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0. Introduction

At present it is a very hard task to give an exact definition to the notion of
integrability or integrable system. What we have in hand now is rather an
enormous list of examples accumulated for many years of intensive studies
from both the physical and mathematical sides (cf. Jimbo, Miwa [1] and
references cited therein). Most of this list is occupied by the so-called soliton
equations, which are so named because of their origin in soliton phenomena.
Mathematically, soliton equations describe nonlinear waves propagating in
one-dimensional space like a canal. Even the KP (Kadomtsev-Petviashvili)
equation should be considered as such (Sato and Sato [2]) though physically
it was introduced as a two-space-dimensional generalisation of the KdV
(Korteweg-de Vries) equation. A natural question coming then, would be
whether there are multi-dimensional analogues of soliton equations. Frankly
speaking, naive attempts at such a generalisation have almost all failed up
to now; they could at best just (re)produce a new type of soliton equations.
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A few examples of what can be really called multi-dimensional integrable
systems have been discovered from a somewhat distinct point of view, that
is, twistor theory. The equations of motion of self-dual connections (Yang-
Mills fields) [3], self-dual metrics (gravitational fields) [4] and their
extensions to dimensions greater than four (e.g., hyper-Kéhler versions)
[5, 6] provide such examples. Of course this assertion would be meaningless
unless the notion of integrability is made more definite, though regrettably
an ultimate definition of integrability with mathematical rigor still lies far
beyond our scope. A series of my work since 1983 [7] has aimed at the
analysis of in what sense the nonlinear systems mentioned above are
integrable, and how that can be understood from a more general principle.
This article presents an intermediate summary of this research, including
current interest and some outlook towards the future.

1. Self-Dual Connections, Linear
System, and Twistors

From here through Section 5 we examine self-dual connections from various
aspects. The integrability of the equations of motion of self-dual connections
becomes most manifest in a complexified setting. Let x=(y, z, j, 7) be a set
of complex coordinates in C* with complex metric ds’ = dy dj + dz dZ and
V=d+A, A=A, dy+A,dz+ A; dj+ A; dz, a connection with a complex
structure group, say, GL(r, C). Its coordinate components are V, =39, + A,
uex, the A,’s being the so-called gauge potentials that play the role of
unknown functions. The curvature form F = dA+ A A A has six components
F..=[8,+A,, 8,+A,], u, vex. The equations of motion of self-dual con-

nections are
F\'::Oa F.\":’:O, F\:\”’+sz=0-

With the aid of an auxiliary parameter A (called a spectral parameter after
the terminology of inverse scattering theory) these equations are written
more compactly as

[~AV,+V: AV _+V ]=0.

This nonlinear system, the so-called zero-curvature representation, is the
integrability condition in the sense of Frobenius of the following linear
system (Belavin, Zakharov [8], Pohlmeyer [9], Chau, Prasad, Sinha [10]):

(-AV, +V)W=0, (AV.+V,)W=0,

where W
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where W= W(x, 1) is an unknown function taking values in GL(r, C).
Another way of stating this fact is by using the Pfaffian system of (cf.
Gindikin [11])

AW+ AW =0,
dy+Adz=0,  dy+Adz=0, dr=0,

in GL(r, C)xC*xP', (W,x,A) being coordinates in this manifold. Its
integrability condition can be written

(dA+AnA) A (dy+ A dZ) a(dz— X dy) A dr =0,

giving another equivalent expression of the previous zero-curvature rep-
resentation. The last three equations of the above Pfaffian system form a
Pfaffian system integrable in itself, whose first integrals Y+Az, z- Ay, A may
be thought of as taking values in the twistor space P*. (As we shall see later,
twistor theory of self-dual metrics is nothing other than an extension of this
picture into curved manifolds.) With this correspondence, self-dual connec-
tions can be described in terms of vector bundles on the twistor space. This
story has now become very familiar to us (cf. Atiyah [12] and references
therein).

2. Riemann-Hilbert Transformations

Riemann-Hilbert transformations (RHT) had been studied for the case of
soliton equations, but it was Ueno and Nakamura [13] who first introduced
them to the case of self-dual connections. We shall not repeat the construc-
tion here, and refer details to their original paper, but the reason why such
transformations exist may be understood without difficulty from the follow-
ing heuristic argument.

