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1. Cauchy matrix approach

Sylvester equation

Given the matrices A,B ,C , find a matrix X such that

AX − XB = C . (Sylvester equation)

Existence and uniqueness of a solution is ensured under some
conditions on A and B .

Example If

A = diag(α1, . . . , αN), B = diag(β1, . . . , βN), αi ̸= βj

and C = (Cij), then

X =

(
Cij

αi − βj

)
. (Cauchy matrix)
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1. Cauchy matrix approach

Cauchy matrix approach

— proposed as a direct method for constructing special solutions
of discrete integrable systems (Nijhoff-Atkinson-Hietarinta, J.
Phys. A: Math. Theor. 42 (2009), 404005).

— may be thought of as an alternative to the degenerate case of
the Riemann-Hilbert problem that was developed by Zakharov and

Shabat in 1970’s. Matrices of the form
(

Cij

αi−βj

)
play a central role

therein.

— mostly used for discrete and continuous integrable systems in
1 + 1D and 2 + 1D.

— recently applied to the 2 + 2D ASDYM (anti-self-dual
Yang-Mills) equations (Li-Qu-Yi-Zhang arXiv:2112.06408,
Li-Yi-Zhang arXiv:2211.08574).
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1. Cauchy matrix approach

Goal of this talk

The output of the Cauchy matrix approach is a set of auxiliary
(scalar or matrix-valued) functions S (i ,j), i , j = 0, 1, 2, . . . obtained
from the Sylvester equation of a particular form. S (i ,j)’s satisfy
algebraic and differential equations with quadratic nonlinearity. I
will show that S (i ,j) can be identified with the affine coordinates of
an infinite dimensional Grassmann manifold in Sato’s approach to
soliton equations (Sato 1981, Sato-Sato 1982). For illustration, I
will focus on the case of the ASDYM equations and its higher
flows.
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2. ASDYM equations and higher flows

ASDYM equations

Let x = (y , z , ỹ , z̃) be (complexified) space-time coordinates,
Ay ,Az ,Aỹ ,Az̃ the (n × n)-matrix-valued gauge fields, and
∇y = ∂y + Ay , etc. the covariant derivatives. The ASDYM
equations read

[∇y ,∇z ] = 0, [∇ỹ ,∇z̃ ] = 0,

[∇y ,∇ỹ ]− [∇z ,∇z̃ ] = 0

or, equivalently,

[∇ỹ − ζ∇z , ∇z̃ − ζ∇y ] = 0

with the spectral parameter ζ. This zero-curvature equation gives
a Lax form of the ASDYM equation.

6 / 20



2. ASDYM equations and higher flows

Yang and Chalmers-Siegel potentials

Viewing [∇y ,∇z ] = 0 as a partial flatness condition, we can
eliminate Ay and Az by gauge transformations. The zero-curvature
equation reduces to

[∂ỹ − ζ∂z + Aỹ , ∂z̃ − ζ∂y + Az̃ ] = 0.

Aỹ and Az̃ can be expressed as

Aỹ = −∂ỹJ · J−1 = ∂zK , Az̃ = −∂z̃J · J−1 = ∂yK

with the matrix-valued potentials J,K (not unique!), which in turn
satisfy the Yang and Chalmers-Siegel equations

∂y (∂ỹJ · J−1) + ∂z(∂z̃J · J−1) = 0, (Yang eqn)

(∂y∂ỹ − ∂z∂z̃)K = [∂yK , ∂zK ]. (Chalmers-Siegel eqn)
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2. ASDYM equations and higher flows

ASDYM hierarchy

The hierarchy comprises the zero-curvature equations

[∂yj − ζ∂yj−1 + Aj , ∂yk − ζ∂yk−1
+ Ak ] = 0,

[∂zj − ζ∂zj−1 + Bj , ∂zk − ζ∂zk−1
+ Bk ] = 0,

[∂yj − ζ∂yj−1 + Aj , ∂zk − ζ∂zk−1
+ Bk ] = 0

with the independent variables yk , zk , . . ., k = 0, 1, 2, . . .
(Nakamura 1988; KT 1990; Ablowitz-Chakravarty-Takhtajan
1993). This is an extension of the 2 + 2D equations with y0 = y ,
z0 = z , y1 = z̃ , z1 = ỹ . The potentials J,K are also extended as

Ak = −∂ykJ · J−1 = ∂yk−1
K , Bk = −∂zkJ · J−1 = ∂zk−1

K

and satisfy a system of the Yang and Chalmers-Siegel types.
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2. ASDYM equations and higher flows

Auxiliary linear equations

(∂yk − ζ∂yk−1
+ Ak)Ψ = 0, (∂zk − ζ∂zk−1

+ Bk)Ψ = 0.

