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Abstract

The notion of string equations was discovered in the end of the eight-
ies, and has been studied in the language of integrable hierarchies.
String equations in the KP hierarchy are nowadays relatively well un-
derstood. Meanwhile, systematic studies of string equations in the
Toda hierarchy started rather recently. This article presents the state
of art of these issues from the author’s point of view.
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1 Introduction

The end of the eighties was a turning point of studies on integrable hier-
archies. Before that time, the most popular special solutions of integrable
hierarchies had been rational, trigonometric (soliton) and quasi-periodic solu-
tions. Various algebro-geometric methods for these solutions were developed
in the seventies [1]. A characteristic of these solutions is the existence of a
“spectral curve” for each solution. Spectral curves of quasi-periodic solutions
are nonsingular Riemann surfaces, and the solutions can be written explic-
itly in terms of a Riemann theta function and abelian differentials. Spec-
tral curves of trigonometric and rational solutions are singular, but algebro-
geometric methods still turned out to be useful in that case, too. In the early
eighties, the theory of τ -functions [2] elucidated the structure of “general so-
lutions” in the language of infinite dimensional Grassmannian manifolds.
The algebro-geometric methods were transplanted into this new framework,
and more profound and universal structures behind these algebro-geometric
solutions have been revealed [3].

In the end of eighties, a new family of special solutions emerged out of
studies on low dimensional quantum gravity and string theories [4]. Remark-
ably, those solutions are related to a moduli space of curves, rather than a
single curve. The new type of solutions are characterized by the so called
“string equations”, which arise as constraints to an integrable hierarchy of
KdV or KP type [5].

Since the early nineties, the author has been attempting to elucidate
mathematical meanings of string equations and related issues. This article is
a review of the author’s recent researches as well as basic notions concerning
this issue [6].

This article is organized as follows. In Section 2, we review the most
fundamental string equation of the KP hierarchy, i.e., the Douglas equation
of two-dimensional quantum gravity coupled to conformal matters, in com-
parison with algebro-geometric solutions of the KP hierarchy. In Section 3,
the notion of “dispersionless limit” is illustrated for the KP hierarchy and its
string equations. Section 4 is an introduction to the Toda lattice hierarchy
and its “dispersionless” analogue. In Section 5, the state of art of studies
on string equations in the Toda hierarchies is presented. Section 5 is the
concluding section.
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2 String equations in KP hierarchy

String equations in the KP hierarchy have several different (but equivalent)
expressions. The most convenient expression for our present purpose is the
Douglas equation [5]

[Q,P ] = 1, (2.1)

where P and Q are ordinary differential operators of order p and q,

P = ∂p
x + a2∂

p−2
x + · · · + ap,

Q = ∂q
x + b2∂

q−2
x + · · · + bq. (2.2)

This equation describes the so called “(p, q) model” of two-dimensional quan-
tum gravity coupled to conformal matters. One will immediately notice an
analogy with canonical commutation relations in quantum mechanics. In
fact, this equation is also frequently treated in the h̄-dependent form

[Q, P ] = h̄, (2.3)

where P and Q are given by

P = (h̄∂x)
p + a2(h̄∂x)

p−2 + · · · + ap,

Q = (h̄∂x)
q + b2(h̄∂x)

q−2 + · · · + bq. (2.4)

Remarkably, quasi-periodic solutions and their degeneration (trigonomet-
ric and rational solutions) of the KP hierarchy, too, are characterized by a
similar commutator equation of the form

[Q,P ] = 0. (2.5)

This equation has a rather long history of researches [7]. Let us call it the
“Burchnall-Chaundy equation”. A fundamental fact is that such a commut-
ing pair of ordinary differential operators satisfy a polynomial relation with
constant coefficients:

R(P,Q) = 0. (2.6)

This relation defines a complex algebraic curve, R(X, Y ) = 0, which can
be compactified by adding a point at infinity. This is exactly the “spectral
curve”. Conversely, given a complex algebraic curve (Riemann surface) with

3



a set of additional data, one can construct a commuting pair of ordinary
differential operators [1].

