), n=1,2, ---.

The compatibility condition of this system amounts to the one-dimensional
TL hierarchy

(1.4.17) a,n(B;+C;)=[B,.—-Cm B|+ Cl]: n=1, 27 ]

Proof. (1) From (14.15) and L= Ve (x, AV (x, )Y, M=
7 O(x, YA~V O(x, y)!, the statement is evident.
(2) It is sufficient to prove the second equation in (1.4.16). Since
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V()= WX x, y) exp (6(—2-1—(x+y), A) + E(——z—l(x+y), A")),

and d,,=d,,—9,,, we have
0 V(1) ={0:,— 3, )W “(x, y)}
Xexp (E(——'—;i(x-{-y), A)+$(_Tl(x+y), A"))

=(Bn_cn) V(‘)- Q.E.D.

The Lax representation [9, 27] of the one-dimensional TL is derived
from (1.4.17) with n=1;

3,(B,+C)=[B,—C,, B,+CJ,
where
) 1
'."b(- n 1
*e(0) bO) 1
e(l) b(l):'-.

.

The entries of B,+C, are related to the unknown functions in (1.4.2)
through b(s)=120,,u(s), c(s)=e="-8t-n,

Finally we remark that the condition (1.4.13) are interpreted in terms
of = functions as follows: Let ¢/(s; x, ») be as in (1.3.32), The condition
(1.4.13) is true if and only if 7/(s; x, ) can be chosen so that they satisfy

(1.4.18) for nz1.

@:.+9,)(s; x, »)=0

2. The Toda Lattice Hierarchies of B-type and C-type

2.1. Generalized Toda lattices and orthogonal Lie algebra 0(c0) and
symplectic Lie algebra 3p(c0)

First of all we will give a brief account of the generalized periodic
Toda lattices studied by Bogoyavlensky [4] and Mikhailov, Olshanetsky
and Perelomov [17].

Let {a, - - -, @)} (@x=(af", - - -, a") € R*) be a simple root system
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attached to the extended Dynkin diagram of Euclidean Lic algebras of
the types B{, C", AP, D, Af3,, etc. For the simple root system of
AP, {e—e., (i=1, - -+, 1), e,—e,;.,) should be taken, where {e/}i5i5: is
the standard basis of R'*'.

Let u(s)=u(s; X1y )’1) (S= .- l)! and set <ah u>=Z:-l 0.'{.,‘)“(5).
The generalized periodic Toda lattice associated with the Euclidean Lie
algebras are defined by

1+
(2.1.1) 8.,0,,u(s)=2 ai” exp {a,, u).
kwl

and will be denoted by (TL)n, and so on. The l-periodic Toda lattice
(TL), is just (TL) g, in this notation.

Table
Lie algebra Dynkin diagram simple root vectors
B o—I— SN Ty | e G l=D
:
P ay=~0q, Xjs3=—€1—C3
ay=e—e, i=1, 00,01
" ara @ a a t=eq—eqy (i=1,---,1-1)
Ci =30 s o0sass
ag=2¢;, ara=—2¢
a a -3 Ai-1 a=e(—E€s (l.:l:"':l_l)

s s e e
O—I— —I—o
oy ap=e(-1 I € Ot =—e—=¢3

a1 o a1 & ag=eg—eg,y (i=1,...,1—1)
g | e —
-1
et ay=2¢;, @qu=—€1—e;
A® et @y @y ap | TECTEa i=1,--+,1=1)
g Oe=D0—— s s s 6 o s
a=e, aqa=-—2e
ag=e¢(—¢ i=1,---,1—1
- - =e(—eqy (i=1,---,1=1)
D'
W | oe—=—o—=......

a=e;, dn=—6
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For instance, (TL)p,, (TL)4gn, (TL)cy are as follows:

3,,8,,u(l)=eu(l)-um_e-ua,’ v
212)  (TL)opm {0, 0,,(s)= —e"e-0=s0 povtr-uiesd  2<s]—1),
8,,3,,u(1)= —etiti=-n-nd) +c"“’,
3:.3v."(l) =t -8l _Qp~2uth),
2.1.3) (TL),,;:, 3,3, (s)= — -5 4 grn-nteed Q<5< 1),
a,,a,,,u(l) = — b= -ud) +eu(t)’

05,0,,u(1) = et -u® _¢g-2uth,
(2.1.4) (TL)C;." a,lamu(s)= _eu(n-l)-u(c) +eﬂ(‘)-g(,." (2§S§l— l),
3,,3,,14(1) = —p¥t-N-nh) + 2etu),
In particular, (TL) g
.8, u= et =26

is referred to as the Bullough-Dodd equation {17].

Now we will explain the Lie algebras g(co), 8p(o0), and their /-reduced
subalgebras 0(oo0),, 8p(c0),, which were discussed in [23, 25].

0(o0) is the orthogonal Lie algebra on CZz{f()=2 f;2* € C[2, 27"}
equipped with the symmetric inner product

0= 2, (-Vfies=[ 1De(= D
da
(r@ewece, ar=22).

Namely it is defined by

0(c0)={A € gl(co)| JA+ AT =0}

(2.1.5) .
={ 33, auEy € al(o0) @y =(=)*"a_,., for any i j}

where J=((—)'3,,).scz is a symmetric matrix. The generators for o(co)
are given by

zu =(—)’Ea. -4 “(—)'E;. -t

Clearly A™ € o(o0) for odd n. We observe that if 4 € 0(o0), then J4" -
(=)"+1¢4°J=0, and (4). & o(c0).
The /-reduced subalgebra o(oo), is defined as
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0(00),=0(c0) N gl(0),
(2.1.6) ={‘ ;;.'z a,,E, e gl(c0)|ay=(=)""""a_;,.«=8s1,301
' for any i, j}.

The formal Lie algebra o((c0)) is defined by replacing gl(ee) by gl((e0))
in (2.1.5), and 0((c0)),=0((c0)) N gl((=2));-

For the l-reduced subalgebra, we have the following Lic algebra
isomorphism.

Lemma 3.1 [25].
0(o0), ={A() e gl(, CC, T DIT(DAQ) +*A(— L)V (D) =0}

a1 for odd 1,
o ={A(Q) € 3I(J, CIL, L DI AEG) + 42D =0}
Jor even I,

where

1

.(_)l-lc-l
JQ= ,
- ol

Proof. Define a bilinear form { , );; CZXC*—~CI[{, {™') by
8= T, U0

=3 [/ e(—2dac.

o(oo0), is the invariant Lie algebra for the bilinear form. In fact, A€
gl(oo) leaves it invariant if and only if

AT+ AMTA=0

holds for any ve Z. Letting ¥=0, 1, we see ‘4J-+JA=0, and [4, 4]
=0. Hence 4 € o(c0),. The converse assertion is evident.

It is casy to see that {f; g)({)=4{& /() for even /, and that
{J 8240)=<& S 7(—E) for odd L

Note that CZ are identifiable with C'®CIL, {-1={f)=2, /%'

Yi=f1.00 = *» f3.1-1) € C'} by the correspondence
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(2.1.8) fO=S i3 'i: LA =f(.

For f(0), 2(§) € C*®CIZ, {~'), we introduce a bilinear form by
SQIKs)  foreven |,
YO (Deg(—0) for odd 1

The left-hand side of (2.1.7) defines an invariant Lic algebra for this
bilinear form. Therefore, in order to prove the lemma, it is sufficient to
show that

(2.1.9)

o, g>,(o={

U, NQO=LT, 720,

holds under the isomorphism (2.1.8). Let / be even, and set o=
f=(f -+, fi-))- Then one sees that

G DO=(Ft 5 (A,
and that
< f>1(0=zv: fSJ. 2’”"'d_lC'-}-:'gz‘(_)"fﬂj;_n Z J.z(u-l)--xﬂcv
= NO-

Thus (2.1.9) is proved for even /. For odd /, the proof can be done in a
similar way as above. Q.E.D.

3p(oo) is the symplectic Lie algebra on CZ equipped with the skew-
symmetric inner product

hgde=, T (~)fig,=[ Y(De(~2d2
That is to say,

Bp(c0)=(4 € gl(o0)| KA +-*AK =0}

2.1.10
¢ ) ={t.§z ayE,, € gl(c0) lag=(=)""""a ;s .1},

where K=AJ is skew symmetric. The generators for 8p(oo) are given by

zu = (_)IEC.-J-I_ (—)"'E,. g1

A* € 3p(o0) for odd n as in the case of the orthogonal algebra. We note
also that if 4 € 8p(c0), KA"+(—)"*'4"K =0, and (4), ¢ 8p(00).

PEE———
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The [-reduced subalgebra 3p(co), is defined as

8p(00),=5p(c0) N gl(co);

2.1.11)
¢ ={‘.’Ze:zauEu egl(o)|a,=(—)"*"*"a_, s _(1=a,1 .1}

The formal Lie algebra 8p((c0)) and 8p((c0)), are defined as in the ortho-
gonal case. The following is an analogue of Lemma 2.1.

Lemma 2.2. We have the following isomorphism;

8p(e0), 3{A(0) € gl(l, CIC, £-D] K(DAQ) + A(— DK (L) =0)

2.1.12) Jor odd 1,
N S{A() € 810, CIG T'DI K(QAQ) +AQKLD=0)

Jor even I,

where

-1
1
(=)t
k()= LS .

e
C-I

The orthogonal “group” O(eo) and the symplectic “group” Sp(o0)
are defined as

2.1.13)
(2.1.14)

O(c0)={W e GL(c0); J-V'WJ= w-1,
Sp(c0)={W € GL(c0); K~ ‘WK =W~}

Remark 1. The odd-reduced subalgebra 0(co),,,, and 8p(0)y,, are
isomorphic to cach other under the outer automorphism of gl(2/+1,

ClK. ¢,
AQ—>T (A0 s(— EN A W A (=CH)Y,

1
where 4y;.,,({) was given in §1.4, and J =( K ) ) This fact is proved as
1

follows: Let A({) ¢ 0(c0),;., i.e. A= Q)+ T2 (DA =0, Set

Jua {O=C4210: ()" Vot 0 (QAsr. (D),
I(O’—""(Aznx(_ ) A (A (=)
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Then it is seen that *A(—Jy s (O + T (DA()=0. Notice that
j ‘fzux(oj =(—)‘C"K:m(0'

Hence one has
A= DKo (=5 + K =L HAQ=0,
where AQ)=JA(—0J. Thus A(—C"") € 3p(60)y s Q.E.D.
Remark 2 ([25, 42]). Set

o(2/+2,C[5, &)
={4() € 31Q2+2, CL, {'D | 121+ oD AQ) +AC)1.o(0) =0},
su2+1,C[, LD
={A() e 812/ +1, CI, LD [ V510 AQ) 4+ A(— OV 11(§) =0},
8p(, CIG, D
={A(Q) € 3l(2], C[C, T7'D | Kn(DA(D) + ' A(DK(0)=0}.
The Euclidean Lie algebras attached to the extended Dynkin diagrams
D, AP, C" are realized as the one-dimensional central extension of

the Lie algebras o(2/+2, C[§, '], suQ2+1, C[L, '), 3p(/, C[L, '),
respectively.

2,2. The Toda lattices of B-type and C-type

In the Zakharov-Shabat equation (0.2) for the Toda lattice, we
impose the following constraint on B,, C,; B,, C, € 0(o0), or equivalently,

221 b(s)=—b(—s), c(s)=c(—s+1) foranys.

The resulting equation is referred to as the Toda lattice of the B-type
(BTL). Namely BTL amounts to the difference-differential equations

0z,c(D)=c()b(1), 3..c(s)=c()b(s)—b(s—1)) (s=22),
9,.b5(5)=c(s)—c(s+1) (s=1).

The Toda lattice of the C-type (CTL) is now defined by imposing
the following constraint; B,, C, ¢ 8p(o0), or

(2:2.2)

(2.2.3) b(s)=—b(—s5—1), c{s)=c(—s). foranys.

Hence it becomes the difference-differential equations
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3:,¢(0)=2c(0)b,(0), 9.,c(s)=c(s)(b(s)—b(s—1)) (s21),
9,8(8)=c(s)—c(s+1) (s=0).

Both BTL and CTL are sub-subholonomic in the sense of the introduc-
tion.
For BTL, introducing r functions z(s)=1z(s; x,, »,) (=1) through

by(s)=0;, log (z(s+ 1)/z(s)),  c_((s)=1(s+ D)e(s—1)/z(s)’,
with z(1)=1(0),

we obtain Hirota’s bilincar equations
(2.2.5) D.D,z(s)-t(s)+2c(s+ 1)c(s—1)=0, (s=1, =(1)=1(0)).
The = functions z(s) (s=0) of CTL are introduced through

by(s)=10;, log (z(s+ 1)/c(s)), c_i(s)=1(s+ De(s—1)/z(s)’,
with (1)=z(-1),

(2.2.4)

and CTL is transformed into
(22.6) D, D,x(s)-2(s)+2e(s+1)- ts—1)=0, (s20, (1)=r(—1).

We remark that the Hirota equations of the Toda lattice reduces to (2.2.5)
and (2.2.6) by imposing on the = functions the following symmetries with
respect to the discrete parameter s;

22.7) o(s+1; x,, y)=v(—s; x,, y)  for BTL,

2.2.8) o(s; x3, M) =1(—5; X3, Y1) for CTL.

2.3. The Toda lattice hierarchies of B-type and C-type and their [-periodic
reduction

Let us recall the fundamentals about the 7L hierarchy: The TL
hierarchy arises as the compatibility condition of the linear problem

L=W®(x, AW x, p)7', M =Wx, YA WO (x, )™,
3.0 © © © Q)
ax.W ° (x’y)=BuW “ (x’y)y ay.W = (x,.V)=CaW - (x,y),
where B,=(L"),, C,(M™)_. The wave matrices take the form
WA x, y)=W )(x, y) exp &(x, 4),

W= (x, y)=i diag[w{=)(s; x, ))4~!  with W{=)(s; x, ) =1,
g=0
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WO(x, y)=WO(x, y) exp &(y, 4°Y),
wos, y>=§ diag[#(s; x, YI4*  with ¥§(s; x, ) 2£O0.

