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SIHNGULAR CAUCHY PROBLEMS FOR A CLASS OF WEAKLY

HYPERBOLIC DIFFERENTIAL OPERATORS

Kanehisa Takasaki
Department of Mathematics
University of Tokyo

Hongo, Tokyo, Japan

In this paper singular Cauchy problems of Hamada's
type are studied in the category of holomorphic func-
tions and hyperfunctions for a class of hyperbolic
differential operators with non-involutive multiple
characteristics. Integral representations of their

solutions are obtained.

§81. Introduction.

Let P(t,x,Dt,DX) be a differential operator of

order m of the form

i

m m M-
+ 2,008, (8,x,0,)D,. "7,

P(t,x,Dt,Dx) = Dt

. D=+ _° 5 - 1 2 ; Lffeym-
where Dt =T 5o Dx T 3% and Ai(t,x,ax) is a diffe:
ential operator at most of order i, not containing DT’

whose coefficients are holomorphic functions defined in

a neighborhood of (t,x) = (0,0) in T x ¢,
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1152 TAKASAKI

We assume the following conditions:

(A-1) (Degeneracy of characteristic roots) The
principal symbol Pm(t,x,r,é) of P(t,x,Dt,DX) is given by

P (t,%,7,8) = njfl(T - thj(g)),
where g is a non-negative integer and AJ(E) (1<£3i€m)
are homogeneous holomrphic functions of degree 1
defined in a conic neighborhood QO of EO = (1,0,...,0)
in €7-0 such that A5(8) # A (8) if § # k and £€Qg.

(A-2) (Hyperbolicity) Aj(g) (1<3j<m) are real if
g€ is real.

(A-3) (Levi condition) Set

k
A 5068 = D ey 6],

i,J,k
where A;,;(t,x,g) is the homogeneous part of Ai(t,x,g)
of degree j with respect to &. Then
Ai,j’l{ = 0 for k< (g+l)j - 1. 0

Using a type of ordinary differential operators
with polynomial coefficients, many mathematicians
constructed parametrices of the Cauchy problem for weak-
1y hyperbolic operators of the above type (or its gener-
alization) (Alinhac {13, (2], [3], Amano [4], Amano-
Hakamura [5], Nakamura-Uryu [11], Nakane [12], Taniguchi-
Tozaki [18] and Yoshikawa [20]). Shinkai [16]
constructed parametrices by a different (but interesting)
method. All of them, except Nakane [12], treated this
problem in the category of ¢” functions.

We shall study, for 0<€ j<£m-1, the following

singular Cauchy problems of Hamada's type
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ot § P e = o,
cp)t .
” \DtJ Uilgmg = 85 5 <xv,87" for o€ g me,
b
P(t’XJDt’DX) ui(t,x,y,g) = 0,
(CP)i .

- o -n < _
De” Uiliag = 85 5 (<x=y,&>410)™ for 0<jg¢m1,

in the category orf holomorphic functions and hyperfunc-
tions, respectively. Here 6i,j is Kronecker's delta.
Kashiwara-Kawai [9] studied the Cauchy problem for the
general "micro-hyperbolic! operators which include our
operators as special ones. But we shall give a more
concrete construction suitable for the analysis of the
fine structure of solutions.

We shall construct the solutions as infinite series
of "Radon integrals' (see (1.2) and Remark 1.1). Our
method is similar to those of [11] and [20] which are
closely related to the theory of Wishimoto [13] on the
turning points of ordinary differential equations with
a parameter. But we need more careful estimations.

Notice that fundamental solutions of the Cauchy
problem are obtained as the integrals over the unit

sphere

j us (B,x%,y,8) w(g) (0L 1<m-1),
lgf =1 ¢t

Wi e = n - 'j_l“ g
where w(g) Zj=l( 1) éjdglA‘"Adgj—lAdgj+lA"'Adén'
(See Kashiwara-Kawai (91, s5.)