• If Ψ is defined in a neighborhood of ζ = 0, its value Ψ(ζ = 0) at
ζ = 0 gives J.

• If Ψ can be expanded into a Laurent series of the form

W = I+
∞∑
j=1

wjζ
−j

in a neighborhood of ζ = ∞, then w1 gives K , hence
Ak = ∂yk−1

w1, Bk = ∂zk−1
w1. The auxiliary linear equations

thereby turn into an infinite system of differential equations for
wj ’s.
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3. ASDYM hierarchy in Sato Grassmannian

• KT, Comm. Math. Phys. 94 (1984), 35–59.
• KT, Saitama Math. J. 3 (1985), 11–40.

Dependent variables with two indices

Introduce the dependent variables wij , i , j = 0, 1, . . ., from
W (ζ) = I+

∑∞
j=1 wjζ

−j by the generating function

W (η)−1W (ζ)− I

ζ − η
=

∞∑
i ,j=0

wijζ
−i−1η−j−1.

Remark This generating function shows up in many places, e.g.,
the Schlesinger transformations of isomonodromic systems
(M. Jimbo and T. Miwa, Physica 4D (1981), 26–46). It is also
related to a 2D free fermion system.
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3. ASDYM hierarchy in Sato Grassmannian

Properties of wij ’s

• W (ζ) and W (ζ)−1 can be recovered from wij ’s as

W (ζ) = I−
∞∑
j=0

w0jζ
−j−1, W (ζ)−1 = I+

∞∑
i=0

wi0ζ
−i−1.

• wij ’s satisfy (and are characterized by) the equations

wi+1,j = wi ,j+1 + wi0w0j ,

∂wij

∂yk
=

∂wi+1,j

∂yk−1
− wi0

∂w0j

∂yk−1
,

∂wij

∂zk
=

∂wi+1,j

∂zk−1
− wi0

∂w0j

∂zk−1

with quadratic nonlinearity.
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3. ASDYM hierarchy in Sato Grassmannian

Frame matrix

The Z× Z<0 matrix

ξ =

(
δij I

wi ,−j−1

)
i∈Z,j<0

=



. . .
...

...
· · · I 0
· · · 0 I
· · · w01 w00

· · · w11 w10

...
...

...


represents a point [ξ] of the top cell of the infinite-dimensional Sato
Grassmannian Gr(∞,∞). ξ and ξh, h ∈ GL(∞), represent the
same point [ξ] = [ξh]. wij ’s are affine coordinates of the top cell.
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3. ASDYM hierarchy in Sato Grassmannian

Equations for frame matrix

The equations for wij ’s can be translated to equations for ξ:

Λξ = ξC, ∂ξ

∂yk
= Λ

∂ξ

∂yk−1
− ξAk ,

∂ξ

∂zk
= Λ

∂ξ

∂zk−1
− ξBk ,

where Λ denotes the block-wise shift matrix (δi ,j−1I) and

C =

(
δi ,j−1I
w0,−j−1

)
, Ak =

(
0

∂w0,−j−1

∂yk−1

)
, Bk =

(
0

∂w0,−j−1

∂zk−1

)
.

Remarks 1) The equations for the AKNS hierarchy (n = 2) read

Λξ = ξC, ∂ξ

∂tk
= aΛkξ − ξCk , a =

(
1 0
0 −1

)
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3. ASDYM hierarchy in Sato Grassmannian

2) The algebraic equation Λξ = ξC ensures the correspondence
with a Laurent series of the form W (ζ) = I+

∑∞
j=1 wjζ

−j .

3) The differential equations for the ASDYM hierarchy can be
rewritten as

∂ξ

∂yk
= Λk ∂ξ

∂y0
− ξ(Ck−1A1 + Ck−2A2 + · · ·+Ak),

∂ξ

∂zk
= Λk ∂ξ

∂z0
− ξ(Ck−1B1 + Ck−2B2 + · · ·+ Bk).