They are not uniquely determined, but have the arbitrariness

W &), yy—> W (x, y)fX(4),

(23.2) WO(x, yy—s W O(x, ))fOA).

Here f (‘?')(1) = i: I S‘?’)l*“ (ff='=1, f{®+0) are formal Laurent series with
n=0

constant scalar coefficients,
We fix the notations to be used throughout this and the subsequent
sections.

Set £=(x, X3, - - ), F=(Vs Vs, - - +). We abbreviate x,=x,=.. =y,
=y,=--+=0to x,=y,=0. Let
E=LI¢0'W"°’ 'M=MLF-'II:'°’
§n=Bn Ix.-y.-th 6u=Cn Iz.-v.-o;

and let

° . [
W5 =W Doy WHE D=5, Do
Note that the wave matrices W*)(%, 7) take the form,

W)(E, ))=W (%, 7) exp (%, 4),
W2, §)=W ), §) exp &, 47Y),

2.3.3)
where §(%, A)=n.c0a Xn4”. Furthermore we set
W (s; £, 73 )= ,2, W s; £, A,
WEK(s: %, 7; 1)=;‘;,sz)*(s; £ A,
where the coefficients are given by
Wz, 9=, diaglifs; %, A,
Wz, §)-= ,2, A% diag[#§¥(s+1; %, P

The Toda lattice hierarchy of the B-type (the BTL hierarchy) is a
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specialization of the TL hierarchy in the sense that we impose the con-
straints

(23.49) : L, # ¢ o((c0))

on (2.3.1) at the expensc of freezing the even time flows. Note that (2.3.4)
implies £7, M* € 0((c0)) for odd n, so that 5,, €, € o(co) for odd #. Thus
the BTL hierarchy is a set of nonlinear differential equations given by

a‘nﬁm _azngu’*' [Enu Eﬂ] =0, ayném _ay,.é'n'l'[éﬂ: én] =0!

23, Bt [Bn, 5,
( 5) aVnB'ﬂ-'axnCa"'[Bm: C,,]=0, n, m; odd.

The third equation above with n=m=1 is nothing but the BTL.
We will further deduce the following proposition on the wave
matrices, which is analogous to Proposition 1 in [23].

Proposition 2.4. Assume (2.3.4). Then W*)(%, 7) ¢ O(c0) under a
suitable choice of f“X(2), fO(2) in (2.3.2).

Proof. We will only show W(%, §) € O(e0).
Since B, C, € 0(c0), it follows that

8., (T WIW )=, (J W W) =0
for odd #n. On the other hand, [4, J - W )JW¢)]=0 because
L=wer4wert g of(o0)).
Combining these facts, one sees that
(2.3.6) J~“W«-)JW1-’=§ g A" with gy=1,
where g, is a constant scalar. Taking into account ‘J=J, one has also

SWONW N -t=3"w, g A"  Since J'A"S =(—)"4"", one further sees
that

@2.3.7) T WO =3 (=) gl
n=0

Comparing (2.3.6) with (2.3.7), one concludes that g,=0 for odd n.
Moreover let us modify W to W2 (), then

nieven

S e (g:o (=) s A-u)-l( > g,,A-n)(é f,.‘w)A--)".




40 K. Ueno and K. Takasaki

It is evident that a suitable choice of f*=}(4) makes the left-hand side be 1.
Thus W € O(c0). Q.E.D.

The Toda lattice hierarchy of C-type (the CTL hierarchy) is also
defined as a specialization of the TL hicrarchy with the constraints

2.3.8) L, M e 8p((co))

in (2.3.1) for which the even time flows are freezed. Then B,, C, € 8p(c0)
for odd »n, and the CTL hierarchy is a set of nonlinear differential equa-
tions such as (2.3.5). As in the orthogonal case, wave matrices W *)(%, §)

belong to Sp(co) under an appropriate choice of f (:)(Z).

Now we will describe the orthogonal or symplectic conditions in
terms of ¢ functions. Though such conditions has been considered in
[26], the authors have also obtained an algebraic proof for them, inde-
pendently of [26).

0
Theorem 2.5. Suppose that W (“)(x, Wlzrap,0 € O(c0). Then the cor-
responding = functions satisfy

23.9) t(s+1; x, y)=1(—s; «x), ()

Jor any s, where we have set «(x)=(x,, —X;, X;, —X,, --+). Conversely, if
t functions are subject to (2.3.9), the corresponding hierarchy is of the
B-type.

For the proof, we start with the following proposition.

Proposition 2.6, The symmetry (2. 3. 9) is equivalent to that of wave
matrices such as

23.10) 119 ), (=W &, ).

Proof. First we show (2.3.9) to be deduced from (2.3.10). In view
of J-'A~4J=(~) A*, from (2.3.10) one obtains

T=W S (), ()W =;22(—)’A" diag[#{™(~—s; «(x), «))

which further leads to
@311 (Y= o), N =05+ 15 x, ).
One has similarly

Toda Lattice Hierarchy 41

(2.3.12) (=)W (—s; o(x), ((M)=1VP*(s+1; x, ¥).
By the way, notice that
(2.3.13) (=YP =3 ((x) = p,3:)/ (%)

holds for any j. This follows from
cxp f(—'é,, —l)f(X) lx--(x)=exp 6(3” Z)f(x).
Applying (2.3.13) to (2.3.11) and (2.3.12), one finds

2(9:) log (z(—s; «(x), (M))/e(s+1; x, y))

(2.3.14) ’ _
=p,(0,) log (x(—s; dx), )els+1; x, y)=0 for j=1,

and

(2.3.15) t(—s+1; ox), () | _ t(—=s; dx), )

o(s; X, ») Ix.-v.-o t(s+1;x,))  lremwe=0
(2.3.14) implies that
Cte. X o(s+1; x, y)=1(—s5; «(x), «(»)),

and (2.3.15) assures that the above constant factor is independent of s.
Setting s=1 in (2.3.15), one sees that (z(0; «(x), «(y))/=(1; X, V))z,ap,m0=1.
Hence one obtains (2.3.9).

The converse statement is evident. Q.E.D.

By virtue of Proposition 2.6, the proof of Theorem 2.5 reduces to
that of (2.3.10). To show this symmetry, some lemmata are required.

Lemma 2.7. If J-'PJ=(=)"'P, J-'QJ=(—)*'Q (m, ne Z), then
IR, QY =(=)"*"* [P, Q).

Proof. Straightforward. Q.E.D.

Set |a|=2 7.1 ay ll@ll=235-1 G+ e, for a multi-index a (2,20, a;=0
for j3>0), and define f* for a function f by f*(x, ¥)=f(e(x), «(¥)).

Lemma 2.8, For any multi-indices a, B, we have
(2.3.16) 14080 By |sym yp=od = (= )1 IGIGIB, |2 e eos
(23.17) 339} Bilzymyuo=(—) "33, B, |1 mymo-
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The equations which is obtained by replacing B, by C, in the above also
hold.

Proof. By induction for ||, we will show (2.3.16) in the case of
£=0;

(2.3.16y J Y338 sy pemd =(=)" "33 B, |, e gy mo-

Since J =" {(L*|,,.,,- =(—)*L*|,,.,,0» ODeE sces, considering the (+)
part of the both sides, that (2.3.16) holds for «=0. Next assume
(23.16) to be true for |a|<M. Let 33=3,, ---0 Since 9,L*=
(B., L*), it follows that

Flaes’

P4
a;L.= [a"x ot .a“xB‘ln’ L.]+.Z.‘ [a“' ‘é.a“la‘xn’ [B‘-’ L.]]
+ - F+[Biyyis [Bias [+ +[By, LM -).

Here 9,,,- - - -9;,, indicates excluding 3,,, from ' ERRY)
@

(2.3.18)

Thanks to

Tig

Lemma 2.7 and the assumption of induction, the right-hand side of (2.3.18)
restricted to x,=y,=0 satisfies an identity such as J-!*PJ=(—)*I**P,
Hence

THHOZL s pmyymddd = (=) H@2L; yayymo)-

Considering the (+) part above, one finds (2.3.16)’ to persist for |a|=
M+4-1. Thus it is proved.

(2.3.16) in a general case can be verified in the same fashion as
above. The second identity (2.3.17) is obvious. Q.E.D.

Proof of Theorem 2.5, Set Y =J~"‘W)(x, y)-\J, and
Z=We(x), ().
We wish to show Y=2Z. For this purpose, we prove
(2.3.19) 02Y |zyep, 00 =032 |z ymp=0

by induction on |a|. (2.3.19) is obviously true for @=0. Next assume
(2.3.19) to be true for [«|<M. Let|a|=M. Since Y, Z solve the equa-
tions

0. Y=(=)"{(=)"( " *BJ)Y - Y A"},
3..Z=(—)*YB:Z-Z A",

they also satisfy
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3;.3;Y=(—)""{(—)"’ Z_: 0B J)-LY —3:Y- A7),
8.0Z=(=)" T aB;-8Z—Z-4).

Therefore the assumption of induction and (2.3.16) in Lemma 2.8 yicld
05202 Y |y, 00=8:,05Z]z,uy,0. Thus (2.3.19) holds for any multi-index «.
More generally one can show

004Y |ryeya0=0305Z ;0 y w0

for any mu}ti-indices @, B. One can also obtain the equation obtained by
replacing W by W® in the above. Therefore one concludes (2.3.10).
Q.E.D.

We can deduce a similar statement as in Theorem 2.5 also for the
symplectic case.

0
Theorem 2.9. (1) Suppose that W(‘”)(x, Yzyep,=0 € Sp(e0).  Then
the corresponding t functions satisfy

(2.3.20) o(s; X, y)=t(—5; o(x), «(1))

for any s.  Conversely, if © functions are subject to (2.3.20), the correspond-
ing hierarchy is of the C-type.
(2) The symmetry (2.3.20) is equivalent to that of wave matrices as

2.321) k-0, donr = x, ).

Remark. It is worthy to note that r functions with the symmetry
(2.3.9) (resp. (2.3.20)) are those of the 2-components BKP (resp. CKP)
hierarchy [23]. In particular, when the time evolution of y is freezed,
our ¢ functions belong to the (one-component) BKP (resp. CKP) hicrarchy.

Now let us discuss the l-periodic BTL, CTL hierarchies. We will
denote them by (BTL),, (CTL),. They are subfamilies of the BTL, CTL
hierarchies with the l-periodic constraint

(2.3.22) L'=A' M'=4-,

besides (2.3.4), (2.3.8). As was considered in Proposition 1.13, (2.3.22)
means L, M e o((co)), for the (BTL), hierarchy (resp. L, M e 3p((co)); for
the (CTL), hierarchy). Consequently 5,, C, € o(co), for odd n (resp. 5,,
C, € 8p(co), for odd n). Furthermore

9..L=3,M=0, 3,L=3,M=0 forodd n=0mod /.
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Namely, the unknown functions of the lperiodic hierarchies are inde-
pendent of the variables x,, y, for odd n=0 mod /.

Denote the images of B,, C, under the isomorphisms (2.1.7), (2.1.12)
by B,(8), C.(), which turn out to be tracefrce by the same argument as
in Proposition 1.14. Then the (BTL), and (CTL), hierarchies amount to
a system of the Zakharov-Shabat equations,

3:.Ba(0)—3..8.(0+[Bx(0), B.(D1=0,
(2.3.23) 33.Ca(0)—8,.C.0)+[Ca(®), Co(D]=0,
8, Ba(0)—3..C.O+IB©), C.(D]=0,

for odd n, m%0 mod /.

Now we will describe the characterization of ¢ functions for the (BTL),,
(CTL), hierarchies. r functions must be /-periodic with respect to the
discrete parameter s (sce § 1.4). Thus, combining this fact with Theorems
2.5, 2.9, we lead to the following characterization:

to(—s; «(x), dy)=1(s+1; x, ),

2.3.24 BTL),;
( ) (BTL) {f(3+l; x, y)=t(s; x,y), foranys,

(325  (CTL); {f(—s; o), () =2(s; x, ),
t(s+1; x, Y)=1(s; x,y) for any s.

(f we consider 7’(s; x, y) instead of z(s; x, y), we may assume further
9..7'(s; x, )=0,,7(s; x, y)=0 for n=0 mod /, besides (2.3.24), (2.3.25)
(sec § 1.4).

We obtain the following claim (cf. [26]).

Proposition 2.10. If l is odd, (BTL), is identifiable with (CTL), (see
also Remark 1 in § 2.1).

Proof. We will show this proposition by considering an example.
Let /=5. By virtue of the periodicity, a set of r functions {z(1), - - -,
7(5)} completely prescribes the (BTL), hicrarchy. From (2.3.24) it follows
that this set reduces to

{z()), 2(2), ) =7'(3)=7'(2), ='(1)}

(z'(s; x, )=1(s; ¢«(x), «())). On the other hand, (2.3.25) shows that a set
of = functions

(z(=2), 2(—1), f(O)=12*(0), (- 1), *(—2)}

perfectly characterizes the (CTL), hierarchy. Comparing these two sets
enables us to obtain the claim. Q.E.D.
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As was remarked in the previous section, 0(©0)y.s, 0(00)s . =
8p(00)ys 1, 8P(00)y, relate to the Euclidean Lic algebras Df2, AP, C{",
respectively. We will show that (BTL)y;.s, (BT L)y, (CTL), give (TL)pgy,

(TL)g, (TL)cp, by writing down the Zakharov-Shabat equation [17]

(2.3.26) 3,80 —a..C.O+IB©), CQi=0.
(0 1 \
(TDo, b 1
B R
1(0— 0 .. 4
—bl .
. 1
\{ —b,
(0 C"CJ
g O
C1(0= .cul
Cra
L C: . OJ

Then (2.3.26) reads as

awbl=cl_ccvl’ (lés__s_l),
(2.3.27) a.e=ch, d,c,=cb,—b,.), (2Ss<i-1),

05,Cr1=—Co1b;.