Main results of the Present paper were announced

in [17] without a detailed proof.
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Before stating main theorems we introduce following where u
: & o5i,3,R (U X,E5p) 1s defined by
notations: 1 (1.2) u s : oo \/:TPP/?; n
LN ; Lec) A e p) = I &7
V(6,8 = Aot/ (ae), LEERE R S N B 577 x
3 TV (Y+I)R

%(ta7(\3’$g> = K=Y, 5> + ‘y{j(t:%>a
r(6,8) = max | PL(6,E4) = Y688,

1<k<m

o) o pr/Eet

x w

B h (t N2 i @ h kg £ o] S A
it _gl) ) Htﬂﬁll . Igl( 1>1/(q+1>’ and ‘o, 1,8 X575 8) is a holomorphic function defined

X o= | xed®; |x| < al, in a neighborhood of (t,x,7,%¥) = \O’Ovo>§3> and homoge-
Q@ = 1 g= G pren’-0; g <vlgl. lare(g)| <bv} reous of degree -n with respect to §.

8, = 1 t€-0; |arget)| <(20+2) 'n—e}, (1) The series (1.2) converges uniformly in every
7 = 8.xXx Q. compact subset of the domain

ZW s oxix D, m{<t,x,E7Q>€ %}(B; d(t,Ryh <"1, p/SLeDO<O)}

Do(r) = { ped; In(p) > r}, \Jp_l{(t,X,E,p)erm; d(t,R)h<1, p/& €Dy ( r LB, ),
Dl(d,r,R) -\ fpet: Iw(prie dede{+rl<l}’ and is homogeneous of degree -n with respect to (&:p).

-b<@<b loreover by deforming the path of integration in

for positive constants a, b, d, r, R and Q= +1, 1< the Y-th term of (1.2) into th +
= = I h term of .2 the path

< m. These notations are used throughout this paper. _ K158 Vs

- ’ ) ' CV}R‘;B a {<v‘_l>e R; O<s < L}U{ <V+1)e MQSPL' S\/E}

-— — 7
_ . N N ( -b i : - .
Under assumptions (A-1), (A-2) and (A~3) we have N <9 <b), uG'i,J,R 1s continued to a holomorphic

Fs

Tunction defined in the domain

Theorem 1. For any sufficiently small constant
—— ’ { t.%,8,p)€ ZxE; p/g €D, (4(t,R)n,0,R)}

U/\l(c %, 5,p)€ 2% C; p/g €D, (d(t,R)h,x. 5(88) ).

o . . L . )
e >0 there exist holomorphic functions ucfi)j(t,x,2>
IR

(C0'=+1, 0<i<m-1, 15;}§n17\);_;_> 0) defined in the domain

7 A . : e 4 P

Z and positive constants a, b, h such that N , . .

7(3 ’ Theorem 2. The solution of (CP). is given by the

. o ZoEOrel 2. 5

(i) A solution of (CP). is obtained in the form .
i boundary value" of (1.1). Namely,

~ m
<l‘§) ui<t7X7y7§> = b
J=1

R
-

(1 u. X,V . - o (& < . . P T
(1.1) l<t7/7‘/ ’g) J:“huc",l,gj,R<t7x’g7soa(bvxqj72)) 10-'71,J7R<t:x7§’S?{-j(bakalfvg,)y\/",&
h

. + < " \
* hO‘,i,R<b’X“ %) *‘6_7:;_7R(‘Ja7{7ff7%).
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Trhe singularity support and the singularity spectrum of
u., where § is regarded as a parameter, are estimated as
i

follows:

m
sing.supp. u, C \v{{(t,x,y); §3 = 0},
=1

mn

5.8. ui(: \\/{<t7x>y3$j~d}3<tsx>y’%)m>; %ﬁZO}.
J=1 -

(1.4)

(As for the terminologies of hyperfunctions and their
singularity spectra, we refer to Sato-Kashiwara-Kawail[l51].)
AL AL g -
Remark 1.1. We shall construct the functions

<v)~ s0 that they are "semi-homogeneous” of degree
O‘”L?LJ 4
(~1-VYYg+D) (see [20]; here we use the complex version
of the semi-homogeneity o?[EO] )y, i.e., for c €C-0,

() iV, O

(1.5) uOﬂ L’L<t/C Xy C' E) lo‘i ‘< ) >§>7
ana that they satisfy "transport equations”

o R /:i]k~ Is
(1.6) (D"+ . Ak<o>Dtm_m><e ! uG§§?3
H vci X
= oz s (epalO)- o e € 1ty )
k=1
and "growth conditiong"” (Ofgkfgm—l)
(1.7) 0.5 0};’>J<t )|
< oV (gD (s 0K acs,e /@61) ) x
Ao 130 LE (5,2, B)e%y

b4
d(tgfﬂg+lll>“<x’g> erj(t’E)Eat it (t,x,5)€2,

o X ) .
(=) ™ and £* denotes the summation

%

where a <af
1
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over all ()’(7}70(> such that )) BA and )/":}/(F'q.“-(q“}’l)b([ )
Here we set
A1<V><t7X’§) = :E::::::::: 5 A, (X8,
7 k0,12 1,d,5K
V=k ~(g+1) j+i

i-1,i-1,qi-q

+V=1A.