Given a self-dual connection V, suppose there are two solutions W =
W(x, A), W= W(x, A) of the linear system which are holomorphic functions
of (x, A) but with different domains of definition with respect to A, D and
5, which are discs covering P' and centered at respectively A =00(D) and
A 20(13). Then evidently the product g= W 'W satisfies

(=49, +d:)g =0, (Ad.+3;)g =0,

which means that g is a function (with values in GL(r, C)) of (y+Az z—
A¥, A), A running over the anulus D D. Thus naturally arise the three
variables of the twistor picture. In fact this g can be used as a transition
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function to construct a vector bundle on the twistor space, and this is exactly
the correspondence of self-dual connections and vector bundles mentioned
above. The inverse correspondence is achieved by factorising a given
GL(r, C)-valued holomorphic function g of (y+AZ,z—A5, 1), Ae Dn é,
into the product of two functions as

g=g(y+AZ z—Aj A)= W(x, A) " W(x, A),

where W and W are required to have the same analyticity properties as
above. It is indeed not difficult to see that the W and W thus obtained
from g do satisfy the linear system of self-dual connections for an appropri-
ate choice of A. Strictly speaking, there are some cases where the above
argument breaks down because of some topological reasons, but in a generic
case this gives a complete description of self-dual connections.

In the above setting, RHT’s are nothing other than the left and right
multiplication of the above g with GL(r, C)-valued functions of the same
analytical properties as

g2~ 8188r' 8w =guw (Y +AZ z—AF, A).

This action on g by (g,, gr) causes a transformation of the triple (A, W, W)
(to be more precise, its gauge equivalence class), thus there are in fact fwo
types of RHT’s, left and right (cf. Wu [14]). Note that they mutually
commute, that is, the result of the successive action of g, and g does not
depend on the order. What Ueno and Nakamura considered were only one
of them, say left RHT’s. A simplification gained by considering one-sided
RHT’s is that they can be described in terms of just two components, (A, W)
(left case) or (A, W) (right case), of the triple (A, W, W). To be more
precise, under the action of, say, a left RHT g; the result of transformation
of A and W is independent of W, so that one can recognise g, simply as
acting on the pair (A, W); just the same is true for gy and (A, W). For
details and related topics, cf. Takasaki [7, 1985].

3. Cauchy Problem

The following observation is also a variation of the factorisation problem
mentioned above, but before my work [7] no one has noticed such a point
of view.

We first note that the GL(r, C)-valued function g is uniquely determined
by the “Cauchy data™ g'”(y, z,A)=g(5=2=0). The linear system of g
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with the initial condition g(§ =2 =0)=g'”’ can be solved as
g =exp(Zra, — jro,)g'.

Here evidently (y, Z) play the role of “time” variables, and (y, z) that of
“space” variables, though this has nothing to do with the original physical
interpretation of these variables.

What about the W? To make clear this point, one has to “fix the gauge”

as W(A =c0)=1. Then from the linear system of W the gauge potentials
are fixed as

A,=0,  A.=0, A =-a.W,, A.=o.W

¥ 1s

where W, denotes the next-to-leading coefficient of the Laurent expansion
of W around A =00, W =1 2 WA W, = W (x). Taking back these
expressions of the gauge potentials, one finds that the linear system for W
becomes now a nonlinear system for the W,’s, which read

~8,\' vVn + 0 W:-H + (ay Wl) “/n = O’
8:"‘/11 +af “/n»H - (8: Wl) “/n =0.

With a simple argument one can check that each solution (for example,
holomorphic) of this system is uniquely determined by the “Cauchy data”
W= W, (7 =7 =0) and, besides, the Cauchy data can be given arbitrarily,
thus providing a set of good “functional coordinates” in the solution space
of the above nonlinear system.

Recovering W from W is not as simple as in the case of g, but can be
reduced to a factorisation problem of the same nature as before. Eliminating
g from the previous relations, one can indeed deduce the relation

exp(ZAa, — Ao ) WO = wly,

where V=W exp(20a, — jAa.) W(5=7=0)"". The explicit form of V is
irrelevant; the point is that V= V(x, A) is holomorphic with respect to A
in D (at least for sufficiently small values of 7 and %). Thus we encounter
another factorisation problem, which describes the “time evolution” from
w9t w.

The point of view of the Cauchy problem, though it appears fairly artificial
at first glance, is one of the indispensable elements of the method developed
in [7]. Without this, any comparison with soliton equations will remain
at a superficial level. We shall see some other aspects of this in the
following.



858 K. Takasaki

4. Grassmann Manifold

The goal set up in [7, 1983-85] was to give a framework for reformulating
self-dual connections & la Sato [2]. An infinite-dimensional Grassmann
manifold plays a basic role in Sato’s approach, as a parameter (or moduli)
space of solutions to soliton equations. As a result, both an infinite hierarchy
of time evolutions and a variety of transformations of solutions (Bicklund
transformations etc.) can be understood on an equal footing, as part of the
large general linear group GL(0) acting on the Grassmann manifold. This,
of course, clearly explains why soliton equations are related to infinite-
dimensional Lie algebras (cf. Jimbo and Miwa [1]).