Introducing u(s) through b,=3,u(s) (1<s£l), ¢y=e*M, ¢,=¢rW-u0-1,
@Q=sgl-1), ¢y =7, (2.3.27) turns out to be (TL)pm,.

(0 1 \
(TL),gp b1

Bo= h. |
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(0 -—C"C,
¢ 0
~ .c,
Cx(0= c
t+1
[} i

Then we obtain

3,,,b,=c,—c,,,, (lésél),
(2.3.28) aaa=cb, 9,c=c(,—b,) QZsg),
axlct01= —2c[¢;b‘.

Setting b.=6,,u(.s‘). (1 s, ey=et, c,=et-se-h 2ZsZD), =
2e"*®, (2.3.28) becomes (TL) .

(—'bo 1 \
(TL)eyns by 1
b, -
B(= Lo,
© b |
by, .
.' l
k c -"be
(0 —C"cn\
c O
[+ :
GO= Ci-1
G
Cz-x_ .
\ c. .0

Then we obtain
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anbl=ca"‘cuh (l §S__S__I— l),
(2.3.29) 0:,00=2¢by, 3,6,=c,(b,~b,.), (1ZsKI-1),
0s,61=—2¢;b;..

Setting b,=3.u(s), 0<s<I—1), c,=¢*, ¢, =e"-20-0 (15— 1),
c;=2e"¢=1 (2.3.29) becomes (TL)c;u.

2.4. Remarks on 7 functions of the BTL, CTL hierarchies

In
tions of thd BTL, CTL hierarchies. We will keep the Aotations in the
preceding sedtion.

For the BTL, CTL hierarchies, the bilinear relati

(1.2.18) reads as

(24.0) W&, W ENZ, §) ' = WA, YW, 7)
for any X, ¥, 7, 7. \ From this we deduce the folfowing proposition valid
for both the BTL and the CTL hierarchies.

Proposition 2.11. \For the wave matilces W*)(%, 7), © functions
#(s; %, P) are uniquely detdymined up to a cohstant multiple factor so that

3)s: 7 )= L F—ER"Y, 7)

PO R A= /i‘(S;f,ﬁ) ’

W £, 53 D= (s; 4+-2(27"), 7) ,
#s; %, )

24.2) o o
WOR(s; %, 53 = 2s+1; %, §—2(2)

- \_e(s;f,ﬁ) ’
WOK(s; %, 7 D)= =15 %, 7+i(2) ,

(s; %, 7)

where &(Q)=(22,4 2, 2,
metries;

(24.3) &, JY=Hs+1;%,7)
(24.49)

is section we will briefly describe another definitfon of = func- J

wro f\z_
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exp XA ) +e(%™), 4)

22 (] _ -1 py-1—
j—2(2;") in (2.4.1).

(2.4.6)
= )4

Let ¥ =x—&(A7), ¥
bilinear equation

pplying (2.4.5), one gets the

WX (s; %, 75 AW
=WNs; X, K W4T —2A0), F—2(2,); 4,).

(resp. &' =X, j'=j—&(d))—&2)).
By making use of (2.4.6), ond derives ghe following bilinear equations;

=WNs; X, §i WRPHs; -7 —2(47Y), 7; 2),
W(s; £, 75 A0 (s 4R X, F—EA)—E(2); 2)
=Ww(s; X, J; WP RN¥(s4-2; £, 7— &) —(2); 2).
Considering these equations, gne can\achieve the existence proof of the ¢
functions defined by (2.4.2),/by the \same discussion as in Theorem 1.7.

A similar consideration as tlfe proof of Proposition 2.6 leads us to (2.4.3),
(2.4.4). Q.E.D.

Substituting (2.4.2) ito (2.4.1), thé, BTL and CTL hicrarchies are
transformed into the infiitely many bilinéar equations of the Hirota type,

2, P (= 200Pf2D.) exp (<&, D2)-+, D,Y)e(s-+me+1)-2(s)

>+<5» D,))?(s+m) ¢ ‘?(S),

s,meZ.

1(—25)5:(25v) exp ({4,

Here d=(a,, a,, - --) is arbitrary, and 1'55=(D,,,-§-D,,, +2), @, DY=
2niota 3nD;,, while j(x) is defined by exp &(%, )= 7o F;(x)2’.

T{ﬂ 0$ pﬂYt Let us restrict our attention on the BTL hierarchy. Set m=s=0in

(24.7). Taking 2(1)=#(0) into account, we obtain

s correct

3 (p(—2205,25.)~ 5~ 25)5.2D,)}
Xexp (&, D.)+<b, D,)(0)-2(0)=0,

which is just the same as the equation to be satisfied by r function of the
2-components BKP hierarchy {24). That is to say, #(0; %, #) may be

Toda Lattice Hierarchy 49

thought of to be embedded into the 2-components BXP hierarchy.

Remark. In the reference [24], © function for the BKP hicrarchy,
tpx (%), was introduced through

Taxp(X) =1(x);,-0

where 7(x) is the corresponding = function of the KP hierarchy. From
the above discussion, it turns out that #(0; %; 0) corresponds to #5,(X).

3. Multi-Component Theory

3.1. Formulation of the multi-component hierarchy

The muiti-component theory of the KP hierarchy is established in
[23, 34) (see Appendix 1). The multi-component theory is indispensable
in the treatment of many concrete soliton equations as its specializations.
In this sense it is desirable to generalize our theory developed in Chapter
1 to a multi-component analogue.

The so called non abelian Toda lattice [18, 31] is regarded as a multi-
component version of the original Toda lattice. However, compared
with the formalism of the multi-component XP hierarchy, the non abelian
Toda lattice seems to be insufficient in the sense that its evolution is
restricted to a special sector of the fully possible evolution (see Remark
3.2).

We shall proceed in the same way as the KP hierarchy was generali-
zed to the multi-component case.

Remember that the r component KP hierarchy is formulated by use
of matrix-(micro) differential operators of size r X r, instead of scalar ones
used in the one component hicrarchy (sece Appendix 1). On the other
hand, as we noticed at the ends of Section 1.1 and Section 1.2, our hier-
archy of the Toda lattice can be reformulated in terms of scalar difference
operators. Hence the r component hierarchy of the Toda lattice must be
realized by use of matrix-difference operators of size r X r or, equivalently,
matrices of infinite size which consist of the blocks of size r Xr indexed
by ZXZ.

According to the above observations, let us prepare some notations
of matrices of infinite size. In the r component theory we nced the
matrices of infinite size acting on the tensor product C2®@ C". We shall
often use the Kronecker product P@ Q of a matrix P of size ZXZ and a
matrix Q of size r Xr.

A matrix A4 acting on C*@C" is expressed in the form
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A=73] diag[a’(s)) A4
1€2
' / * - ' * » : . \
. oaf=1) | a(-1 -,
(3.1.1) =|— » A=4'®1,
a.© | al) a0
- a.(l) afl)

-/

where a,(s) is a matrix of size r Xr and diag [a,(s)} denotes the block-
diagonal matrix diag (- - -a,(—1), a,(0), a,(1), - --). 1, is the unit matrix
of size r Xr. We define (4), by

(4).= 2, diag[a ()4,
(.12 20
(4)-= 2, diag[a,(s)) 4.
<
The following notations are often uscd throughout this chapter.
[+ 4

(0 \

(3'1'3) E¢=IZ®EO’ E¢= 1 (d, a:—..l, LRI

.01

Here 1; denotes the unit matrix of size ZX Z. Wenotice that E,, - - -, E,
and 4 commute each other, and that E, (a=1, - - -, r) give partition of
the unity

(3.1.4) ' N E.=ls, EE=0,kE,
aml
where 1z,, is the unit matrix in the whole space C*®C".
Now let us introduce a discrete variable s, independent variables
x=(x0, -, x7), y=(y®, . . ., y) with x(P=(x{, x{2, - ..}, YO =(p{",
¥i%, - - +) and the matrices L, M, U,, V, of infinite size of the form

L=_z, diaglb(ld, bes)=1,,
G.15) (M=_2. diagl@ll, c ()=wP@E—1)",

-1sJ<
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Ua = -w§$0 diag [U'J.,(S)]A’, uo. a(s) = Ea’
V,,=o 17_: diag [v;, (4!, vy .(s)= W) E (),
<7<

where b(s), ¢,(s), u, .(s), v,.(s) and W§(s) are matrix-valued functions
of (s, x,5) of rXrsize, b(s)=bs;x, ), - - -, ¥O(s)=%O(s; x, ), and
serve as unknown functions. W is assumed to be invertible. Further-
more we assume the following algebraic conditions.

[L’ U¢]=0’ [Ua’ UA]=0)

) U= Izm UaUa=5.;Up,

(3.1.6) ' M, V.]}=0, [Vas V;]:O,

S Vemlgge ViVymd4Vs @ fB=l,.enr.

aw]

We set
(3-1-7) B;.')=(L"U° +) C,(:)=(M"Va)_.

Then the hierarchy of the r-component Toda lattice is defined by the fol-
lowing system of the Lax-type equations.
a:,'."L= [B;“)' L]v az&" Uﬁ = [BS:,’ Uﬂ]a
By l=[C", L], 3, mU,=[C, U],
(3.1.8) OzM=[B{, M], 8,aV,=[BS, V),
a,;a:M= [C;,ﬂ), M], aﬂn V’g = [Cs,'), Vﬁ],
a f=1,---,r, n=12,--..
Theorem 3.1. (3.1.8) is equivalent to the system of the Zakharov-
Shabat type equations
0B — 8,2 B +[BY, B =0,
8P CE — 3, CPH[C, CP)=0,
8, B — 3,0 CP+[B, CP]=0,
\a, p=1,-e,r, myn=12,-..,

(3.19)

Remark. It is obvious that in the caser=1 we recover the hierarchy
discussed in Chapter 1

We can prove Theorem in the same way as in the one component
case: ‘
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First we notice, in view of the algebraic conditions (3.1.6), that (3.1.8)
is equivalent to
axt.c)(LUﬁ) -_—'[B,(:), LUp], avllﬂ)(LUp)= [C;a), LU;],
(3. | .8’) 3,;«:(MV‘;) = [B,(:), MVF], av'l.a)(MVp)= [C;ﬂ’, MV,],
o, ﬂ:l’ . .’r! .n=l’ 2, s,

On the other hand the equivalence of (3.1.8") and (3.1.9) can be proved
just in the same way as the proof of Theorem 1.1. We omit the detail.

Remark 3.2. The so called non abelian Toda lattice [18, 31] is
recovered, together with its hierarchy, in the sector of independent
variables

(3.1.10) xW=...=x" (=x), yW=...=y" (=),

as follows: Let us set

B,=3BY, Co=)CP
qml a=]
and consider the restriction of L, M, B, and C, to the sector (3.1.10).
Then they satisfy, with respect to x and y, the systems of the Lax type
and the Zakharov-Shabat type which are of the same form as (1.2.2) and
(1.2.3). They give a hierarchy of the non abelian Toda lattice.

3.2. Lincarization and characterization of wave matrices

Now we shall investigate the linearization of the r component hie-
rarchy: Let us consider the following linear problem.

LW =W 4, MWO=WO[q-
@21 {U, W =WE, V,WO=WOE,
(3.2.2) o W=BOW, 3mW=COW

for W=W®(x, ), Wx, y), a=1, ---,rand n=1,2, ---.
The following theorem implies that (3.2.1) and (3.2.2) serve as a
suitable linearization of the r component hierarchy.

Theorem 3.3, (i) Suppose that L, M, U and V are solutions to the r

component hierarchy. Then there exist two solutions W*(x, y) and
WO(x, ) to (3.2.1) and (3.2.2) of the form
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(W, )=z, ) exp 3 6, AE,

® =W st -
(.23) PO =W, 3) exp 32 60/, 4.,

W(g)(x, D) =;Z.:;o diag [ﬁfs:’)(s; x, Y4+

with #w{*)(s; x, Y)=1,.

W and W are unique up 1o the arbitrariness
WS — W, WOy wog

where F=2 5., A" ®f,, G=37.. 4! ®g,, f, and g, are constant matrices
of size rXr, fo=1 and g, is invertible.

(i) Conversely if there are two solutions W' and W® to (3.2.2) of
the form (3.2.3) for certain matrices B and C'?, then the matrices L, M,
U, and V, defined by (3.1.11), or equivalently by

L=W™IAW -1 M=o -11ro-1
G24) { 4 '

U=WEW®:, YV =WOEWo-1
solve (3.1.8), and also satisfy (3.1.7).

Remark. Of course in the case r=1 we obtain the corresponding
results for the hierarchy discussed in Chapter 1.

Proof. Let us prove (ii). (3.2.2) is equivalent to
WO B 0 41,
3,,:.;W(°°) = C'(")W(“),

3,:-,W(°’ =B;‘)W(°)’
3vmW(°) = C;‘)W(o) —_ W(O)A- HE..

(3.2.5)

By a direct calculation (3.1.8) follows immediately from (3.2.5).. On the
other hand (3.2.5) leads to the following two expressions of B,

B =0, WO WO-L,  BO =g W Wt L W o -1,

The first one implies that B{” is upper triangular relative to » X blocks.
Hence, if we take the (), part of the second one and remember that the
diagonal blocks of W are constant, we have

B — (W“”)A"E.W‘") . =(L*U,),..
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Similarly we can prove the second equality in (3.1.7).

Next, let us prove (i). (3.2.2) is rewritten in the form
YW (L U)W =0, . |
B, — (MV,) W =0, -'
3,W O —(L*U,) , WO =0, :

B WO+ (MV,) WO=0, n=12,...