PN noa NN
m3GG8) = = T (5 (m-i41) (i A,
“ i=1

i,i-1,gi-g- 7} X

< AT (N A7

k=1(k#j
J5G6:8) = Rel = FICT I P
Jx,8) = max }* (x,8).
l1<i<m

itransport equations” are the same as those of [11]
and [20]. But "growth conditiona” are essentially
stronger than those of C“’theories, which assure the con-
vergence of the series (1.2) in the complex domains. Ac~
cording to Aoki [6] and Kataoka (10]we may well call
(1.2) a (series of) "Radon integral (s)"with the "formal
symbol"” Zy:z uof;?j' Such a class of formal symbolsg ig
regarded as a natural version, in the category of hyper-
functions, of the "Boutet de Monvel class” (see Boutet

de Monvel [7] and Yoshikawa [20]).[]

Remark 1.2. As pointed out in (4] and [5], our
method for the construction of solutions will be effec-
tive in the analysis of "the branching of singularities"
at multiply characteristic points. The analysis in the

case m=2 was carried out in [37, [127 and [18] where
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a

d

r
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“variations of constants", using the same paths of

integrations as those of [13].
tudied this problem from different points of view. [}

Remark 1.3. (1.4) implies that singularities of ,§ 2. Symbolic calculus.

ne solutions propagate along the union of bicharacter- In this and the next sections we study general
ns g P

. - e 1 e s i e i . .

stic strips of 1 wbiAJ (1 £5&m) passing through properties of Radon integrals.

; ooy = - T+ - at (1.1) Follow ; - .

t,x,¥,8) = (0,0,0,8 ) It seems that (1.4) follows Throughout two sections we fix j (1< j<m) and

rom the results of [9]. But our construction shows us abbreviate @. . and . .
7}7 y% and Ty to ¢, Y and r respectively.

We replace )E by/ﬂ, for it does not affect the

L brief account of contents of the present paper following arguments.

s as Follows: Now let us consider generally a sequence of holo-

In 32 and §3 we study some properties of m hic *© 1 . N 1o e . .
tudy some prog morphic functions uv(t,£7§> (V>0) defined in the domain

ntegrals” nNamel § wergent nains and hied o . .
ntegrals'. Hamely, (52) convergent domains Z which satisfy, for certain positive constants ¢, n, S,

nalytic continuations, (8§3) the action formula of L, for O<k<m and for >0, the following inequalities
ifferential operators. o
( K P

(2.1) 1D, D" u(6,%,8)]

/ ’n\)

of Thecrems 1 and 2 is

-y

we show how the proo

.
w3
w
o=
=
¢

<Clx

educed to the constructions of solutions of transport

g e E)ea d(t,%l/(vu_))‘) x

equations with initial conditions and growth conditions. 1/ 1)
3
FENL : X .
: fruct solutions of O-th & a(egy /A ko) it (t,0,3)e 7
In 8§85 we construct solutions of O-tn transport « L 3 Xy g
tions They homogeneous ordinary differential Ly 1/(q+1) (x,%) ( )
equations. They are homogeneous orcinary diiferential d<tgi ’1>V\ 5 ér\tai if (t,x,8) €7
- ? ? -
equations with respect to t with polynomial coefficlents,
We set, for positive o +ant
. L . . \ s o I : con Y
in which (x,%) i1s contained as a holomorphic parameter. ? b stant R,
. . . . o =] o —
The point Tt =< is its irregular singular point of (2.2) up(t.x,g-p) - 5 5 e¢ IPP/El £ -n
RV U ; x
. 7, . ) ) . . v=0 J(V+1)R 1
Poincaré's rank g+l. Hence we can apply general theories :
: n-1
i . x o u (t,x%,P5 /8, ) o7 ay.
of irregular singular points with slightest modifications. v 1 5
In & we construct solutions of V-th transport - .