The Burchnall-Chaundy equation is related to the Lax formalism of the
KP hierarchy as follows. The Lax operator of the KP hierarchy is a pseudo-
differential operator of the form

L = ∂x +
∞∑

n=1

un+1∂
−n
x , (2.7)

and obeys the Lax equations

∂L

∂tn
= [Bn, L]. (2.8)

The Zakharov-Shabat operators Bn are given by

Bn =
(
Ln

)
≥0

, (2.9)

where “( )≥0” denotes the projection onto the space spanned by nonnegative
powers of ∂x. Now suppose that P and Q are written

P = f(L), Q = g(L), (2.10)

where f and g are Laurent series with constant coefficients of the form

f(L) = Lp + p2L
p−2 + p3L

p−3 + . . . ,

g(L) = Lq + q2L
q−2 + q3L

q−3 + . . . . (2.11)

They obviously commute. To give a solution of the Burchnall-Chaundy equa-
tion, P and Q are required to be differential operators. This requirement can
be rewritten

(P )≤−1 = 0, (Q)≤−1 = 0. (2.12)

where “( )≤−1” denotes the projection onto the space spanned by negative
powers of ∂x. These conditions are conserved under all tn flows of the KP
hierarchy, hence may be interpreted as a constraint to the KP hierarchy.
Algebro-geometric methods for the problem of a commuting pair of differen-
tial operators [1] are thus reformulated in the language of the KP hierarchy
[3].
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Although looking very similar, the Douglas equation has quite different
properties. First of all, P and Q no longer satisfy an algebraic relation
of the form R(P, Q) = 0 (hence there is no analogue of spectral curves).
One might have an impression that the relation between the Douglas and
Burchnall-Chaundy equations is reminiscent of quantum and classical me-
chanics, because classical mechanics deals with commuting quantities (c-
numbers) whereas quantum mechanical quantities are non-commutative (q-
numbers). This analogy, however, is somewhat misleading. According to the
ordinary prescription of classical limit in quantum mechanics, the quantum
mechanical commutator will be replaced by a Poisson bracket as

h̄−1[Q,P ] → {Q,P} (2.13)

in the limit of h̄ → 0, and the Douglas equation will turn into a Poisson
bracket relation of the form

{Q,P} = 1 (2.14)

rather than the Burchnall-Chaundy equation.
To translate the Douglas equation into the language of the KP hierarchy,

we need an extended Lax formalism developed by Orlov and Shulman [9].
This contains, besides the standard Lax operator L, another operator M
(Orlov-Shulman operator) of the form

M =
∞∑

n=2

ntnL
n−1 + x +

∞∑

n=1

vnL
−n−1 (2.15)

that obey the Lax equations

∂M

∂tn
= [Bn,M ] (2.16)

and the canonical commutation relation

[L,M ] = 1. (2.17)

Let us now consider the operators P and Q of the form

P = Lp,

Q = −1

p
ML1−p +

p − 1

2p
L−p + Lq, (2.18)
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which automatically obey the canonical commutation relation

[Q,P ] = 1. (2.19)

We further put constraints

(P )≤−1 = 0, (Q)≤−1 = 0, (2.20)

and restrict the range of time variables to

tp+q = tp+q+1 = · · · = 0. (2.21)

P and Q then become differential operators of the required form, and give a
solution of the Douglas equation. From the standpoint of the KP hierarchy,
therefore, it is the above constraints rather than the Douglas equation itself
that plays a more fundamental role. In our terminology, “string equations”
mean such constraints.

This correspondence with the KP hierarchy allows one to use many pow-
erful tools developed for the study of the KP hierarchy, such as the Sato
Grassmannian, the Hirota equations, W1+∞ algebras, etc. [8, 10, 11, 12].