(3.2.6)

The integrability conditions of (3.2.6) are .guaranteed by (3.1.8) and
(3.1.9), as one can easily show in the same way as in the one comp_onent
case (cf. the proof of Lemma 1.3). Hence the remaining problem is the
choice of initial values (cf. the proof of Theorem 1.2). Thus we have
only to prove that there exist some ‘matrices W"’) and W‘°’ .of the same
form as W and WO such that -

L=W@ AW, M=WPAWo-,.
U=WEEW O™, V= WOEWP-,
In the following we shall show only the éxistence of W, W§™ can
be treated just in the same way. -

At first let us choose a matrix W(') =5 jeo diag [w}"(s X, y)]A -4 such
that

M= wog- W")—ls wlgl)(S; X, y)_ Wo )(S, X, y)

We can actually construct such a W™, solving the linear equations for
w{? which are derived by comparing the both sides of MW= WM 4",
Now we set VO =WO-V W (=1, . ++, 7). Then, from (3.1.6),

Vo, 41=0, [V, ViP1=0, |
(3 2 7) Zr: Vg)= Ian Vg) V?) =’6aqu), a; ﬁ:: l’ venF

awl

From the ﬁrst equalxty V' takes the form

7=0

V“’——Z A® vf.‘
v“},=E,, = | I X

where v isa matnx valued functlon of size rXr.

Now we claim that, for the matrices V™ as above, there exxst a
matrix W® =377, 4’ Q@ wi® with wi? =1, and w{? being a matrix-valued
function of size r X r such that -
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(3.2.8) VO=WOEW®- for g=1,...,r.

If such a W exists, then we have only to set Wwo=wowe, .
Let us construct such a W® by induction on r. The case r—l is
trivial. Suppose r>1: As we constructed W® for M, we can choose a

matrix W®=32, A/ @w{® with w® being a matrix of size rXr such
that

VO=WOEW®, o1,

If we set VO=Wor-tpopm (@g=1, .. *»r), then V¥ (a=1,---,r)
satisfy (3.2.7) in place of ¥, In particular,

VOE,=V®yVN=0, EV"’—V"’V"’—O for a=1, .-, r—1.

Hence the r-th row and the r-th column of V% vanish. Extracting the
remaining (r—1) X(r—1) part of ¥ for a=1, -, r—1, we can reduce
the problem to the case of size (r—1) X (r— I mstead of size rXr.

Thus we have proved the existence of W, and hence that of wo,

The last statement of (ii) can be easily venﬁed This proves Theorem
3.3,

In the following, as in Section 1.2, we shall call W and W® the
wave matrices of the r component Toda lattice hierarchy.

A similar argument as we developed in Section 1.2 leads to a set_of
bilinear equations which characterize the wave matrices W and W®+

Theorem 3.4.  The wave matrices W' and W of the r component
hierarchy satisfy the bilinear equation

(.29) AW x, ) Wx, y)™ =050 W O (x, ). WO(x, y)-*

Jor any multi-indices a and . Conversely if some matrices W and W®
of the form (3.2.3) satisfy (3.2.9) for-any & and B, then they are wave. mam-
-ces of the r component hierarchy, i.e., they solve. (3 2.2).

Of course the bilinear equations (3.2.9) for all « and § can be rcwnt-
ten into the generating functional form, . . .
WS, YW X, Y)Y = WO x, )W, y)

3.2.10
( ) for any x and x.

Now we proceed to mvestxgate the relatlon between our theory of the
multl-component Toda lattice and the multi-component XP hierarchy.
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We introduce the following matrices of formal Laurent series in 2 of
size rXr, which we call the wave functions of the r component Toda
lattice.

(W) s; x, y; )=w(s; x, y; DA exp é(x, 2),
wO(s; x, y; A)=wOs; x, y; D' exp &(y, 2°Y),
w¥)(s; x, y; D=Ww*=)(s; x, y; )2~ exp &(—x, 2),
@B.2.11) (WO x, y; D=W*Os; x, y; D" exp §(—y, 27,
[ ] ©
W(“')(S; X,y =3 W5°°°) (s; x, y)*4,
7=0

] -
s 5,y =5 0 s; 2, 2,
\ J=o
hore 52 : nOp
where ;= was defined in (3.2.3) and w3~ is defined by
[} o
G212 W5 x, ) 1=3 4 diag [P s+1; x, ).
J=0

) Then the bilincar equations (3.2.9) and (3.2.10) are rewritten respec-
tively in the following integral forms.

§ @apw=(s3 x, 73 WS, x, y; D2
(3.2.13)
= § @3w O (s; x, y; 17 PWHO(s’; x, y; 27272,

wos; x, s W' 2, DR
(3.2.14)
=§ wOls; 5, y3 rOs's X, ¥/

They are analogous to the bilinear equations for the wave functions
of the multi-component KP theory [22] (cf. Appendix). A direct com-
parison with them yields

Theorem 3.5. Let us denote by
;Vl(x(l)s Sty x(:’); 1) and Wf(xmr “t % X"'); 1)
with 1=(l,, « - -, b,), 2332, 1,=0, the wave functions for the 2r component

KP hierarchy introduced in [22] (¢f. Appendix, (A. 44)), and define w=, w®,
W), wE® by
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!W,(,,(x"’, cee, x('), }’"), . .,y('); 1)‘,.‘
wi(s; x, ¥y Ao g8 for 1<B<r,
) {WE"’(S; X, Y3 A Vap-e 27" for r+1<8<2,
Wﬁ‘)(x(l)’ aee, x(')' y(l)' .. .,y('); ;()..ﬂ
WX s; X, ¥; Na, g2 for 1<B<r,
\ ={w;“‘°’(s;x,y; A gAY for r+1<pL2,

(3.2.15)

where I(s)=1+4(s, -+ -, 8, =S, +++, —5) (s for the first r components, and
—=5 for the second ones), and the subindices («, p) and (a, f—r) indicate
the matrix-components. Then, for each I, wi™), w{®, w¥? and w¥® satisfy
(3.2.13), (3.2.14). Hence they are wave functions of the r component Toda
lattice.

Remark 3.6. Theorem 3.5 provides a class of solutions to the r
component Toda latticc hierarchy parametrized by the vacuum expecta-
tion values z,, I=(l, - -, k), Doy [,=0[22] (see Appendix 1). However,
to make the statements of Theorem 3.5 more precise, we must add the
following remark: It may happen that the w{= and w{® do not make
sense for some s € Z. As far as we consider the infinite lattice they must
be excluded as the wave functions of the Toda lattice hierarchy. For this
reason the rational solutions and a class of soliton solutions to the multi-
component KP hierarchy do not induce solutions to the infinite Toda

lattice hierarchy.

At the end of this section we shall briefly comment on the lincar
equations for the wave functions w and w®:
Let us express BS? and C{? in the form

B;(:)=i dlag [bf:.}(s, X, J’)]Aﬂ-,’

(3.2.16) o

C =3 diag [ci)(s, x, IA=".
J=0

Then (3.2.2) is equivalent to the following classical formulation of lineari-
zation

dsiow(s, X, ¥; 1)=Z":°b§;}(s, x, Yw(s+n—j, x,y; ),
,.

n=1
(3.2.17) 3,:-:”’(5, x,V; 2):2 C,‘.:}(s, Xy y)W(S'*'j—'”; X, ¥ 2):
[ I=0

for w=w"), w® and n=1,2,.--,
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Hence Theorem 3.3, (ji), implies that, if there are two solutions w® and
w® of the form as indicated in (3.2.11), then the matrices B{® and C&®
defined by (3.2.16) solve (3.1.9), while the matrices L, M, U, and V,
defined by (3.2.4) solve (3.1.8). Of course in the case r=1 we obtain the
corresponding result for the hierarchy discussed in Chapter 1.

In the construction of special solutions (e.g., soliton solutions, quasi-
periodic solutions, etc.) the linearization (3.2.17) is often effectively used.

3.3. Reduction to a system of the Zakharov-Mikhailov type

Zakharov-Mikhailov [41] investigated the zero-curvature equation
A, 5 )—3,B(§, 73 D+[AE, 3; D, BE, 9 H]=0
and its linearization
3D=AE, 7; DD, 3,9=5(¢, 7; )9,

in which 4 and B depend on 2 rationally. In Chapters 1 and 2 we
encountered some examples of the systems of this type in the periodic
reductions. Among them the sine-Gordon equation is one of the most
typical examples, and can be obtained, together with its hierarchy, as the
2-periodic reduction as in Section 1.4.

In this section we shall derive another type of examples in a reduc-
tion of the multi-component hierarchy. One of the typlcal examples is
the Pohimeyer-Lund-Regge equation.

Throughout this section we assume the reduction conditions

3.3.D [We), A]=0, [W®, A]=0.

Proposition 3.7. Each of tﬁe Jollowing conditions (i), (ii) aﬁd (iii) is
equivalent to (3.3.1).

(i) L=4, M=4"
(i) wis;x, y; D=2'w(0;x,y;2) for w—w‘*" w®,

(i) X duuW=WA", 3 0,mW=WA"
) awl . am]

Jor W=W®©), WO gnd n=1, 2, -

This is an immediate consequence of (3.1.7), (3 2.1) and (3.2.2).
In the expression (3.1.1) of a matrix 4, we notice that

[4, A]=08a/s) . is independent of s for any ]

‘ 3
In this case A is expressed in the form A=33;z 4’ ® a,, where g, is a
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constant matrix of size r Xr. Also we notice that the correspondence

(3.3.2) A= A ®a,=ARN)= a¥
JeZ ) JezZ

preserves sums, products and commutators. Here 2 is used as a formal

indeterminatc.

Under (3.3.1) the matrices W Wwe y V., B and C“" commute
with 4, as one can show easily from (3.1.7), (3.2.4). Hence let us denote
the matrices of size r X r corresponding to them through (3.3.2) by, W(2),
W), U2, V.2, B2 and C(2) (or, more precisely, by W) (x, y;
) etc., - - -, if we indicate the (x, y) dependence explicitly.) Also denote
w0; x, y; ) and w®(0; x, y; 2) by ¢Nx, y; 2) and ¢9x, y;2). In
other words,

P (x, y; H=wN0; x, y; 2) diag (eF<, - - o, e),

(3.3.3) { OO(x, y; D="w"0; x, y; 2) diag (eF @™, . .., gt@THITH),

Then we obtain a system of the Zakharov-Mikhailov type together
with the Lax representation, the zero-curvature representation and the
linearization as follows.

Theorem 3.8. (i) ' (3.1.8) and (3.1.4) reduce to the following equations

sag [ UD=[B0D, U, 3, Us(D=[COW), U,
@34 {a,.;., VAD=[BO@, ¥, 3,0V D=[CL(, V)],

8.0 BR () =0, BPN)+[BRQ), BAX]=0, - -
(3.3.3) (W CRD—8,mCPR+ICIQ), CPQA)=0,
3B =8 CPR)+[BDR), CP@]=0,

fOI’ «, ﬁ=1; : .';’r and m, n=1, 2{ ttt.

(3.3.4) serves as the Lax representanon, while (3.3. 5) as the zero curvature

representation. .
' Furthermore if we expand U,(2) and V, (2) in the form

U=, bod™* with bs=E.,
(3.3.6) =

Vid)=2 c.,,/l’ with c,o._w«» Ep®-1,

i=0

then we have
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GAT)  BE@=5b.2, COM=F ek,
(38  UW@=WOREW @, VQ=WOQEN @,

UQUQ=6,U0,d, X UQ)=1,
(3.3.9) -
V.(X) V5(2)=5¢ﬁyﬂ(2)’ Z—l Va(z)= ln a, ﬁ= l! RS

(i) (3.2.2) reduces to the linear system
(G310 3.00=BlA)P, 3, P=CPND for D=0, ¢V,
which serves as a linearization of (3.3.4) and (3.3.5).

(i) 3 2.4nUiR=0, 39 U)=0

Jora,f=1, ---,r,n=1,2, --.. Also the same equalities hold for V(2),
BY(2), CL(2).

This theorem is an immediate consequence of the contents of Section
3.1 and Section 3.2, Proposition 3.7 and the fact that (3.3.2) preserves
sums, product and commutators. Hence we omit the proof.

Remark 3.9. We can develope, for the system of the Zakharov-
Mikhailov type indicated above, similar arguments as we did in Section
3.1 and Section 3.2 for the r component Toda lattice hierarchy. For
example; (3.3.4) and (3.3.5) are equivalent to cach other under (3.3.6),
(3.3.7) and (3.3.9); if (3.3.4) and (3.3.5) are satisfied, we can construct the
solutions @ and @ to (3.3.10); etc. We omit the detail.

The system obtained in Theorem 3.8 can be regarded as a generaliza-
tion of the so called AKNS systems [1]. In the rest of this section we
shall investigate its structure a little bit further.

At first let us consider the case r=2. This is nothing but the AKNS
case:

As we know (cf. Theorem 3.8, (jii)), the matrices U,(2), V,(4), B&(2)
and C{(2) depend only on the differences x®’ —x® and y" —y®, Hence
we restrict the independent variables to the sector

(3.3.11) V= —xO(=x), y=—yB(=y),

and set

G.3.12) {B..(Z)=B,‘."(2)—B,‘.”(2), Ca()=CP(A)—C(2),
UQ)=UQ)—Uf), V)=V,)— V.
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Then (3.3.4) and (3.3.5) reduce to

2., U@=[B.4, U], 3,,UQ)=[C.(2), UQ),

(3.3.13) {a;,V(2)=[B.(1), Y@, 3, .v()=I[C.(2), V(D)

9:,8n(2)—0.,.B.()+[Bn(3), B.()]=0,
(3.3.14) av-cm(l) _avncn(l) +[Cm(2)s C,,(l)]=0,
av-B B(Z) - a:-Cn(z) + [B n(l)’ Ca(z)] = 0)

for m,n=1,2, ... Furthermore if we express U(1) and V(2) in the
form

UD= 52" V(=3 c,2,
7=0 7=0
then

by=J= [1 _1], o= HOTHO1,

(3.3.15) Bn(z)=i blzn-l, Cu(1)=nz-lcjzf-ﬂ for n=l, 2, ceny
=0 =0

trace b,=0, trace ¢,=0 for j=0,1, ---.