A conclusion presented in [7, 1983-85] is that almost the same structure
exists in the case of self-dual connections, so that this case, too, may be
judged as “integrable.”” The essence is as follows.

We construct an infinite matrix &= (&;);cz ene Of size ZXNS, Z=
{0, =1, +2,...}, N°={~1,-2,...}, from the Laurent coefficients of W as

§:j,‘ = Z W?:»k Wksz
k<0

where the W¥’s stand for the Laurent coefficients of W' in the sense of
formal series, W"=1-i~zm,:l WEA™". The entries of ¢ then satisfy the
algebraic relations

&; = 8; (Kronecker's delta) fori<0,j<0,

i j=& ot &b forieZ,j<0,

which conversely characterise a matrix £ that can be obtained from some
W as above.

Such a matrix ¢ of maximal rank, in general, can be thought of as
representing a vector subspace V of a fixed larger vector space V formed
by column vectors of size Z; the V being spanned by the columns of &
Actually the correspondence between £ and V is by no means one-to-one;
& and ¢h, where h is an invertible (in an appropriate sense) N x N° matrix,
should be considered equivalent to the effect that they correspond to the
same V. One can thus freely replace a £&matrix by an equivalent one. An
extreme choice, allowed as far as the N°x N part £y=(&j)ij=0 Of & is
invertible, is to retake ¢ to be such that &; = §; for i, j <0, by multiplying
&) from the right. The &-matrix constructed above from W is exactly of
that nature.
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In terms of the above ¢ the action of RHT’s and the solution of the
Cauchy problem discussed in the preceding sections can be represented as
follows:

groé=g (y+AZ z— Ay A)&- (invertible matrix),
E=exp(ZAd, —FA3.) €' - (invertible matrix),

where g, o £ and ¢'¥ denote the &-matrices corresponding to, respectively,
gL W (=the action of a left RHT g, on W) and W'” (=the Cauchy data
of Won y=7=0); A stands for the shift matrix (8i41,)ijcz that acts on the
entries of, say £ as Af=(&.1,)icz,-0- The above relations are not of
symbolic nature, but provide a practical solution process [7, 1983-84].

A description of bi-sided RHT’s along a similar line is argued in [7,
1985], in which case one has to enlarge the £&matrix so as to incorporate
both W and W in its structure.

The method to Grassmann manifold presented here has also been applied
to some other equations by Suzuki [15], Harnad, Jacques [16], Nagatomo
[17], and Nakamura [18].

5. Enlarged Groups and
Lie Algebras

The content of this section belongs to a research just beginning [19].

As we have seen above, the method of Grassmann manifold provides a
framework to unify two seemingly distinct objects, that is, RHT's (=the
action of matrix functions g (y+AZ z—Ap A) on & or more preferably
that of g,(y, 2, A) on £) and time evolution (=the action of operators
such as exp(ZAd, — A3.) on &), In view of the work of Sato and Sato
[2], a natural question would be what kind of groups or Lie algebras lie
behind this picture.

To make the situation simpler, we here focus on the infinitesimal version
of the above objects and formulate them in an abstract setting.

Let R be a differential ring on which 8, and 9, act as derivations; for
example, R=C[[y, z]] if one wishes to deal with formal power series
solutions. Then the Lie algebra of infinitesimal one-sided (say, left) RHT’s
can be identified with the formal loop algebra gl(r, R((A™"))) =4l(r, O)®
R((A7"), where R((A""))={Y a,\";a,e R(neZ),a,=0 (n»0)}. This
should be supplemented by another Lie algebra including the infinitesimal
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generators Ag, and Ag. of time evolutions in (j, Z); a candidate would be
R[)\;ﬁ]ay‘f‘ R[A73.. Thus as a Lie algebra relevant to GL(r, C)-self-dual
connections, one may take the following:

gsovm =gl(r, RA™)) + R[A#a, + R[A P)o..

This is not a simple Lie algebra in the sense that the first component on
the right side forms a nontrivial ideal.

The second and third components include a mutually commutative set
of derivations A"d,, A"d., n=1,2,..., which generate an infinite hierarchy
of simultaneous time evolutions parallel to the case of soliton equations.
A similar idea was also presented by Nakamura [18].