The case of (p, 1) or (1, q) models has been studied with particular in-
terest. A main reason is that this is case where the models are expected
to describe “topological gravity” [13]. Furthermore, unlike the other (p, q)
models, the string equation of the (p, 1) models can be solved explicitly in
terms of a “matrix Airy function” (or “Kontsevich integral”) [14, 15, 16].
This is a matrix integral of the form

Z(Λ) = CN(Λ)
∫

dM exp Tr(ΛpM − 1

p + 1
Mp+1), (2.22)

where the integral is over the space of N × N Hermitian matrices, Λ is
an N × N Hermitian matrix variable, and CN(Λ) is a normalization factor
that also plays an important role. Kontsevich [14] pointed out two distinct
interpretations of this integral. According to the first interpretation, this
function can be viewed as a τ function of the KP hierarchy,

Z(Λ) = τ(t), (2.23)

by the so called “Miwa transformation”:

tn =
1

n
Tr Λ−n =

1

n

N∑

i=1

λ−n
i . (2.24)
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Here λ1, . . . , λN are eigenvalues of Λ. According to the second interpretation
(which is proven only for p = 2), this integral is a generating function of
cohomological intersection numbers on moduli spaces of Riemann surfaces
(in other words, the partition function of topological gravity). Kontsevich
thus proved physicists’ conjecture [13] at least in the case of p = 2.

The above p-th generalized Kontsevich model are further generalized by
Kharchev et al. [17].

3 Dispersionless KP hierarchy

Let us illustrate the concept of “dispersionless limit” in the case of the KdV
equation. To this end, it is convenient to write the KdV equation as

ut + uux + ε2uxxx = 0. (3.1)

Dispersionless limit means the limit as ε → 0. Formally, the equation then
becomes

ut + uux = 0. (3.2)

This equation is well known to develop a shock wave in finite time. In
the presence of the nonzero dispersion term ε2uxxx, this purely nonlinear
effect is balanced with dispersion effect, so that stable waves like solitons can
exist. We shall not go into such analytical issues, and only consider formal
aspects of dispersionless limit. We are, for instance, interested in the fact
that the dispersionless equation can be solved by the so called “hodograph
transformation”

x − tu = f(u). (3.3)

Here f(u) is an arbitrary function, and u = u(t, x) is understood to be defined
implicitly by this equation.

The small parameter ε actually plays the role of the Planck constant h̄
that we have observed in the classical limit of the Douglas equation. The
same idea can be applied to the KP hierarchy itself. Let us replace ∂x →
h̄∂x in the formulation of the KP hierarchy. The Lax and Orlov-Shulman
operators are then given by

L = h̄∂x +
∞∑

n=1

un+1(h̄∂x)
−n,
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M =
∞∑

n=2

ntnL
n−1 + x +

∞∑

n=1

vnL
−n−1, (3.4)

where the coefficients are now allowed to depend on h̄ as well as (t, x). The
Lax equations and the canonical commutation relations, too, are modified
as:

h̄
∂L

∂tn
= [Bn, L], h̄

∂M

∂tn
= [Bn,M ] (3.5)

and
[L,M ] = h̄. (3.6)

Let us further assume that the coefficients un and vn have a smooth limit
u(0)

n and v(0)
n as h̄ → 0. (In fact, this is a rather strong condition. One

can obtain a solution of the above h̄-dependent KP hierarchy from the h̄-
independent hierarchy just by rescaling tn → h̄−1tn and x → h̄−1x, however
it does not satisfy the last condition in general. Meanwhile, the solutions
given by the generalized Kontsevich models do satisfy this condition, and
have a dispersionless limit. We shall give a direct construction of this solu-
tion below.) As h̄ → 0, operators and commutators are replaced by their
“classical” counterparts,

h̄∂x → p, h̄−1[A,B] → {A, B}. (3.7)

The Poisson bracket is given by

{A,B} = ∂pA · ∂xB − ∂xA · ∂pB. (3.8)

L and M are accordingly replaced by the Laurent series

L = p +
∞∑

n=1

u
(0)
n+1p

−n,

M =
∞∑

n=2

ntnLn−1 + x +
∞∑

n=1

v(0)
n L−n−1, (3.9)

which satisfy the Lax equations

∂L
∂tn

= {Bn,L},
∂M
∂tn

= {Bn,M} (3.10)
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and the canonical relation
{L,M} = 1 (3.11)

with respect to the above Poisson bracket. Furthermore, Bn are given by

Bn =
(
Ln

)
≥0

, (3.12)

where “( )≥0” now stands for the projection of Laurent series of p into the
polynomial part. This hierarchy is called the “dispersionless KP hierarchy”
[18]. As we have shown, its essence is rather a kind of classical limit of a
quantum mechanical system (i.e., the full KP hierarchy).