§ S ” Remark 2.1. If (2.1) holds for =0, it follows,

equations w growth conditions by the method of
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by Cauchy's inequality, that (2.1) is valid in {(t,x,E)
€ 7; dist(x,8X) > %} for every « . []

Now we study convergent domains and analytic
continuations of (2.2).

Proposition 2.2. (i) 'The series (2.2) converges

uniformly in every compact subset of the domain

(2.3) {(t,x,5,0) € 2,2E; A(6,R)n< 1, p/5; € Dy(0) |
UL(t,%,5,p)eZx T; d(t,R)b< 1, p/&; € Dy(r(t,8))} .
Hence Up is a holomorphic function defined in (2.3%) and
homogeneous of degree (-n) with respect to ( §,p).
(ii) By deforming the path of integration in the

Y-th term of (2.2) into CIQR,Q’ up is continued to a

holomorphic function defined in the domain
(2.4) {(t,x,%,p)€ ZxT; p/f; € D (d(t,R)h, O,R)}
UH(t,x,8,0)eZx T; v/t eDl(d(t,R)h,r(t,“@), R)}.

Proof. (i) If (t,x,%,p) is in the first component

of (2.3), the former half of (2.1) implies

” Jripﬂ%lg—n
1

(2.5) | u (t,%,05/8)9" Mg |
(YV+1)R
oo_I < | ]
< Chv Isll -n . m p/§1>f’d<t7%>Vd<tyl/(qflzl)}*@<7%>};i+n 1dP
(Y+1)R

“-In(p/ )f’
Ch\)d(t,R)v I;li -n e gl PJ/(Q;F:D 1)’»‘(}( ,E)F£+n 1
R

In the same way, if (t,x,¥,p) is in the second

dg.

IA

component of (2.3%),
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/— pe/E

(2.6) | g u, (0%, 08/ Hag |

(V+1)R

oo—. Im</ )_ .7 )
= C‘n‘)d(t,R)’)(%rrj o {In(p/g)-r(t, D)} P N
R
X d(t?l/(q+l>,1)V(X7§)P}Z+n—1d5)-

(Notice that r(t,£), u(x,f) are homogeneous of degree 0.)
Hence (2.2) converges uniformly in every compact
subset of (2.3), for d(t,R)h<1 in the domain (2.3).

(i1} It suffices to show that the series

o2 VF‘PPA%
(2.7) = B u, (6%, p8/E)S" Lap

-0
Cyr.6

converges, for -b<{g<b, uniformly in every compact

subset of the domain

(2.8) {(t,x,E,p)€ Zgr @; p/gleDl’e(d(t,R)h,O,R)}
U{<tax7z7p>e VAR NUK P/g'IEDl’e(d(taR)h»I‘(t72)7R>§)

where we setb

%A+T>R ﬁjg)iwﬂ.

Dl7e(d,r,R) = { ped;e d<< 1, Im(pe

In order to estimate the Y-th term of (2.7), we
L . ) 156
devide CV R, into two parts l;f" CQ,R,G: {(V+1)R3r ;
el 1" 19
0< s< 1} and CV R,6°
is in the first component of (2.8),

{(V+DRse'™ ;8 =1b. If (t,%,5,p)

2.9) l\g J—‘pf/glg uv<'t,X,f§/gl>Pn—ldy !
V R,6

%34 L
< ca(s,R) n” |3 ‘F‘j‘ 2 a(pp¥arDy PO B bm-l g
CL.R,0

IA

anCe P8R (g P (5 (v ym) 2/ (0+1)1 RG0S
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x {(\m)R}“n{d(t,z{)hefp/glm}v,

and if (t,x,&,p) is in the second component of (2.8),

F?P/%1 n-1
<2‘1O> IJ § u ('47)(7535/2-])9“ d? f
C;)’R_'
(lo/gl+rx B))R .
< one /BT )] PaCe{ (pe1)R) VAL HOG B,
(ip/el+o(t,E80R
x {(V+1R} (s, R)he o/ VYo

On the other hand the integral along C” JR,0 ig estimated
b
in the same form as (2.9) and (2.56), except that Im(p/gg
o N =16 . . o
must be replaced by Im(pe ). Hence (2.7) converges
uniformly in every compact subset of (2.8). Q.E.D.
Remark 2.3%. In the proof of the preceding

proposition we encountered integrals of the form

oo V=16
v[ . -In(pe /%1)fd<tylﬂg+lal>ﬂ(x,g)9£+n—ld9_
R

One can show easily that this integral blows up at most
at the rate of a negative power of p/§Lwhen pﬁ%ngoes to
O in the domain Dl g(d,r,R). Hence the "boundary wvalue
hyperfunction" Uy (t X85 900 ,%,y,8) #£10) is actually a

distribution.