(3.3.14) is nothing but the AXNS hicrarchy [1]. (3.3.13) serves as its
Lax representation in terms of the formal power series U(2) and V(1)
which are connected with B,(2) and C,(1) by (3.3.15). The last state-
ments in (3.3.15) foliows from

UQ)=WSDIW ), VQ)=WoRuwou)-,

The following result, essentially stated in [1], is then recovered in our
formulation. The proof given here is duc to M. Sato:

Theorem 3.10. For any j (=1) b, are differential polynomials of b,
with respect to x,, and c, differential polynomials of ¢, with respect to y,.
In particular (3.3.14) are regarded as non linear differential equations for
the unknown functions b, and c,.

Proof. We shall prove the statement only for b,. ¢, can be treated
just in the same way.
At first, from U(2)*=1,, we have

-1
b.,b,+b,b°+§b.b,_.=0 for j>0.
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On the other hand, from 8,,U(2)—[B,(3), U(A))=0 in (3.3.14),
abl-x/axx—[bo, bj]—[b,, b:-x]=0' for j>0.

Hence we have
i-1
(3.3.16) 2bb,—ab,..,j0x,+[b,, b,-,]+§ bb,.,=0 for j>O0.

Since b, (=J) is invertible, b, are recursively determined by (3.3.10) as
differential polynomial of b, with respect to x,. This proves Theorem
3.10.

Now let us consider the general case (r >2): (3.3.9) implics

:i-o ba.kbﬂ.l- = 5aﬁbﬁ.h é Ca2Ca,5 -5 =0asCs,

"Z-lb‘.’=6’.o, az-:l Ca',=5,_°,
while the equations Bz UPQ)—[UPQ), UPA))=0 and V[V ()~
Vi@, V§(D)=0 yield
aba.]-l/ax{” —[bp.oa ba.;]"‘[bp.u ba.}-l]=0,

(3.3.18) [
0Cq,s-1f0¥ =300 Ca,s)=0.

(3.3.17)

Hence b, and c,; (j=1) are recursively determined by (3.3.17) and
(3.3.18), and the components of b,,, and ¢, , are differential polynomials
(with respect to x{", - - -, x{7, y{", - - -, y{") of the components of b,,, and
¢s0 B=1, ---,r. This is a generalization of Theorem 3.10 to the general
case (r>2).

Theorem 3.8, (iii), implies that the evolution is trivial in a direction.
In the case r =2, we have extracted the essential cvolution by introducing
new independent and dependent variables as indicated in (3.3.11) and
(3.3.12).

In the general case let us consider an example of the choise of new
variables:

Let t@=(t{", t{, ..} and i =(#{*, i, .-.),a=1, --.,r, be the
reduced independent variables, and take the sector of the independent
variables

X = @D @ (=2, ... p—1), XxP=f®, xV= _gtr=n

(3.3.19) )
PO= — DL @ (g=D, ..o 1), PO=FO, p _jr=n,

Let us introduce the following dependent variables,
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B, (D)=BOQ)—B4*"Q), C, . )=CQ—CL*Q),
(3.3.20) ) @ @ (@) @ @)
a=1,.-.,r.

Notice that B, .(2) and C,, () are trace frec.

(3.3.2) trace B, .(A)=0, trace C,, .(4)=0.

The zero-curvature representation (3.3.5) reduces to
a,;':nB,,,.(l)—a,g.B,',,(l)+[B,_m(1), B, .(2)]=0,
al',”ca. m(l) - atg"c,a.n('z) + [Ca. n(z)v Cﬁ. ,.(2)]= 0’
al',”Ba.n(l) _al,',;"cﬂ.n(z)'*‘[Ba.a(z)’ C,_,,(l)]=0,
a,f=1,:,r=1, mn=1,2,.--.

(3.3.22)

4. Examples of Exact Solutions

4.1. Applications of an infinite dimensional analogue of the Riemann-
Hilbert problem

As is well known, the Ricmann-Hilbert problem plays an important
role to analyse the two-dimensional (or subholonomic) soliton equations.
By means of this problem, the exact solutions of many classes have been
constructed, and the infinitesimal transformation groups acting on the
solution spaces have been discovered [18, 38, 39, 41].

We will briefly explain how to apply the problem to the soliton
equations. For example, let us consider the SU(n) chiral field [38, 40],

3:(87'9,8)+3,(g'3,8)=0,
where g=g(&, 7) € SU(n), and £, 5 are the light cone coordinates. Let

1B
2B 4
Ty

be a one-form with su(n)-cocfficients 4, B. Then the equation is represen-
ted as the O-curvature condition, d2=2*. Hence the linear problem,

dY(R) =2 Y(2),

g(z):.l_%de_

has a fundamental solution matrix Y(2)= Y(x, y; 4), such that
det Y()=1, Y({@)'Y(Q=1, Y(0)=1.

Here 1 is the complex conjugate variable of 2. and t indicates the hermi-
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tian conjugate matrix. Let C be a circle with the centre at 2=0, and
C.(C.) be the inside (outside) of C. We assume that ¥(2) is holomorphic
in CUC,. Letu(2) be an nXn matrix-valued function, which is inde-
pendent of &, », analytic on C, such that u(2)'«(2)=1, det u(2)=1. Then,
setting

H@Q)=Y@QuQ)Y@X),
we consider the Riemann-Hilbert problem to find matrices 17(3')(2) such
that
@.1.1) Ve Q=VO@H(), 2¢C.
Here we assume V("?’)(Z) to be holomorphic in 2 and invertible on CU C,

(resp. CUC.), and satisfy the normalization condition V®(0)=1. For
the solution to the problem, we define ¥(2) and G(2) as follows;

FO=79QYQ in C,, =VQYQu) in C_,
_ 24 . 2B
ﬁ(x)—l_xde 7
A=A+3,VO0), B=B—3, V™).

where

The dot denotes the differentiation with respect to . Then we find;

(1) A4, B are 3u(n)-matrices.

(2) Y(1) is a fundamental solution matrix of the equation d¥ =027,
and satisfies the same condition that Y(2) does.

These facts imply that J(2) provides a new solution to the SU(n)
chiral field. In other words, the Riemann-Hilbert problem induces a
transformation on the solution space.

As far as the authors know, therc has not been any systematic ap-
proach to the construction of the exact solutions of the three dimensional
(or, sub-subholonomic) soliton equations such as the XP equation in the
framework of the Riemann-Hilbert problem.

The Riemann-Hilbert problem may be thought of to correspond to
the Bruhat decomposition of Euclidecan Lie groups. So generalizing the
Bruhat decomposition to the category of GL(o0), we wish to construct
the exact solutions, namely, the rational or soliton solutions to the XP or
the TL hierarchy, etc.

To state our viewpoint more clearly, rewrite the bilinear relation
(1.2.8) in a little formal fashion as follows;

WX x, )™t - WO(x, y)= WX, y) ' WX, ).
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This equation must hold for any x, x” and y, ), so that the both sides do
not depend on these variables. Thus there cxists a constant matrix 4 e
GL(o0) such that

W(o)(x: ,V) = W(O)(x’ y)A'

This may be interpreted as the Bruhat decomposition of

H(x, y)= exp (§(x, A)+&(y, A-NA exp E(—x, A)+&(—y, 47),

or an analogue of the Riemann-Hilbert problem. Of course, such a de-
composition may be meaningless in a general case. However we adopt it
as a fundamental setup. In other words, our strategy is to consider the
decomposition

(4.1.2) VO(x, y)=V = (x, Y)H(x, ).

(0
Further we assume that V(‘”)(x, ) satisfy the following condition:

V®(x, y) is an upper triangular, invertible
4.1.3) matrix, and V¢(x, y) is a lower triangular
matrix with unit diagonal entries.

We will call (4.1.2) (with (4.1.3)) the RH decomposition. It should be
noticed that the wave matrices are recovered as

@1 Qe =P, y) exp Ex, A)+E0, 47,

(as for P=)(x, y), see Section 1.3 (1.3.30)=(1.3.33).

As was remarked above, the RH decomposition may fail to make a
sense in a general situation. But, specifying the matrix 4 in various ways,
we will actually carry out this decomposition.

The following thecorem describes how the matrix A characterizes the
wave matrices (4.1.4).

Theorem 4.1.  Suppose that the RH decomposition (4.1.2) with (4.1.3)
is achieved,;

(1) Then the decomposition is unigue.

(2) If [A, A')=0, the resulting wave matrices solve the (TL), hierar-
chy.

(3) If [4, A4+ A-']1=0, the resulting wave matrices solve the one-
dimensional TL hierarchy.
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@) I A O(co), then WSix, y)L......0 € O(co).
(W x, )=V(x, y) exp £, 47), WOUx, y)=Vx, y) exp &(x, 4).)
Therefore the resulting hierarchy is of the B-type.

(8) I A Sp(oo), then W, ), uyen € Sp(o0).
Therefore the resulting hierarchy is of the C-type.

0 .
Proof. (1) Let 17,(“)(1'=1, 2) be two pairs of matrices to achieve
the same decomposition. Then one sees that

VOvO-1=p@ Y-,
The right-hand side is a upper triangular matrix, while the left-hand side
is a lower triangular matrix with unit diagonal entrics. Hence the both
sides must be the unit matrix, so that 7, Q- A Q)
(2) By the assumption, A"V(:)A‘ also give the RH decomposition.
The uniqueness of the decomposition yiclds A"f"(‘g)A'=V(:), so that

w (‘?’), A1=0. Hence we have the desirous result (see Proposition 1.13).
(3) Let L=WS=I AW M=WOA-'W®-1, It is easy to see that
the assumption implies L+ L-'=M+M-*. Thus the resulting hicrarchy
falls into the one-dimensional sector (see (1.4.13)).
(4) First we observe that, if the RH decomposition is achicved by

V(g)(x, ), then the decomposition problem
@.1.5) X0z, )= XZ, DH X, P)eyeyem

(E=(xy, X, - +-), and X ) are assumed to be matrices of such form as

-]
(4.1.3)) has a unique pair of solutions, 9(“)(::, Mlsy=p,o- From the as-
sumption of (4), it follows that H(x, y)\,,.,.-0 € O(c9), i.c.

J"(‘H(x, y) lz,-y,-u)J= H(x’ y)-l I:.-v.-o'

The uniqueness of the decomposition yields

IE7 %, ) =P D)

from which one obtains the desirous result.
(5) The proof goes in the same manner as above. Q.E.D.

Let y=0 in the RH decomposition. Then the resulting wave ma-
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trices correspond to the KP hierarchy (see §1.2). Furthermore, if
A € O(c0) (resp. A € Sp(co)), they correspond to the BKP (resp. CKP)
hicrarchy because of the above theorem (4) (resp. (5)) and the remark in
Section 2.3.

Motivated by this observation, we will construct polynomial = functions
of the KP, BKP, CKP hierarchies. Before proceeding to the construction,
we state two lemmata, which are well-known, however fundamental in
the following discussion. The first of them is concerned with linear
algebra.

Lemma 4020 (1) Le' ‘a( = (a“, a", .. '), ‘b‘ =(b“, b‘l’ . ‘) € C”
(i=1, - - -, r) (N denotes the totality of natural numbers), and assume *b,a,
converges for any i,j. Set

d=det (G, +‘bea)izi, 150

and assume 4+0. Then the N XN matrix (I431., a,*b)) has the inver-
tible matrix;

r -1 r

@.1.6) (1+ 3 a ‘b,) =14 3 xua,',
- WJ=1

where x,, is given by

“.1.7) (xu)::a.:s.v= _{(6u+’blaj)lSl.ISr}-"

(2) Then the following expansion formula holds:

u ix "'!il t t
@18 4=3 = sen(B 0 Mesa- (e,

1=0 £1<Cee<Ug Jraoees Jis 2o i
i;,"’,i‘ ih"'!il ; i
Here sgn{ | =0 wunless ( | *) is a permutation.
Ju "'»jt Ju

Proof. The formula (4.1.6), (4.1.7) is casily verified by considering
the Neumann expansion of (/4 33i.; ,°b;)~*. We omit the details.
Q.E.D.

Remark. Let X=(x,) be a matrix of infinite size. Suppose that
|x,|<ab,M, and K=Zab,<+oo. Then

det (14 X)=14—1 3" x4+ - Sdet Cu x,,)
"= 21 % M x”
1 Xy Xy X
e D det{x, Xy X |4---
3! a5k
Xt Xpg X
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is well-defined, and is absolutely convergent (See [33]). Note that

A=det (1+ 3 a, ‘b,)
{=l
in this sense.