In fact, this analogy with classical limit of quantum mechanics stems from
a more profound structure. The Lax equations and the canonical commuta-
tion relations are derived as Frobenius integrability conditions of the linear
system

h̄
∂Ψ

∂tn
= BnΨ, λΨ = LΨ, h̄

∂Ψ

∂λ
= MΨ. (3.13)

It is a “WKB analysis” of this quantum mechanical linear system that un-
derlies the classical limit of the Lax formalism presented above [18]. Further-
more, the τ function, too, turns out to exhibit certain asymptotic behavior
as h̄ → 0, which is also crucial for understanding the meaning of the “free
energy” function in various matrix models and topological string theories [6].

String equations of the (p, q) model, too, have a natural counterpart in
the dispersionless limit. In the present h̄-dependent formulation, P and Q
are given by

P = Lp,

Q = −1

p
ML1−p + h̄

p − 1

2p
L−p + Lq. (3.14)

In particular, the second term on the right hand side turns out to be a
“quantum correction”, and disappears in the dispersionless limit. In the
limit to the dispersionless KP hierarchy, these operators turn into the Laurent
series

P = Lp,

Q = −1

p
ML1−p + Lq, (3.15)
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and the constraints (string equations) become

(P)≤−1 = 0, (Q)≤−1 = 0. (3.16)

If q = 1, these constraints can be solved explicitly by a hodographic method
[19]. This solution coincides with the Ap−1 “topological strings” [20, 21].
(Actually, a similar hodographic method can be used for topological strings
of D-type [22].) One can thus identify the Ap−1 model of topological strings as
a dispersionless limit (or “spherical limit” in the terminology of string theory)
of the (p, 1) model, i.e., the p-th generalized Kontsevich model [23, 24].

4 Toda lattice hierarchy and its dispersion-

less limit

We now turn to the Toda lattice hierarchy [25]. The Lax and Orlov-Shulman
operators of the Toda lattice hierarchy [26, 27] are difference operators of the
form

L = e∂s +
∞∑

n=0

un+1e
−n∂s ,

M =
∞∑

n=1

ntnL
n + s +

∞∑

n=1

vnL
−n,

L̄ = ũ0e
∂s +

∞∑

n=0

ũn+1e
(n+2)∂s ,

M̄ = −
∞∑

n=1

nt̄nL̄
−n + s +

∞∑

n=1

v̄nL̄n, (4.1)

where en∂s are the shift operators that act on a function of s as en∂sf(s) =
f(s + n). The coefficients un, vn, ũn and v̄n are functions of (t, t̄, q), un =
un(t, t̄, s), etc. (The bar “̄” does not mean complex conjugate.) These oper-
ators obey the twisted canonical commutation relations

[L, M ] = L, [L̄, M̄ ] = L̄ (4.2)

and the Lax equations

∂L

∂tn
= [Bn, L],

∂L

∂t̄n
= [B̄n, L],
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∂M

∂tn
= [Bn,M ],

∂M

∂t̄n
= [B̄n,M ],

∂L̄

∂tn
= [Bn, L̄],

∂L̄

∂t̄n
= [B̄n, L̄],

∂M̄

∂tn
= [Bn, M̄ ],

∂M̄

∂t̄n
= [B̄n, M̄ ], (4.3)

where the Zakharov-Shabat operators Bn and B̄n are given by

Bn = (Ln)≥0, B̄n = (L̄−n)<0, (4.4)

and ( )≥0,<0 denotes the projection

(
∑

n

ane
n∂s)≥0 =

∑

n≥0

ane
n∂s , (

∑

n

ane
n∂s)<0 =

∑

n<0

ane
n∂s . (4.5)

Note that ML−1 and M̄L̄−1 give canonical conjugate “momenta” of L and
L̄:

[L,ML−1] = 1, [L̄, M̄L̄−1] = 1. (4.6)

The Toda lattice hierarchy, like the KP hierarchy has a “dispersionless”
analogue [28, 29]. (As we shall show below, this is in fact a “long-wave limit”,
but the hierarchy is now widely called the “dispersionless Toda hierarchy”.)