83. Symbolic calculus (continued).

In this section we derive an action formula for P

= ZifO Ai<t,X,DX)Dtm~l to the Radon integral uR(t,X,E;

9(t,x,y,%)). We assume that each coefficient of P is
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defined in an open neighborhood of {(t,x)emn+l;ft[§50,
|x]| <a}.

We set, for R>1,

(%) Yo J:—l‘/’DO(Dtm——k (e «:wu

y

m
, ~ we 1,0
(%.1) vy, = I &T<a A

(3.2) vpl,x,8;0)= ¢ |e s/t

V=0 (A+1)R
where L** denotes the summation over all (K, 2,0 such

5y, pEE) P g

that V= K+ +(a+l) x| .

Proposition 3.1. (i) vy is semi-homogeneous of

degree (m-3)/(q+l) and satisfies the inequalities

(3.3) |v,(t,x,9)]

< 035y 15 M Race )™ ace, 5 /(41))Y
apgy/(arl) 1)kGe ) it (t,x,9) €7,

X
a(est/ () O 2D Gp ¢k gye g,

for certain positive constants Cl and hl‘
(ii) 'The function P(t,X,Dt,DX)uR(t,X,g;?(t,x,y,i))
- vR(t,x,g;?(t,x,y,g)) is continued to a holomorphic

function defined in the domain

(3.4) {(t’XaY7§>eZ S"(t,x,y,?/g)eD <d<t R)“ ,0,R)}
{(t,X » B)EZM; ?(t aX>y7§/§1>ED2<d<t7R>hl 7I’<X7"5)7R>} »

where we set

Dy(d,r,R) = { pel; (Il y _ 1,
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70 = SXxAxGD , 2" = ExXxXxG2 . [

Remark 3%.2. The domain (3%.4) i1s a neighborhood
of (t,x,vy,% = (0,0,0, EO) for sufficiently large R.
Hence the above proposition implies that the action of
a differential operator to a Radon integral is written
in the form of a Radon integral "modulo a holomorphic
function defined in a neghborhood of (O,O,O,EO)”. N

In order to prove the above proposition we prepare

Lemma %.3. (1) Set

m
(3.5) P’/’(t,x,Dt,DQ = 5:: e'mﬂmt,x,nt,n}c)oemw,

i=1
where "o" denotes the composition of operators. Then
Pv(t,x,Dt,DX) is a differential operator of order m and
satisfies (A-1), (A-2) and (A-3), except that Aj (1<
< m) are changed. (
(ii) Corresponding to P¥ we define Aifj’k(x,g)and

Y
AV( >(t x,%) as we did Ay and A§V> using P. Then

7J7k
A<V) ¥(vV) P -
;7 and AS are semi-homogeneous of degree (i-yY(g+l)

and satisfy, for certain positive constants CO and ho,

o5a, 0]
(3.6) 5 2 \#(O>!<COI§1] - g e, gfql if (t,x,8)€ 2,

and
I (V)l
(3.7) ‘ %')lf<l/>‘<c h I;lll I(X‘ G, \S-Q\)+C11 g-1
1

if (t,x,8) €% and V> 0.

(iii)

HYPERBOLIC DIFFERENTIAL OPERATORS 1165

(5-8) Vv: }{EOZA* l (a wa))(DﬁDtm“k u)‘>. D

Proof. (i) and (iii) are easily proved. Since
arguments are similar, we prove (3.7) only, and omit
the proof of (3.6). DNotice that we have only to
consider the case |X| < m, for 8:Ai<v> = agA¢<“> 0
for |®k| > m.