Since the Lie algebra gs,ym incorporates these time evolutions in a natural
manner, one may expect to develop by use of this an orbit method of the
Kostant-Kirillov type. In fact, it appears hard to give a variational formula-
tion, but the argument of Flaschka et al. [20] on an abstract Poisson bracket
structure described for a class of soliton equations can be extended to the
present setting.

Another, more challenging issue would be whether there is a natural
extension §spym Of gspym With the exact sequence 0 0= §spyn = Gspym = 0,
o being an abelian ideal (but possibly not central). Such a Lie algebra, if
it exists, provides an interesting multi-dimensional analogue of Kac-Moody
Lie algebras with central charge.

6. Issue of Multi-Dimensional
Spectral Parameters

We now discuss a somewhat delicate subject related to the problem
mentioned at the beginning of this article.

The nonlinear system of self-dual connections is by no means an isolated
example. What we have seen up to here can be readily extended to a general
setting that also covers, for example, the hyper-Kihler version of self-dual
connections in 4k, k= 1,2, ..., dimensions included in the table of Ward
[5]. A common feature of these nonlinear systems is the presence of an
associated linear system with a spectral parameter, A, which reproduces the
relevant nonlinear system as its integrability conditions in the sense of
Frobenius. In fact, as we shall see later, this is still insufficient to ensure
“integrability” in the same sense as self-dual connections are integrable,
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but our primary subject in the following is the case where a nonlinear
system has an associated linear system with more than one spectral
parameter,

Several examples of such nonlinear systems with multi-dimensional spec-
tral parameters are already known, all related to gauge theory, which are:
(i) eight-dimensional gauge fields introduced by Witten [21] and Isenberg
et al. [22], and discussed from the point of view of Grassmann manifold
by Suzuki [157; (ii) constraint equations of super-Yang-Mills fields in four
dimensions studied in the context of integrability by Volovich [23],
Devchand [24], Chau, Ge, Popowicz [25], Harnad and Jacques [16] on the
basis of Witten’s twistorial interpretation [217; (i) super-Yang-Mills fields
in ten dimensions by Harnad and Schnider [26]; (iv) examples presented
by Ward [5], etc. In fact, all the above papers on case (ii) are based on a
linear system with just one spectral parameter, which is derived through a
certain process from another linear system with two spectral parameters
that Witten’s argument originally suggests (cf. Devchand [271); this however
still inherits a serious problem as we shall see later.

The problem is, whether the equations above are really integrable. The
answer to this question may depend on what one expects as the contents
of integrability. If one requires as a basic ingredient of integrability the
presence of a large (e.g., transitive) transformation group or Lie algebra
acting on the solution space, there are several evidences suggesting that the
above examples are non-integrable; at present there is no hope to construct
such a group or Lie algebra.

A heuristic argument to support this observation is as follows, According
to Ward [5] and Isenberg et al [22], solving these equations is equivalent
to finding certain (family of) trivial vector bundles on a complex manifold
Z; spectral parameters are coordinates of ¥. For example, % is P'x P! in
cases (i) and (i), a nonsingular quadratic in P? in case (iii), and case (iv)
includes examples with 3 = P™. Such a vector bundle is described by a finite
covering {U;} of 3 and a set of patching functions {gi; U:n U, s &} with
the cocyclic conditions 88k = gik ON nonempty intersections UnUnU,.
The case of dim ¥ = | (e.g.,Z=PYHis exceptional; one can take the covering
in such a way that three distinct patches never intersect, so that there are
in fact no cocycle conditions to be imposed on the 8y's. The set of such

§'S acquires a structure of a group of componentwise matrix multiplication
as {g;}, {h;} > {g;h;}. This is exactly the origin of RHT’s (cf. Section 2). If
dimX> 1, there is no such natural group structure of patching functions
retaining cocycle conditions, so probably no analogue of RHT’s.
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One might, however, still expect a loophole in the direction indicated
[23-25], that is, by means of a linear system with just one spectral p:
derived by putting some relations among multi-dimensional spectral
eters. Regrettably, this leads to no substantial improvement of the situ
The reduced linear system in, for example, case (ii} becomes

SO

(V1+AV§)W'“:O, (vn’*‘)\zvzi)W»:O’
(Vi AV, + AV + AV ) W =0,

where Vi, etc., are components of a super-connection; their precise form
is irrelevant here. What is crucial is the absence of the A-term in the second
set of equations. Because of this, it turns out that RHT’s do not act on this
linear system, since the action of a RHT in general produces a new A-term
therein. This difficulty has been also noticed by several people [28].

Of course these observations never reduce the importance of the nonlinear
systems mentioned above, their “integrability” however thus being consider-
ably problematical. They should be understood, rather, as defining a subset
of the solution space of some other nonlinear systems which are integrable.