Let us show what this limit looks like in the lowest two-dimensional sector
of the hierarchy, i.e., the two-dimensional Toda field theory. In terms of two-
dimensional fields u(s) = u(t1, t̄1, s), s ∈ Z, the equations of motion can be
written

∂t1∂t̄1u(s) = exp
(
u(s + 1) − u(s)

)
− exp

(
u(s) − u(s − 1)

)
. (4.7)

We now rescale the field and space-time variables as

∂t1 → h̄∂t1 , ∂t̄1 → h̄∂t̄1 ,

s ± 1 → s ± h̄, u(s) → h̄−1u(s). (4.8)

The equations of motion then become

∂t1∂t̄1u(s) =
1

h̄

(
exp

(u(s + 1) − u(s)

h̄

)
− exp

(u(s) − u(s − 1)

h̄

))
, (4.9)
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and reduce, as h̄ → 0, to

∂t1∂t̄1u = ∂s exp(∂su). (4.10)

This is the long-wave limit of the two-dimensional Toda equations. Remark-
ably, this equation coincides with a dimensional reduction of the self-dual
Einstein equation [30].

To extend this limit to the hierarchy itself, we need an h̄-dependent for-
mulation of the Toda lattice hierarchy. This can be achieved by inserting h̄
in front of all derivatives in the previous equations as:

∂

∂tn
→ h̄

∂

∂tn
,

∂

∂t̄n
→ h̄

∂

∂t̄n
, e∂s → eh̄∂s . (4.11)

The discrete variable s now takes values in h̄Z. Accordingly, Lax and Orlov-
Shulman operators are difference operators of the form

L = eh̄∂s +
∞∑

n=0

un+1e
−nh̄∂s ,

M =
∞∑

n=1

ntnL
n + s +

∞∑

n=1

vnL
−n,

L̄ = ũ0e
h̄∂s +

∞∑

n=0

ũn+1e
(n+2)h̄∂s ,

M̄ = −
∞∑

n=1

nt̄nL̄
−n + s +

∞∑

n=1

v̄nL̄n, (4.12)

and obey the twisted canonical commutation relations

[L, M ] = h̄L, [L̄, M̄ ] = h̄L̄, (4.13)

and Lax equations

h̄
∂L

∂tn
= [Bn, L], h̄

∂L

∂t̄n
= [B̄n, L], etc.. (4.14)

We can now proceed as in the KP hierarchy. In this h̄-dependent formu-
lation, the long-wave limit is nothing but the “classical limit”:

eh̄∂s → P = ep, h̄−1[A,B] → {A,B}. (4.15)
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The Poisson bracket takes a somewhat unusual form,

{A,B} = P∂P A · ∂sB − ∂sA · P∂P B. (4.16)

Thus, in particular,
{P, s} = P, (4.17)

or, equivalently,
{P, sP−1} = 1. (4.18)

Counterparts of the Lax and Orlov-Shuman operators are given by the Lau-
rent series

L = P +
∞∑

n=0

u
(0)
n+1P

−n,

M =
∞∑

n=1

ntnLn + s +
∞∑

n=1

v(0)
n L−n,

L̄ = ũ
(0)
0 P +

∞∑

n=0

ũ
(0)
n+1P

n+2,

M̄ = −
∞∑

n=1

nt̄nL̄−n + s +
∞∑

n=1

v̄(0)
n L̄n, (4.19)

where u(0)
n = un|h̄→0, etc. They obey the twisted canonical relations

{L,M} = L, {L̄,M̄} = L̄ (4.20)

and the Lax equations

∂L
∂tn

= {Bn,L},
∂L
∂t̄n

= {B̄n,L},

∂M
∂tn

= {Bn,M}, ∂M
∂t̄n

= {B̄n,M},

∂L̄
∂tn

= {Bn, L̄},
∂L̄
∂t̄n

= {B̄n, L̄},

∂M̄
∂tn

= {Bn,M̄}, ∂M̄
∂t̄n

= {B̄n,M̄} (4.21)

with respect to the above Poisson bracket. This hierarchy is called “disper-
sionless Toda hierarchy”.

Various results on the dispersionless KP hierarchy are extended to this
hierarchy [6].
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5 String equations in Toda lattice hierarchy

As for the Toda lattice hierarchy, our knowledge on string equations is more
fragmental, but simultaneously suggests richer possibilities.