Lemma 4.3 [33, 34).  Let %,(x) be the Schur function corresponding to
the Young tableau Y, and let Y* be the conjugate tableau of Y, which is
defined by converting Y with respect to the diagonal line. Then we have

LX) =(—=)" YA (— ).
In particular
4.1.9) Lan(—=X)=(=)"""Lener,=m-1(X)s

where Lona(X)=(=)" Jhz0Pr-n=X)Pn-,(x) (m<OZn) is the Schur func-
tion for the hook

n\l

-m

Remark. If we further set
Xan(x)=1 for any m,
Xan(x)=0 for n20, m<0 or, n, m=0, n¥=m, or n, m>0, n£m,

(4.1.9) persists for any integers n, m.
Let us consider the following RH decomposition:

@.1.11) VO(x) =V (x)H(x),

where
H(3)=exp 605, I+ aiEan,) oxp E(—3, 4)

]
(a, is a scalor constant), and V(”)(x) are subject to the condition (4.1.3),
ie., (POX). =0, P=I+2Z, Z=(2,).sez With z,;=0 for i<j. This
decomposition is carried out as follows: Taking the (—) part of (4.1.10),
we get
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[Z {I + :Z; a, exp §(x, A)E.,., exp £(—x, A)}] )
= —é al[exp e(xr A)Emnu €Xp e(_xl A)]-'
Define

plm, s)=p(m; 53 X)=(Pa- (<= :
Pr-sedX)
pu-u:(x)
p¥(n; $)="p*(; 5; X)="(Pa-l —XMics=C: * * Pa=2-al =X Pu-1-a(— %)),
‘3(5)='(za.k)x<:=(‘ 24 4ets Zaa-1)s

where we set p,(x)=0 for j<0. Then the above equation reads
(4.1.12) 'z(s){l +‘ZL; a.p(my; 5) ‘p’“(n.;S)} = —§ AP - X) P* (145 5).
Let us apply Lemma 4.2 (1) to this equation. Set

L4 -1

{1 + ) ap(my; s) 'p*(ng; s)}
4.1.13) i=1
=1 +“Z_l ax(s)p(m,: 5)'p*(ny; 5).
By (4.1.7) together with Cramér’s formula, x(s) is given by

xu(s)= —z(s)”?

1+a,'p*(n,; $)p(n; s) -« - - a, ‘p*(n,; s)p(m,; 5)
x det 0 ....... 1 caeees 0 i)
@11 a:‘p*(n,:; 5)p(m,;s) - - (T) ‘1+a, ‘P*(r:r,; s)p(m,; 5)
I
where

o(s)=t(s; X)=det (3,-+a, ‘p*(n,; $)p(m,; stz
=det (6u+(_)'-nl-,ach-ml-l.c-nl-l(_x))lst.JSr
(4.1.15) (by (4.1.10))
=det B+ (=)™ ™8 Xn - 1ms-olDrst,s5r
(by (4.1.9))
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(In the last equation above we should set X ,(x)=1 for m< —1, 1,.(x)

=0form=0.) We observe that if a, are very small, then z(s; x)#0 for

|x]& 1, so that the linear problem can be solved simulataneously for all s.
Set

(4.1.16) B s 3 =143 2,3
=1

W) (s; x; )=1t=)(s; x; 2)2* exp §(x, 2) becomes the wave function for the
KP hierarchy. Furthermore we obtain the following.

Proposition 4.4. Let ¢ (s; x) and Ww¥s; x; X) be as in (4.1.15),(4.1.16),

respectively. Then we have

@4.1.17 W (s3 x; )= t(s; x—&(2°1) ,
z(s; x)

where e(A)=(2, 2,32, - - -). Hence t(s; x) (4.1.15) is a ¢ function of the
KP hierarchy. :

For the proof, the following lemma is needed.

Lemma 44. We have

(4.1.18) P(x—e(2"))=pyx)—2""p,_,(x),
(4.1.19) p,(—X+£(1"))=.Z.::op,-.(j—x)z't,

P¥(n; 53 x—e(A-))plm; 55 x—€(27)
='p*(n; 53 X)p(m; 3 X)— 27 'prn [ (X)Py -1 — X+ (A7),

Proof. (4.1.18), (4.1.19) follow from

etEFTa=I (] 2 [2)xleflest

(4.1.20)

respectively. (4.1.20) is deduced from the former equalities. Q.E.D.
Proof of Proposition 4.4. From (4.1.12), (4.1.13), one sees that

‘7(s)=— :Z.; P - o(%) 'P*¥(n; S){I +’§ . agxy,(s)plmy; s)p*(ny; S)}

= —‘é . a,pm,-.(x){au+ .5;; a, 'p*(ny; 5)p(m,; S)x..(S)} p*(ny;s).

Since the definition of x,(s) reads as
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O+ f\:‘l a, 'p*(n,; s)p(my; s)x,(s) = —x,,(5),
one finds
2= 33 P I15) 00 5.

Hence, by the definitions (4.1.14), (4.1.16) together with the above results,
one sees that

WwN(s; x; A)

=z(s)-'{z(s)—wt_ i l"a,p,,,-.(x)xu(s)l’--x-n‘("‘x+€(1"))}
=z(s)-'{r(s)—z'; 2

=l

L+-a,'p*(n,; s)p(my;8) -+ - - - a, ‘p*(ny; s)p(m,; s)
4.1.21) : :
X dCt alpﬂl-l(x) ............ afpﬂ.r'i(x) i)
8,'p*(n,; )p(my; ) -+ - - L+a, ‘p*(n,; s)p(m, ; 5)

X Pretea ~ 563 D).
On the other hand, applying (4.1.20) to (4.1.15), one easily finds

z(s; x—e(2-Y))=det (5,,+a, ‘p*(n,; s)p(m,; 5)
=27, (X)Ps-toa (— X +(271))).
Compairing (4.1.21) and (4.1.22), one concludes (4.1.17) Q.E.D.

Corollary 4.6 [20, 33, 34). Let n,<---<n,<0sm <.--<m,
Then

(4.1.22)

t(x)=det Xn;m,(Dizes5r
is a t function of the KP hierarchy. This is the Schur function for the
Young tableau,

r— m—rtl

r ——_Jﬁ’nri

—m—{J I_/-n;-—l
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Proof. Since the r function has constant multiple arbitrariness,

(‘Ifll ay ')f(o; x)=det ((—)*"™a;"3,+ Xun 151157

is also the = function of the KP hierarchy. Letting a,—o0, we obtain the
corollary. Q.E.D.

Next we consider the BKP, CKP hicrarchy. Recall that the gener-
ators of o(eo), 8p(oo) are given respectively by (§ 2.1)

zB.mn.':(")nEa. -n _(_)EE.H. -my
zc.f.'m=(_)uEm.n-l_(—)n’lEn.-m-l'

If we assume m-++n=0, m, n#0 (resp. m+n+0), exp (a2, o) =1+3Z5 ..,
€ O(0) (resp. exp (aZ¢,n,)=1+aZ, , € Sp(co)). Then applying The-
orem 4.1 (4), (5) and Proposition 4.4 to this case, we obtain examples of
the ¢ function of the BKP, CKP hierarchies;

l+(_)max-n-l.m-' (—)"'"al-,,,, aes
=d v ,
(4 1 23) TH(S) . ((—)uax-n-..n-: l+(_.)uuax_,,_,_,,_,)
3 . (=det (1+(_)molaZ_n_,_"m_' (=)P*'aX e po s )
T\S)= (_)mlax_a_'_hn_. l+(_)nux_n_‘-'m-‘ .

To construct an N-soliton solution of the TL hierarchy, let us con-
sider the following RH decomposition;

VOx, y)=Vx, ))H(, y),
4.1.29) H(x, )= exp (§(x, A)+E(», A"))(l -i-ﬁ:l Xm,)
Xexp (§(—x, NH+&(—p, 47Y),
where a,>0, and 0<gy< - - - <q,<p,< - - - < py, and X, is defined

(4.1.25) Xpe= 3 p"4""En.

']
7)(x, y) should satisfy the condition (4.1.3), that is,

VO =) (U9=0fori>j), V=I=I+2Z,
Z=(z,)) (z,,=0 for i <j).

Define
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e(p; s)=e(p; s; x, Y)=(p*e")r e
‘e¥(q; s)="e*(g; 5; x, Y)="(g ~*e "), ,,

where 7(p)=§&(x, p)+£&(, p~"). Set ‘z(s)=(z, )e<c,» By the same argu-
ment as the preceding one, it turns out that (4.1.24) reduces to

N N
‘z(S)(I +§ ae(p,; s) ‘e*(q.; S))= —‘Z_.; a,pie"*? ‘e*(q,; 5),
which further leads to
(4.1.26) )= 33 a,penPOx,(5) 'e*(gs; 5),
{ufml

where x,(s) is defined by
X48)= — ()"

14-a,'e*(q,; s)e(py;8) =« -+ ay ‘e*(q:; s)e(py; s)
4.1.27) : :
% det 0 -cvv-- 1 ... 0 ()
a,'e*(gu; $)e(pi; 5) - - (T) - Lay ‘e*(gui s)e(py; 5)
1
and

(4.128)  (s)=1(s; x, y)=det (6, +a, ‘e*(q:; s)e(py; SDhsessn-

We will show below that the = functions (4.1.28) are expressed as
(4.1.35). From the assumption on a, and p,, g,, it follows that ¢,,<0 for
i<j, and a,(s)<0. Hence the r functions are positive for real x, y, so
that the above linear equations can be solved simultancously for real x, y.
(Of course, the = functions (4.1.35) themselves is well-defined for mutually
distinct p,, gq,).

The following equalities will be useful later.

(4.1.29) ‘e*(q; s)e(p; s)= 1_1/5_/;( plg)er® -,

‘e*(q; 53 x—e(27%), Y)e(p; sy x—e(27"), ¥)

=te*(q; s)e(p; s) —T%( plg)ler -3,

(4.1.30)
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‘e*(q; s; x, y—e(D)e(p; 55 x, y—£(2))

4.1.31) 1
='e*(q; s)e(p; )+ (plg)er® @,
1-2/q

Set
7(s; x, y; =1 +J};z,..-,2",
0953 x, y; D=7, 0% 2.
Then we get the following proposition.

Proposition 4.7. We have

(4.1.32) 8)(s; x, y; )= o(s; x—e(2°Y), ¥) ,
(s x, ¥)
4.1.33) 69(s; x, y; )= (s+1; x, y—e(2)
© o(s;:x, ) ?

which means, by the remarks in Section 1.3 ((1.3.32)-(1.3.35)) together
with (4.1.4), that

4.1.39) ots; %, p=rsix ) ewp (=5 nx.3,)

is a t function for the TL hierarchy. Furthermore it is expressed as
N

T'(S; X, ,V)=Z Z ch---(zah(s)’ ’ ’au(s)

1m0 fi<ee<ig

(4.1.35) :
xexp (3, 7pi)~2(a.))

where

afs)=apja)y—2—
P—

i

Cprunits = , = (pe—p Wq9:—q,) g
firete xspl;[-sx Cipter €1y -—;———(p‘_ql) @—p)

Proof. From the definition of §(s; x, y; 2) and (4.1.26), (4.1.28),
it follows that

0s; x,9; =v'){s)

Toda Lattice Hierarchy 75

1+a,'e*(gi; s)e(pr;s) -+ - ay 'e*(q1; $)e(py; $)
—é: det a.(pxlq:)'e"‘f""”“" --------- au(pN/q:)'e;“;""““"
a,‘e*(qn; s:)e(p,; ) 1+ay ‘e*(q:.v; 5)e(py; 5)
x—l%}.

On the other hand, applying (4.1.30) to (4.1.28), one finds
o'(s; x—e(27"), y)=det (5, +a, ‘e*(g:; 5)e(p,; )

._.glq_'lz_(p,/q‘)lev(w)-v(qt))xsusﬂ_

1—q/2
Compairing these identities leads us to (4.1.32).

Next we wish to prove (4.1.33). For the purpose, we prepare the
following notation: Let M be a matrix. By M, we mean a matrix
obtained from M by setting the (k, ), (/, k) (j+k) entries to be 0, and
leaving the other entries.

By the way, it is easy to see

09s; x, y; A)

N
(4.1.37) =1 +Z a,(p,/q.)'e""""""’6“’”(-9; X, ¥ p,)
k=1

(4.1.36)

1
1 _'2/ ('Y
Using the notation prepared above, one finds §*(s; x, y; p,) to be given by

6(s; x, ¥; Py)

@138) )t et (50 ta, 1=2idPe _adp,s (p,,q‘).e.(m-.«m)m.
1—qdp. 1—adp,

On the other hand, applying (4.1.31) one sees that

N
(s+1; x, y—e(Q)=7"(s) + ?:‘1 det
k
( !
14a,'e*(@s)e(pss) - - ._lq_Jqup_q;.em -y 'e*(gus)e(pys)
: —4/p: :

pYe a‘p:e!(Pl) ....... 1 ceeereenenss aﬁp:ve"’?’) -k

4 te*(gus)e(pis) - - - —AnlPr_gigran . .1t ay eHgus)e(pas) )

1 —gu/p:
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(4.1.39) X @y (pa]q.) ev PR - 800,

1—2/ qx
In the above determinants, let us perform the following fundamental
operations: Multiply the k-th line by ((¢./p.)/(1 —q/p.))qi'e”*°? and
subtract it from the i-th (i k) line so that the (k, i) cntries becomes 0.
After these operations, further perform fundamental operations to let the
(i, k) entries (i#k) be 0. Substitute (4.1.38) into (4.1.37), and compare
(4.1.37) with (4.1.39). Noting that (1—p/)/(1—q/3)-(a/p)/(l—q/p)=
(a/p)(1 —qlp)—(a/D/(1 —q/3), we conclude (4.1.33).
The expansion formula (4.1.35) is easily verified by applying Lemma
4.2 (2) to (4.1.27). Q.E.D.

The r function (4.1.35) coincides with the N-soliton r function
discussed in [19). We denote the = function (4.1.34) by

o @)
(4.1.40) 1-( Pt Puqn x

Next we consider a N-soliton solutions of the (TL), hicrarchy, the
one-dimensional TL hierarchy, and so on.

The (TL), hierarchy: In (4.1.35), we set [21, 25)

4.1.41) g=wp; (@W'=1,0#], 1ZjZN).
It is evident that the resulting = functions ¢'(s; x, y) satisfy
9,,'(s)=8,,7/(s)=0 for j=0mod/, (s+D=7(s).

Hence they belong to the /-periodic hierarchy. We remark that if we
set g,=awp, in (4.1.24), then the infinite series ‘e*(g,; s)e(p,; ) diverges.
Namely the RH decomposition cannot be directly solved under this con-
straint.