By Cauchy's inequality there exist positive
constants 02 and h2 such that

l
" ik

z,Aiy:a,k’

[o%a
% 1,J,k - K] -~

<L e

if (t,x,g) €7 and |«
|2

If Y> 0, by virtue of (A-1) and (4-3),
AV lS . A,
i
i-1>j, k=0,
V=k—-{g+D j+1

i,3,k°

Hence

(q+1) 7 (i-v)~ e
la A (v);\c ]%li 4 . ]

Y+qli-g-1
U (ngle] gy /(T
k=0
<c 2f§f<Q+l> (i—”)—‘“>

q+tl q+1‘g' +1)1/(q+l)]v+qi—q—l'

x [2(n, €l

The same estimation is valid for AV\V> Thus (%.7)

h for suif T
holds for suitable constants Cy and Ny e Q.B.b.

Proof of Proposition 3%.1. (1) If (t,x,%)€ %,

(2.1), (3.6) and (3.7) imply that
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v (b8l 3 2oL 0gngley M ags gy Oran)/ @D
~ %=0 X

N Chlg_ fdlod }glgﬁw'—m—k d(t,gl/(5\+l))}\
x d(t?ll/<g+lzl>)k<x’ g)d(t,il)Q(m-k)

= COCI§ !m+L a(t, s, /V+D) d(t§ l/(ﬂ+l)l>yix,g)

x d(t, )quz**”"‘g -
2 0

o

Here we used the inequalits
— 8 A v
51 ace 3 e, 5 a0 P < acs, 5 e,
where YV = W+A+(q+1) | and ¥, 2, X > O,
If we set hy = hO+h+(n/8)y@+D, the former half of {%.3)

follows from the inequality
' WS 1/{q+1
L¥* hg_h;\g fO(] < (ho+h+(n/§)‘*/\ 1+1) Y.

(ii) We notice that
P<t’X’Dt7DX) 'Ll (t X,V; ?(ta}(,y’€))

m o \/1<b777/>
oz 7 ngg "afe,x,D spE) x

k=0 3=0 (2+1)R

i

‘,,_,

X t‘.. u <V7 Ay 95/;})9 Md_?

m e T OEI9(t .y, S /5P
B Z Z Z** e - gl s X
}Q:O V‘:O (2*1)R
)48 m-i , L"l,
<82A}f( >>\“7£7?§/€1><D§Dtm UA)<35X79§/§1>P“ ap.
Hence 1t is sufficient to prove that the series
(V+1IR
00 \/ lpg/e.
C#) e _Lgl Ilil/agAV<K>)\b7X79¥/§1> X
=0 -
Y (DR

x (7D, " un) (8%, p/E)P™
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converges uniformly in every compact subset of the domain
G {(£,%,5,D) € Zx &5 p/e;€ Do(d(t,R)R) ,0,R)]
U {(6:3,5,0) €3 XT;5 p/g €D, (d(t,Rh) ,x(x,8) ,R)]} -
If (t,x,%,p) is in the first component of (#£), (2.1),
(3.6) and (3.7) imply that
(Y+1R

1
IZ** < 6‘27 gk )(t,x 795/%)"
(2+1R
x (D30 ) (6%, 98897 g |

< Co0a(t,RYMY prx X n? ¢ - lal
(Y+1)R

e|p/§1’fd(t?l/<q+l>,l>}* (X,E)

x .Pm+l+n~l

dp
< COC<m+1)e'p/gﬂRd<t,R>m{d<t,R)hle[P/EllR}"R v
Sl a1, 4 !
X {d(t(Rv+R)¢ 1) “+a¢Rre }KUR+R) AR ).

Here we set

max{u(x,&), 0}, u_ = max{ -u(x,8), 0},

*~
s
1l [

ax{ 4,0}, £ = max{-1,0}.

If (t,x,%,p) is in the second component of (#£), the
same estimation is valid, except that ‘p/%J 1s replaced

by |o/gl # r(t,8). Thus (ii) follows. ELD.

§ 4. Preliminary remarks on transport equations.

4.a. Results in %2 and §3 imply that the proof

of Theorem 1 and Theorem 2 is reduced to the construc
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tion of solutions of tramsport equations with growth
conditions (see Remark 1.1.) and initial conditions.
Precisely speaking:
W) e

. defined
61,3
in 7 satisfy (1.5), (1.6), (1.7) and the following

Suppose that holomorphic functions u

initial conditions

k<e 6’1 3>!t o~

(4.1)
J

IR =]
=}

1Y Mn-1)!
2 g?,iS;@O(J—i) /(n-1)1,

for 0£k<m-1. Then from (1.6) one can show by simple
calculations that (1.7) holds for k = m for a suitable
C. Hence the results in §8 2 and § 3 implies that the
™y
Jj=1
of the eguation Pu = 0 "modulo a holomorphic function

series I, (t,x,g;fj(t,x,y,ﬁ)) is a solution

0,1,J,R
defined in a neighborhood of (t,x,y,E) = (o,o,o,go)".