An important family of string equations is provided by Hermitian (one-
and multi-)matrix models. These matrix models give a special solution of the
Toda lattice hierarchy satisfying extra “Virasoro constraints” [31]. In fact,
Virasoro constraints are string equations in disguise. This fact lies in the
heart of the matrix model approach to two-dimensional quantum gravity. To
arrive at the continuum limit (two-dimensional gravity), however, one has to
take the so called “double scaling limit” [4, 5]. This scaling limit destroys
the structure of the Toda lattice hierarchy, and the final outcome is rather
the KP hierarchy and the string equations of (p, q) models.

In recent years, several new, and more natural examples of string equa-
tions in the Toda lattice hierarchy have come to be studied. These ex-
amples are mostly related to string theories with a one-dimensional target
space: c = 1 strings [32, 33, 34, 35], two-dimensional topological strings
[36, 37, 38, 39, 40], the topological CP 1 sigma model and its variations re-
lated to affine Coxeter groups [41, 42, 43].

String equations in those models are formulated in the form of a canonical
transformation between the two canonical pairs (L,M) and (L̄, M̄). For
instance, string equations of the one-matrix model can be written

L = L̄−1, ML−1 = −M̄L̄, (5.1)

and those of the two-matrix model are given by

L = −M̄L̄, ML−1 = −L̄−1. (5.2)

The string equations of the one-matrix model are coordinate-to-coordinate
and momentum-to-momentum relations, and those of the two-matrix model
mix coordinates and momenta.

A remark will be now in order: String equations in the literature may
have extra terms on the right hand side such as V ′(L) where V is a matrix
model potential. These extra terms can be absorbed into redefinition of M
and M̄ as

M → M + f(L), M̄ → M̄ + g(L̄), (5.3)
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where f(L) and g(L̄) are Laurent series of L and L̄ with constant coefficients.
The above equations should be understood in this manner.

Actually, most examples of string equations in the Toda lattice hierarchy
are variants of the above two. For instance, a straightforward generalization
of the string equations of the one-matrix model will be given by

Lp = L̄−p̄,
1

p
ML−p =

−1

p̄
M̄ L̄p̄. (5.4)

This is indeed the model of Aoyama and Kodama [44], which contains several
interesting models of topological strings as special solutions. (More precisely,
they consider these string equations in the dispersionless limit.)

Similarly, a generalization of the string equations of the two-matrix model
will be of the form

Lp =
1

p̄
M̄ L̄p̄, −1

p
ML−p = L̄−p̄. (5.5)

String equations of compactified c = 1 strings are indeed of this type [34]:

Lβ =
(
− 1

β
M̄ − h̄

β + 1

2β
+ 1

)
L̄β,

L̄−β =
(
− 1

β
M + h̄

β − 1

2β
+ 1)L−β. (5.6)

Here β is a positive integer parameter related to the compactification redius
of strings. In this case, p and p̄ are given by p = −p̄ = β. The extra terms
other than M̄L̄β and ML−β on the right hand side, as noted above, can be
absorbed into (or reproduced from )redefinition of M and M̄ .

The last example can be generalized as follows [45]: Given a pair of
integers (p, p̄) with pp̄ 6= 0, one can construct a solution of the Toda lattice
hierarchy that obeys the string equations

Lp =
1

p̄
M̄ L̄−p̄ − h̄

p̄ − 1

2p̄
L̄−p̄ + L̄p̄,

L̄p̄ = −1

p
ML−p + h̄

p − 1

2p
L−p + Lp̄. (5.7)

Let us show an outline of the construction of the solution [45]. The
solution is given in terms of the τ function τ = τ(t, t̄, s). The τ function of
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any solution of the Toda lattice hierarchy can be written (at least formally)
as a semi-infinite determinant of the form

τ(t, t̄, s) = det
(
uij(t, t̄) (−∞ < i, j < s)

)
. (5.8)

Here U(t, t̄) =
(
uij(t, t̄)

)
is an infinite (Z × Z) matrix connected with its

“initial value” U = U(0, 0) as

U(t, t̄) = exp(
∞∑

n=1

tnΛ
n)U(0, 0) exp(−

∞∑

n=1

t̄nΛ
−n). (5.9)