The one-dimensional TL hierarchy. In the RH decomposition
(4.1.24), we impose the following constraint compatible with the assump-
tion on p,, g, (see (4.1.24));

4.1.42) ;=1 for 1I£j<N.

After a little computation, we find [X,,-i, 4+ 47']=0. Thus Theorem
4.1 (3) assures that the resulting wave matrices fall into the one-dimen-
sional sector, The = function (4.1.35) takes the form

N

U0=5 T i) -2 e (5 p)
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where t=(t,, 1, - - - )=F(x,— ), 1 (x:—y»), - - ), and

ip)= 2Z(p -, dfs)=a,-L , L

= = (P(“P/)z
Copty= [l Euu» Ey=—DiPr
4T st el vz (pps—1)°

The BTL, CTL hierarchies: Define
. . al -—al . e« a\' —a‘\' .
S, XY= ’ ) s % ) s
wals %, 7) ’(s Po—@i o =P Pxs —Gx G —Px° 7 )

. _f.. —qta; —pila, - —qilay —pilax. )
i x, P=1(s; .
7els %, ) r( Pu—@ Gu—Pi -+ Pa»—ds Gu» =P’ 7

(4.1.45)

Then we have

Proposition 4.8. The ¢ functions t(s; X, y), z¢(s; x, y) have the sym-
metries,

(4.1.46) ti(—5; %, Y)=1,(5+1; «x), «(»),
(4.1.47) te(—5; %, y=1ls; «(x), {¥)).

Proof. Note that there are more general symmetries,

L@y e Gy
( 2 PN‘IN'X’ )

=r(s; _p‘f’_ '”_pf: gy~ t(y))

4.1.49 ( ;(PJQ1)‘71"‘(P4\'/QN)”.V. )__ ( cesay . )
(4149 (s e gy rs-Hpq' %y

(. a, --- day - x )
gy - zvq.v’ !

_a---—a
=7 —s+1; ) Y —x, =y
r( + QP Py * )

(4.1.48)

(4.1.50)

It is an easy task to verify these symmetries. Applying these to our case,
we see that

ra(s+1; dx), «(3))

=515, % T, )
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— . al —al see, _ _
._r(s+l, —Pu@y —Guprceet y) (by (4.1.48))
= —5: ~Q a e,
- '( S G =Py P —gy et y) (by (4.1.50))

=15(—5; X, ¥).
Likewise we can show the symmetry of the C-type (4.1.47). Q.E.D.

The r function (4.1.45) are N-soliton r functions of the BTL, CTL
hierarchies [23,26). These r functions may be thought of to come from
thelfollowing RH decomposition (however, it is impossible to achieve it in
a rigorous sense):

We set

Xn.n=mZeIz {(=)Ea,.a=(=)"E,, )P q""
=X, .q—X,.-p € 0((c0)),

Xc.n=n§z {(=)En -n-i}=(=)"*"E, _n-i}p™g "
==X, =P X, -5 € 3p((0)).

We apply the RH decomposition to the matrices

Hylx, $)=exp €05, A+60, 4N+ 33 0, Xa.r0)
X exp (§(—x, A)+&(=y, 47),

Hels, Yy=exp (605, )60, A1+ 356X,
Xexp (§(—x, A)+&(—y, 47).

Then Proposition 4.7 suggests that the resulting r functions should be
given by (4.1.45).

At the end of this section, we give some remarks.

Remark 1. Though we have not considered here, it is possible to
generalize the RH decomposition to the multi-components. In the /-
reduced XP or TL hierarchy, the RH decomposition reduces to the ordinary
Riemann-Hilbert problem. These topics will be investigated in detail in
a future paper.

Remark 2, Taking into account the remark after Lemma 4.2, the ¢
functions in Propositions 4.4, 4.7 take the form
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t(s)=det (4¥ exp &(x, A)A exp &(—x, M)A,)

where A4 js the matrix that appeared in (4.1.11) or (4.1.24). The rect-
angular matrices AF, 4, are defined by

A¥ =(amu)n<u A, =(5nu)m12°
nez n<s

In fact, it is known [33, 34, 22] that the ¢ functions of the XP hierarchy
are expressed in the above form (see also the Appendix 1 in this paper).

Remark 3. Let X(p, g) be the vertex operator [22)

X(p, g)=et =P =20 o= tA.p~Netdig=n

By a simple calculation we see

N @
hiX(pnen , - —_ .G Gy, )
1[[1 ¢ exp ( ,.Z_:‘nx,,y,,) t.(0' P Pagn’ %Y
where b,=((q./p)/(1 —q./p.))a,. Expanding X(p, ¢) into a formal Laurent
series in p, g,

(4.1.51) I _X(p, )= 3 Z,p'q7",
l—glp 6jez

then we see that the coefficients Z,, satisfy the same commutation relations

that the matrix units E;, do [22]. Hence X, (4.1.25) can be identified

with (4.1.51).

4.2. Special solutions of the Wronskian type

In this section we shall show a direct method for the construction of
special solutions of the Wronskian type, which is 2 modification of the
construction in [33] of rational solutions to the XP equation (see Appendix
1) and in a special case coincides with Date’s method [6] for the soliton

solutions.
In the following we shall mainly consider the one component case.

Consider the following functions

“.2.1) Pox, y)=!z€‘3z P (X)p,(») (i€ 2).

p{x) and p(y) are polynomials, while p,(x, y) is an infinite series of x and
» with the generating function

@22 2 Pilo DA=exp E(x, D+¢(r, 7).




80 K. Ueno and K. Takasaki

As the data for the solution we give constant vectors f;=(f; )¢z,
Jj=1, .-+, N, of infinite size, and set

(4'2'3) L(S; X, }’)=‘§ p(-n(x: y)fl.}'
Furthermore we assume the following condition

4.2.9) det [fy(s+i—1; %, Pisus,.... x#0, s€Z

Then we can define the functions wy(s; x, ), - - -, wa(s; x, y) such that

N=1
(4'2'5) L(S-{-N; X, y)+ ‘Zo w.\'-((s; X, y)f;(S‘i‘i; X, y)=01 j=]’ ct N.

Using Cramer’s formula we have

. j=1, .-,
reri-tix) (20 0%)

(4.2.6) Wy, =—det|f}(s+N;x,») (=1,.--,N)

..........................

fils+i—=1;x,%) (;:llc,+2, ,‘]-V-, N)

/det Uis+i—1;x Ml geryeeenn

for k=1, ..., N. In particular

wy=—det [f;(s-+i; X, Wijat,en

4.2.7
¢ ) [det{f(s+i—1; x, Pi.su1,0ee w EO

for any s ¢ Z.
Now we sct

(@28)  Walw,y)=3; dinglwy(si x, DA, wlsi x, )=,

W Xx, )= Wy(x, A" exp [£Cx, A)+E(r, 47Y),
W (x, y)=W(x, y) exp [&(x, A)+E&(y, A7)].

Then we have

4.2.9) {

Theorem 4.8. W' and W solve the linear problem (1.2.8) for
certain suitable matrices B, and C,, so that they solve the Toda lattice
hierarchy. The corresponding t function </(s; x, y) is given by

(4.2.10) t/(s; x, yy=det [fi(s+i~1; x, Wi et enine
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It is remarkable that the = function is obtained in the Wronskian form
(cf. Lemma 4.11). Thereforc we call the solution obtained above a
special solution of the Wronskian type.

Example 4.9. Suppose that f; , takes the form

M
@d.2.11) fu=2; Kay,

where k, and a,, (/=1, ---, M, j=1, - - -, N) are constants. Then

G212 ffsix)=); Ka, exp [6Cs k)+E0, k),

and we obtain a soliton-type solution.
Furthermore if M =2N and

. ={a.., (SIEN), pofa asIsN),
T Gsene, (NHISIS2N), Y |pey (NHISIS2N),

then we recover the classical soliton solution of the Gram determinant type
(up to simple exponential factors)

N
(s; x, )=[] e*“qi- [] (9.—4))
{=1 >4

Xdet [3.,+c,e"l’l"!(w(&)

(Ps—a) T1 (p;—q,)]
Itng)
Kf] Gfmlyere N

(p;—4q0) uUn (9:—4q)

Applying the expansion formula for det (14 X)), remarked in the previous
section, to the last determinant, we get

N
(s x, p)=[] e*¢¢-[] (g.—q,)
(4.2.13) = >4

N

X35, B, u e cuuls): - -aus) xp 2 1py) (0L

=0 £3<ee <l

Here the notations are the same as in (4.1.35) and

¢ Il (Pe—q0)
a,= — 420 .
n)(‘h—%)

1wt

Thus we get the soliton solution (4.1.35) up to the trivial multiplier
TT8, ev9gi- [T 45, (9c—9g,) which can be absorbed in the trivial arbitra-
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riness of wave matrices indicated in Theorem 1.2.

Remark 4.10. In the expression of the solution there appeared
infinite series of the form J3, .z ¢, p.(x, y), where ¢,(n € ) are constants.
Using the integral representation

Pls D=5 § T exp 6, D+, 20,

we can estimate | p,(x, y)|, where the integration contour is chosen to be
in the convergence domain of the Laurent series &(x, )+£(y, 1-). In
this way we can easily prove, under the condition m. supy...,|¢,[*< co,
that the series 3,z ¢, Pa(x, ¥) converges absolutely in the domain

lim. sup. | x, [*-lim. sup. |c,|'"*<1,
lim. sup. | y,['/"-lim. sup. |c, """ <1,
lim. sup. |x, |- lim. sup. |y, ' <.
Now we proceed to the proof of Theorem 4.8.
We prepare two lemmas,

Lemma 4.11. We have the following formulas.

02,04(%, V)=p:-x, V), 4,24, Y)=p1+ (X, ),
0,185 %, =L s+is %, ), 8,,1(s; x, N=£(s—j; x, ).

This is an immediate consequence of (4.2.2) and (4.2.3).

Lemma 4.12. For any matrix U=}, diag [u,(s))A’ there exist two
matrices Q and R uniquely such that

{U=QWN+R’

(4.2.19) Nt
Q=§° diag [¢,(s)]4’, R=,§ diag [r,(s)]4°.

Similarly, for any matrix U’ =73, diag [uj(s)] A’ there exist two matrices
Q' and R’ uniguely such that

U'=Q'Wyd-¥ + R,

@.2.14y { _ o
O'=ydisglgi(N4, R'= 33 dinglris)la.

Proof. Equating the coefficient matrices of 4’ in the equalities
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U= QVV.v‘i'R: U’=Q'W'_,,A'”+R',

we get a series of linear equations for gy, ry, g5, r;. Since wy,=1 and wy
is invertible (cf. (2.2.7)) we can solve them recursively and uniquely. This
proves Lemma 4.12, Q.E.D.

Let us prove, by use of these lemmas, that there exist an upper
triangular matrix B, and a lower triangular one C, of infinite size such
that the following equations are satisfied for n=1,2, ---.

4.2.15) 0z, Wy+Wyd"=B, Wy,
(4.2.16) 8, Wy+Wyd-=C,Wy.
Rewrite (4.2.5) in the form

4.2.17) Wafix, »)=0 (j=1,.--,N),

where we set fy(x, Y)=(f,(i; X, })):cz. Differentiating (4.2.17) with respect
to x, and using Lemma 4.11, we have

(ax,.pVN't" WNA“)f;(x: y)=0 (.I=]’ Tt N)-

On the other hand the former half of Lemma 4.12 implies that there exist
certain matrices B, and R, of the form

B,= 3, disg [0y, (5 5 A, Ry= 3, diag 1 (53 %, DA
such that
3. Wyt WyA"=B,Wy=R,.
Hence
R.fx, =0 (j=1,---,N),
or equivalently,

(ro =+ <y r”_,)(j}(s+i; Xy y))t.,l-l,.....\r=0-

In view of (4.2.4) we conclude R,=0, and hence (4.2.15).
Similarly, from the equalities

Cu(Wad™ ")+ (Wy A=A A f(x, )=0 (j=1,:--, N),

we can show (4.2.16), using the latter half of Lemma 4.12.
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(4.2.15) and (4.2.16) implies that W) and W® defined by (4.2.9)
solve the linear equations (1.2.8). Hence B, and C, solve the Toda lattice
hierarchy (cf. (ii) of Theorem3.3).

For the proof of (4.2.10) it suffices to prove the following.

det[f,(s4i—1; x—e(2" Y, M. Jut..
1 : = N )
+ Z Wa-83 % A det L, G+i—1; % Ml son.
det U:‘(S'*'l, Xy y—s(l))]‘.l-l.-"u\f
det [fy(s+i—1; %, Wegar,een

(4.2.18)

N=1
4 ‘Z_; Wx-o(S; X, )=

If we notice the formula

Si(s; x—e(@7"), )=1i(s; x, )= 2" f(s+ 15 x, )),
Ji(s; x, y—eD)=f(s; x, Y)—2f{(s—1; x, y),
we can show (4.2.18) by a simple calculation of linear algebra, comparing

(4.2.6) with the right hand side of (4.2.18). (4.2.19) is an immcdiate
consequence of the formulas

(4.2.19) {

{p,(x—e(l"), V)=p,(x, Y)—27'p,.x, y),
Pi(x, y—eQ)=p,(x, Y)—2p;.:(x, y),

which are derived from (4.2.2) and the formula
exp §(—e(2), =1-22".

Thus we have proved Theorem 4.8.
Next, let us consider a condition for the [-periodicity, i.c. a condition
under which we have

(4.2.20) (W=, A1]1=0, [W*, 4']=0.

Theorem 4.13, Suppose that for the ZXN matrix f =(f«.:);sf. v

there exists a constant N X N matrix C such that
4.2.21) Af=fsC.
Then (4.2.20) holds. Moreover we have

{lW.v. 41=0,

4.2.22
( ) axanN=0, av‘-WN=0, n= l, 2, v

Proof. Set f(x, )=(f,(i; x, y))& ez - (2.2.21) implies
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Af(x, »)=1(x, »)C,
and in view of (4.2.17) it leads to
WNA,f(x’ y)=0.