7. Self-Dual Metrics, or
Deformation of Integrable
G- Structures

We now turn to another, less familiar class of nonlinear systems, which are
related to metrics or G-structures. A typical one, in a position to be compared
with self-dual connections, is provided by self-dual metrics in four
dimensions. Also in this case, a complexified setting is much more con-
venient than the ordinary Riemannian geometry, in order to see aspects of
integrability.

We start from a complex metric ds’ (=nondegenerate holomorphic
bilinear form on the holomorphic tangent bundle} of a four-dimensional
complex manifold X; actually we focus on local geometry. In a local
coordinate patch, one can take a set of linearly independent i-forms e,
e,, €,, & (the bar does not mean complex conjugation} with which ds° can
be written

2 - -
ds =e¢ &, + e,é,.
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One may recognise this as generalising the representation ds” = dy dy+dz dz
encountered in Section 1. Self-duality is defined, originally, by a set of
linear equations among the components of the Riemann curvature R (cf.
Eguchi et al. [29]) (compare this with the case of self-duality of Yang-Mills
connections), a rather cumbersome object. Fortunately there is another way

to handle this notion just in terms of the 1-forms ey, ..., & without referring
to R; it is due to the fact (cf. Boyer [30], Gindikin [31]) that ds” is self-dual
iff after an appropriate linear transformation of ei,..., &, the following

exterior differential equations are satisfied:
d(e,ney)=0, d(é rné&,)=0, d{e,né +e,08,)=0,

The use of a spectral parameter A, again, brings a remarkable sim-
plification. The above equations can be gathered up to become the following;:

d((e,+1&) n(e;—A8,)) a dr =0,

where d denotes the total differentiation on X xP', d = d + dp, introduced
so as to distinguish it from d = dx on X. One may therefore write the above
equation as

d((e,+Ae;) A (e2—A8))) =90,

A then being considered a parameter. Anyway, as Darboux’s theorem
ensures, this is nothing other than the integrability condition for the
existence, at each point (x,, Ay) € X XP’, of a pair of functions (“canonical
variables’) u, and u, defined in a neighborhood of (x,, A,) for which

(e;+18) n(e;—Aé,) = du, A du,.

These functions (u,, u,) play the same role as a solution W of the linear
system of self-dual connections (cf. [7, 1986]).

An analogue of the notion of RHT’s was already pointed out by Boyer
and Plebanski [32]; the main part of [7, 1986] is devoted to an analysis
based on their results, leading to a close analogy with the results on self-dual
connections in [7, 1984-85]. In the above setting, the existence of such a
transformation group can be seen as follows. Suppose there are two pairs
(uy, uy) and (i, d,) of “canonical variables” with different analytical
properties almost parallel to W and W in Section 2, thatis, A "'u, and i,
are holomorphic in, respectively, D and D with regard to A. Since du, A du, =
dil, A dil,, there should be a two-dimensional parametric canonical trans-
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formation f = (fi(y, z, A), [2(), 2, A, dfindfs=dyadz,he D 15, such that
Up =fa(ily, ti2, A), A=1,2.

This canonical transformation f provides a counterpart of the transition
function g in Section 2; in an appropriate setting, indeed, a complete
description of (local) self-dual metrics can be given along this line. Evidently
such f’s form a (pseudo)group by composition of maps, and give rise to
an analogue of the notion of RHT's. The role of matrix groups such as
GL(r, C) in the case of conventional integrable systems, is thus played by
a (pseudo)group of (local) diffeomorphisms here.

One can recognise the present situation from a geometrical point of view
(cf. Goldschmidt [33]), as a sort of deformation of integrable G-structures;
this leads to various possibilities of generalisation. Details and further
progress in this direction will be presented in a forthcoming series of papers
[34]. In the context of Riemannian or Kihlerian geometry, basically the
same structure is usually understood as deformation of complex structures,
whose parameter space is exactly the corresponding twistor space (cf.
Hitchin et al. [6]). In our setting the twistor space can be derived as follows
(cf. Gindikin [11, 31]). Let us consider the Pfaffian system on X X |

e, A8, =0, e;—A&; =0, dr=0.

This Pfaffian system is integrable in the sense of Frobenius if the previous
equations to e;,..., & are satisfied, the triple (u,, u,, A) then giving a set
of first integrals. The set of maximal integral manifolds (leaves of the
corresponding complex foliation) is nothing other than the twistor space.
The canonical transformation f above (in fact, one has to “ewist it [7,
1986]) plays the role of transition function gluing together coordinate
patches to form the twistor space.
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