Λn are the shift matrices
Λn =

(
δi,j−n

)
. (5.10)

Thus the matrix U determines a solution of the Toda lattice hierarchy. In
the construction of a solution of the above string equations, we define the
matrix elements uij to be coefficients of asymptotic expansion of a set of
generating functions. Let us now consider the case of p + p̄ > 0. (The case
of p + p̄ = 0 coincides with the c = 1 strings mentioned above. The case of
p + p̄ < 0 requires a slightly different treatment.) The generating functions
uj(λ) (j ∈ Z) are given by integrals of the form

uj(λ) = c(λ)
∫

dµµ(p̄−1)/2−j−1 exp h̄−1
(
λpµp̄ − p̄

p + p̄
µp+p̄

)
,

c(λ) = const. λ(p−1)/2 exp h̄−1
( −p

p + p̄
λp+p̄

)
. (5.11)

The integrals are over a complex path passing through µ = λ. The detailed
form of the path is irrelevant; the essence is that it is only a neighborhood of
µ = λ (saddle point) that eventually contributes to asymptotic expansion as
λ → +∞. One can show by the standard saddle point calculation that these
functions have asymptotic expansion of the following form:

uj(λ) ∼
∞∑

i=j

λ−i−1uij (λ → +∞). (5.12)

The matrix elements uij of U are thus determined. In particular, U is a
lower triangular matrix with nonvanishing diagonal elements. This allows us
to express the τ function as a finite determinant under the Miwa transfor-
mation of time variables. Furthermore, these matrix elements obey a set of
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linear relations. Translated into the language of the Lax and Orlov-Shulman
operators, these linear relations give rise to the string equations above.

This construction is almost parallel to the case of the (generalized) Kont-
sevich models in the KP hierarchy In particular, the p-th generalized Kont-
sevich model itself can be reinterpreted as a solution of the Toda lattice
hierarechy of this type with (p, p̄) = (p,−1). Apart from this case and the
case of p̄ = 1, however, the solution does not have a matrix integral represen-
tation of Kontsevich type. Such a matrix integral representation is crucial
for identifying the model with a topological field theory. Because of the
absence of such a matrix integral representation, it is unclear if these gener-
alized string equations have any physical interpretation (hopefully, as a kind
of c = 1 string theory).

6 Conclusion

Since the late eighties, string theories have provided a variety of new material
to studies on integrable hierarchies. The concept of string equations has been
in the center of this new trend. Of course, several key ingredients had been
prepared in advance in the early eighties:

1. The theory of τ functions [2] forms a theoretical foundation of all the
subsequent progress.

2. The theory of Orlov and Shulman [9], which was developed for a slightly
different purpose, is now the most natural and useful framework for
formulating string equations.

3. String equations are also related to isomonodromy deformations and
Painlevé transcendents [46]. The string equation of (2, 3) model, for
instance, is nothing but the first Painlevé equation in disguise. Fur-
thermore, although we have omitted in this review, there is another
family of matrix models, the “unitary matrix models”, and their dou-
ble scaling limit [31]. In the simplest case, this gives the the second
Painlevé equation. All these models have an interpretation as isomon-
odromy deformations [47].
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4. The theory of dispersionless integrable hierarchies and related “hydro-
dynamic integrable systems” is very useful in both technical and con-
ceptual aspects.

The last point deserves to be mentioned in more detail. As pointed out
by Dubrovin [48] in a far broader scope, this type of integrable structures can
be found in many models of two-dimensional topological field theories. The
dispersionless KP and Toda hierarchies are just the simplest examples, and
moreover, of “genus zero” type. “Higher genus” counterparts (i.e., systems
related to a moduli space of higher genus Riemann surfaces) are given by
the so called “Whitham equations”. These equations were first derived as
equations for modulation of quasi-periodic solutions in soliton equations [49],
and later reformulated in a more abstract way by Dubrovin [50] and Krichever
[51]. Very recently, it is pointed out that this type of equations also emerge
in four dimensional N = 2 supersymmetric gauge theories [52]. This seems
to indicate a new link between integrable hierarchies and solvable quantum
field theories (and underlying string theories).
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