Then we can show, as we derived (4.2.15), that there exists a matrix Q=
>¢.o diag [g,(s; x, )] 4’ such that

(4.2.23) Wyl =QW,y.

Hence we have two expressions for Q in terms of L=W AW 1-1 and
M=Wo - o-1

0= W fiiprer-i= gt Q=W f-1lo-1-pt
which immediately imply the following.
(4.2.24) Li=M-‘=4, Q=4

From (4.2.23), (4.2.24), (4.2.15) and (4.2.16) we have (4.2.21) and
(4.2.22). This proves Theorem 4.13.

At the end of this section we shall briefly comment on the multi-
component case. Also in this case special solutions of the Wronskian
type are constructed in the same way as we have just discussed. We shall
show only the results:

In the r component case f; , and w, are replaced by matrices of size
r Xr, and we set

(4229 55, 9)= 3 T pie A5, YDE. o

w, (i=1, - - -, N) are defined by (4.2.5) under the condition (4.2.4).
Since Lemma 4.12 is also valid in the multi-component case under the
condition that wy is invertible, we can derive

ax,‘.‘" Wyt WNA"Ea=B f-") W,

4.2.2
4226 {3:,,'.“ Wit Wad="E,=CiWy,

for the matrix Wy=3}_, diag [w,(s; x, y)] 4¥-/ with w,=1,. Hence W
and W defined by

W= Wyd-" exp (35 60, DE.+ 35 60/, 4-)E),

W= W, exp (33 60x%, DE.+ 5, 60, 47)E,),
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solve the linearized equation of the r component theory.

Similar argument as in the proof of Theorem 4.13 leads to a con-
dition for the reduction to the system of the Zakharov-Mikhailov type:
If there exists a constant matrix C of size Nr X Nr such that

(4.2.27) Af=fC for f= (fu);sf. o

then we have

(4.2.28) (W, A|=[W®, A]=[Wy, A]=0.

Appendix. A Brief Summary of the XP Theory.

In this appendix, for the reader’s convenience, we shall briefly sum-
marize the recent results [12], [20-25], [33), [34] in the study of the KP
hierarchy.

1.1. Microdifferential opcrators.

Let @ be a differential algebra with a derivation 8. A microdifferential
(or pseudodifferential) operator with coefficients in @ is, by definition, a
formal sum } 3.z 4,3’ with a, € @ and a,=0 for any sufficiently large j
(the integer m=max {j; a,+0} is called the order of }3,. a,’), and the
sum and the product of two microdiffercntial operators are defined by the
following.

; ag’'+ ; b131=; (a,+b,)2,
(A. l) Z ajaj’z b;a"=2 013" where
7 7 7

= 7\, .5
€ x.lezz;azo ( “)a‘ &bs.
ktl=awny
We denote by & (resp. 2, £4-%) the totality of microdifferential
operators (resp. differential operators, microdifferential operators of order
<0). Then 2 is a subalgebra of &, and there is a direct sum decomposi-

tion
= -1
A.2) {6’ D@ E-",

. ad=3 a3+ 3, a9
z Jeo <0

1€

We denote by ( ), the projections to 2 and £¢-9;
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(A.3) (22 ad).=25ad, (3 ad).=3 ad.
JEZ J&0 Jez <0
The formal adjoint P* of a microdifferential operator P is defined by
A.4) Q;J ag’)* =2;.' (—dYa,
which induces an anti-isomorphism of &.

1.2. One component theory

In this case @ is a suitable differential algebra consisting of functions
in the independent variables x=(x,, X,, - - -) with the derivation

(A.5) 3=3,,

As the dependent variable we introduce a microdifferential operator
L of the form

(A.6) L=9+4u_o'+tu.0*+---, u=ux)e0.
We set
(A.7) B.=(L",, n=12,....

Then the one component hierarchy is defined by the system of the Lax-
type cquations

(A.8) aLf, =[B,, L), n=1,2, -,

where 9/d., denotes the differentiation of the coefficients of L with respect
to x,.

(A. 8) is equivalent to the system of the Zakharov-Shabat type
(A.9) éB,fa3,,—3B,/3, +[B,, B,]=0, m,n=1,2,.--.

The equation 3B,/d,,—3B,/d,,+[B;, B)=0 is nothing but the KP
(Kadomtsev-Petviashvili) equation

(A. 10) 3ugy+(_4ul+uxx+6uux)x=0,

where u=u_, and (x, y, 1)=(x,, x;, x;). Thus (A.8) and (A.9) give 2
hierarchy for the KP equation.
The linearization is achieved by the system

(A. 1) Lw=2w,
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A 12) 3, w=Bw, n=1,2,...,

where w=w(x; 2) is a formal Laurent scries of 1 of the form

w(x; )= (i} l‘il,(x)l") exp §(x, 2),
(A. 13) !

W) €0, wn=1, &x D=2 x,2",
=]
or equivalently, given by

{w(x; =W (x; ) exp &(x, 2),

A.19 W(x;9)= J}Eow,(x)a-’ €&

Remark. Here we used the convention that the action of microdif-
ferential operators on exp &(x; ), or on a series of the form

Z,: b, exp &(x, 2) (3 b,d! € 6),
7
is defined by the formulas
(25 a8 exp &(x, ) = 3 a,2! exp &(x, 2),
J J

(A. 15) {
(; a,a’)(; b, exp &(x, 2))=; ¢, exp &£(x, 2),

where ¢, is the clement defined in (A.1). Thus exp &(x, ) gencrates a
free £-module of rank one.

We notice that in terms of W, (A. 11) and (A. 12) are rewritten in
the form

(A. 16) L=WWw-,
(A.17) awja, =B W —-Wa", n=1,2,:--.

The equivalence of three systems (A. 8), (A.9) and (A. 11)4-(A. 12)
are established in the same way as we did in the case of the Toda lattice.
We call a solution to (A. 11)+(A. 12) a wave function of the XP hierarchy.

The wave function w(x; 2) is characterized by the following bilinear
equation

(A. 18) § wix; YIw*(x’; Hdi=0 for any x and x’,

where the integration contour is a small circle around 1= co, while
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(A.19) w¥(x; D=W(x, 3)*)"! exp £(—x, 2),

and W* is the formal adjoint operator of W. (A.18) is 2 generating
functional expression of infinitely many equations with the indeterminate
x—x'.

The z function 7 (x) is consistently introduced by the formula

. n_ t(x—&2"") exp é(x, 2) (g A A
(A.20) wix; )= 5 , 2 )_(z R )

Then the original hierarchy for the dependent variable L is transformed
into the bilinear equation for the r function of the form

(A' 21) iop.l(_zu)plﬂ(ﬁ:)e(u'nﬂr't=0» 5:=(D:n sz’ s 1)3‘, s " '),
I=

which is a generating functional expression, with the indeterminate u=
(uy, ty, « - -), of infinitely many bilinear cquations of the Hirota type.
The first onc is

(A.22) (DL, 43D}, —4D, D, )r-r=0,
which is equivalent to (A. 10) with u¥=a*(log 7)/3x3.

Remark. The wave functions of the BKP and CKP hierarchies [23-
23] are characterized by the following bilinear equations

(A. 23) §w(x, Dw(¥, —)1°da=3,, for any x, X',

(n=0 for BKP, n=1 for CKP), where the evolution is restricted to the
odd sector {x,=x,=--=0}.

Sato [34) discovered a remarkable fact that the structure of the =
functions is completely discribed in terms of the (infinite-dimensional)
Grassmann manifold as follows:

t(x)=det ('fy exp (x\A+x:4'+ - - -)f)
= Z x)’(x)f!’:

Y:Young dlagram

(A. 24)

where f and f, are constant matrices of size Z XN, f =(f“)‘ffv » fo=
€ €
GiDiez » Ne={—1,—2,.-.}. fy is the Plicker coordinate of the
JEN,

“frame” f corresponding to the Young diagram Y. y,(x) is the character
polynomial (the Schur function) which we encountered in Section 4.1.
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We omit the precise definitions of these concepts (cf. [34]).

The rational solutions, i.c. the solutions with polynomial = functions,
are constructed and parametrized as follows [33]: As the data we give a
constant matrix f=(f.,);-_,.,,-,.....,.._, of size (n+4-n)Xm (m and n are

o e, l=m,see, =

positive integers), and set
A.25)  S)=(fsDyz-mn-memna=exp (ad+2d'+ - ),
where A=(8;-,4)¢,se-mn1-n,s.n-1- Notice that we have the Wronskian
structure .
(A. 26) S (X)=a""f o (%), i=—m,1—m, .-, n—1.
We assume the condition
(A.27) rank f=m,

Then det (f;, (x))¢,su=m,1-n...., -1 0. Hence the functions w(x), - - -, wa(x)
are uniquely determined by

(A.28) @ 4wd™ '+ w0 (X)=0, j=—m, - .., —1.

Furthermore in the same way as we discussed in Section 4.2, using a
division theorem for differential operators instead of that for matrices of
infinite size, we can conclude that the microdifferential operator W =1+
W@+ - - 4w,0"" solves (A. 7). Hence the L defined by (A. 16) solves
the hierarchy. The corresponding r function is given by

t(x)=det (" f; exp (x, A+ x, 424 - - -)&)

= Z xl-----l-l(x)ﬁ-gnd_n
~n5l-n<--<ladn

(A.29)

where

,fo-_—(au);:::,:::.u:h X (X)=det (1 j (D1, g = myeres =1
and f;_o..io,=det (fi, ), smormere,mte

The transformation f— fC(C ¢ GL(m)) changes r into r det C. Thus
the polynomial r functions are parametrized, up to constant multipliers,
by the equivalence classes of “frames” f (i.c. (m+n)Xn-matrices with
(A. 27)) with respect to the equivalence relation f~ fC(C e GL(m)),
namely by the Grassmann manifold GM (m, n).

We note here that the method stated above is also valid in the case
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n=oo, m<oo. Then we obtain the special solutions of the Wronskian
type to the KP hierarchy (cf. § 4.2).

The formula (A. 24) is established in a suitable limit procedure as
m, n—oo,

An alternative expression of the ¢ functions is given in terms of the
vacuum expectation values of Clifford operators [20, 22].

1.3. Multi-component theory

In the r component theory we introduce the independent variables
x=(xM, ..., xM), x@=(x{, x{, .-.) (@=1, -+, r), and @ is a suitable
differential algebra consisting of matrix-valued functions of x of size r Xr
with the derivation

(A. 30) 9=3 dyge

As the dependent variables we consider microdifferential operators L
and U,(a=1, - - -, r) of the form (cf. § 3.1)

1
L= 3} ud with u,e @, u,=1,, u,=0,
(A.31) =
U.= Z u,_,a" With ",_a € 0, uo_!=Ea,
PO
(our notations are slightly different from those used in [34]), and assume
the following algebraic conditions

[L! U¢]=0, [Ua! Uﬂ]=0s

A. 32 r
( ) Z Uu=ln U,U3=6,5U‘, «, p:l' -..,r.
am]
We set
(A. 33) B;"):(LHU‘)’, a=], ceer, n=1’ 2, —_—

Then the r component hierarchy is defined by the system of the Lax type

oL st = B,(:), L N aU a,un= Bs‘", U »
(A. 34) [0z =( l, AUfo =] )
a’p-—_—l, ...,r,n=l’2’ cee,

which is cquivalent to the system of the Zakharov-Shabat type

aB::)/as(.”_an(x”/axg"""[Bg)v B:nm]:O,
aB=1,--rr, mn=1,2, ...

(A. 35)
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The lincarization is achieved by

(A. 36) LW=2W, UW=WE, a=1,...,r,
(A.3D a,.«..,W:B,f,"W, a=l, cee,nn=1,2,---,

where W= W(x; 2) is a matrix-valued formal Laurent series of 1 of the
form

(A.38) Wi D=3 %02 -exp (}::le(x"), z)E,), w, €0, wy=1,.

7=

Using the microdifferential operator

(A. 39) Wix;d)=3 wix)a-,

J=0

we can rewrite (A. 36) and (A. 37) into

(A. 40) L=WaWw-\, U,=WEW-,
(A. 41) V(3 0 =BOW—-WE".

In the r component case we need several = functions #(x) and z,,(x)
(a = B) which are consistently introduced by

@ exp D) (),

L z(x) -
(A.42) W(x; 2).p= (X —e(A")exp E(x, 2) (a#h), 2

(%)

where ¢,(4-)=(0, -+, 0, e(‘i)“), 0, ---,0), and the subindex (e, 8) indi-
cates the (@, §) component of a matrix of size r Xr.

The = functions have a parametrization like (A. 24) in terms of the
(infinite-dimensional) Grassmann manifolds. Also in terms of the vacuum
expectation values 7,(x) ({ =(/,, - -+, ;) € Z" with >3, 1,=0) introduced
in [22] they are parametrized as follows.

7(x)=(a signature factor)-z,....(x)

(A. 43) {

7,5(x)=(a signature factor)-z,...,...,...o(X)
o

The wave functions W (x;2) and W¥(x;2) arc introduced by the
formula
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(A.44)
| W(x; 2).,p== Uap(l)ft;---l.u---u-z---t,(x_EA(Z-‘))I““"’-' exp §(x?, 2) ,
7,(x)
105 iy oDttt S AT H=x2, )
(x

and satisfy the bilinear equation
(A. 45) § W,(x: )WEG; DdA=0 for any /, I, x and X/,

where g,5(/)=(—1)+**¥a<p), 1 (@=f), (—1)}#+**'(@>p), and
(he-+L£l- I, F1...1) is replaced by (/,- - -/,) when a=8. (Here our
normalization of wave functions is slightly different from the original one
used in [22].)
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