They can be compared with the differential equations

∂ξ

∂tk
= aΛkξ − ξCk

for the AKNS hierarchy. Thus the role of aΛk ’s are played by
Λk∂y0 and Λk∂z0 .
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3. ASDYM hierarchy in Sato Grassmannian

Toroidal extension of AKNS hierarchy

• 2-Torodial (Bogomolny) extension (Ikeda-Kakei-KT 2002)

Λξ = ξC, ∂ξ

∂tk
= aΛkξ − ξCk ,

∂ξ

∂yk
= Λ

∂ξ

∂yk−1
− ξAk .

• 3-Torodial (AKNS+ASDYM) extension (Kakei unpublished)

Λξ = ξC, ∂ξ

∂tk
= aΛkξ − ξCk ,

∂ξ

∂yk
= Λ

∂ξ

∂yk−1
− ξAk ,

∂ξ

∂zk
= Λ

∂ξ

∂zk−1
− ξBk .
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4. Cauchy matrix approach and Sato Grassmannian

Cauchy matrix for ASDYM hierarchy

Let us consider the Sylvester equation

MK − LM = s tr

for the N × N matrix M. K and L are N × N constant matrices,
and r = r(x) and s = s(x) are N × n matrices that depend on
x = (yk , zk , k ≥ 0) and satisfy the following differential equations
(Li-Hamanaka-Huang-Zhang arXiv:2501.08250):

∂ tr

∂yk
=

∂ tr

∂yk−1
K ,

∂s

∂yk
= L

∂s

∂yk−1
,

∂ tr

∂zk
=

∂ tr

∂zk−1
K ,

∂s

∂zk
= L

∂s

∂zk−1
.
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4. Cauchy matrix approach and Sato Grassmannian

Auxiliary functions S (i ,j)

For simplicity, we assume that K and L are invertible,
diagonalizable and have no common eigenvalue. Define the
(n × n)-matrix-valued functions S (i ,j), i , j ∈ Z, as

S (i ,j) = tr K iM−1Ljs.

Remarks
1) We have slightly modified the construction in the literature,
exchanging i ↔ j , K ↔ L, r ↔s (and flipping a sign somewhere).

2) If there are common eigenvalues of K and L, we can choose a
non-zero constant matrix C with CK = LC and consider

S (i ,j) = tr K i (C +M)−1Ljs

(cf. Li-Qu-Zhang arXiv:2211.08574).

17 / 20



4. Cauchy matrix approach and Sato Grassmannian

Properties of S (i ,j)

S (i ,j)’s satisfy the algebraic and differential equations

S (i+1,j) = S (i ,j+1) + S (i ,0)S (0,j),

∂S (i ,j)

∂yk
=

∂S (i+1,j)

∂yk−1
− S (i ,0)∂S

(0,j)

∂yk−1
,

∂S (i ,j)

∂zk
=

∂S (i+1,j)

∂zk−1
− S (i ,0)∂S

(0,j)

∂zk−1
,

which are identical to the equations for wij ’s. Thus S
(i ,j) for

i , j = 0, 1, . . ., can be identified with the affine coordinates in the
Grassmannian description of the ASDYM hierarchy.
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4. Cauchy matrix approach and Sato Grassmannian

Ψ and J

Identifying S (i ,j) = wij , we find the solution Ψ = W (ζ) of the
auxiliary linear equation with the help of the geometric series

∞∑
j=0

Ljζ−j−1 = (ζI− L)−1

as
W (ζ) = I− tr(C +M)−1(ζI− L)−1s.

Hence we can reach the point ζ = 0 by analytic continuation and
obtain the Yang potential

J = Ψ(ζ = 0) = I+ tr(C +M)−1L−1s = I+ S (0,−1).

This coincides with the known formula (up to an opposite sign).
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Conclusion

The Cauchy matrix approach gives rise to an infinite number
of auxiliary functions S (i ,j), i , j = 0, 1, . . .. They satisfy
algebraic and differential equations with quadratic
nonlinearity. We have seen, in the case of the ASDYM
hierarchy, that they can be identified with the affine
coordinates wij of the top cell of the Sato Grassmannian.

Apart from S (0,−1) (and S (−1,0)), it is not clear what
geometric meaning S (i ,j)’s outside the range i , j ≥ 0 have.

Part of the U-matrix in the direct linearization approach (see,
e.g., S. Li and D.-j. Zhang, arXiv:2403.06055) can be
identified with wij ’s, because they satisfy equations of the
same form. It is not clear what geometric meaning the other
part of the U-matrix has.
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