On the other hand we notice that

¥ Y-1pe/k ~
je Yo" e = (n-1)] (vFip) 7R
R

R ,—
V-1pp/E&
“'fe lgznpn ldp,
0

and the second term in the right hand side is holomor-
phic in {gl # 0}. Hence (4.1) implies that
m R R s

Zj=l uc’i’j,R(t,x,£,93(t,x,y,E)) satisfies the initial
conditions of (CP)§ "modulo holomorphic functions
defined in a neighborhood of (x,y,&) = (O,O,EO)".

Now we can find a "compensating" function h_ .

og,i,R

by the usual Cauchy-Kowalevsky theorem such that the

function uy defined by (1.1) is a solution of (CP)%.
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Notice that Cauchy data and I, (t,x,g;yg(t,x,

m,
j= =1 ,1,3,R
v,&)) are homogeneous of degree -n with respect to &.
Hence hO i g can be chosen to have the same homogeneity.

2 3
Other parts of Theorems 1 and 2 follow immediately.
4.b. Next we rewrite (1.5), (1.6), (1.7) and (4.1)
in the matrix form for the convenience of later uses.
We set

L V1Y
(4.2 0% = (D u D0 dor sy

0< i< n-1,2

O, _S:V,O’
4.3) 20 - o0 =8, |
), 0
y Y (v) O
A7 Apsioees A3 Ay
1
/ . 2 m-1 t 2
(4.4) ©(t) = Diag[l,t,t% ..., ] = t
'tm—l
Then conditions (1.6), (1.7) and (4.1) are
equivalent to the following conditions:
n OV _ g b rmo, OO et ()
(#.5) (D + A )U633 I (3%A >(DXUcr 3>’

N ) e
(4.58) 'leU jlt=0 = SE;O/KD“l)!@L1> >I,
j= ) >

e 72
.7) o)) racs, 5 Ve %U§?§T<l;1l1/<q'*l>)z

< Ch>’d(t,§l/<v+1>>V
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(x,8)
d(tgll/(q+l)7l)”d %5 if <t7X7§>€;Zy7

x (x,%) 7.(4,8)[g]
vy 4 ’
SICIIACIEAD B v i (t,%,E) € 7.
Here we used the notation [X| = max {Xi | for am
1<i,j<m *9
mxm matrix X = <Xi,j)l§'i,j§ .

(1.5) is equivalent to the condition that
-+ (V) Wa+D - e e
T(gl )chj T(il ) is componentwise semi-
homogeneous of degree V/(q+l).

4.c. At last we notice that for the construction

fu <?>

V) L, . e
. . 1t -1s sufficient to con-
Ty1,9

(
0»d
sider their restrictions to | gl = 1}:

o or equivalently U

Set
n-1

Sp' o= {3';' = <227~~-7§n)€m H ’g‘) <b/}/,”/,~?
8¢ = {ter-0; lara(er)| < (as1) HE D) - e,

By = SXXx G2, 7' = TxXx @,
and degote by (4.5}5121, (4.6)glzl and (4.7)5121 the
conditions (4.5), (4.6) and (4.7) in which we set'%lzzl.
Here, however, domains where inequalities Of<<4‘7>§l=l
are assumed are Zg and Z' , not ZS(\{Ei::l} and Zn{glzlL
(Hereafter we often use these notaions.)

Then by virtue of the semi-homogeneity of'Va and
Ai<v> the conditions (4.5), (4.6) and(4.7) are compatif
ble with the condition (1.5). Namely, if Uf,")g(t,x,i;)
CLg;jgnO are holomorphic matrix functions defined in 7'
and satisfy (4.5)§1:1, (4.6)§1=1 and (4.7)2121, and if

we set
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Uty = & TV gg UarD)
x UMD s e yrcg VD

then Ug::g(t,x,g) (1<j<m) satisfy (4.5), (4,6) and
(4.7) , and they are holomorphic in Z. Similar asser-
. P »)

tions are are also valid for qui,j'

4.d. Thus the proof of Theorems 1 and 2 is

reduced to the construction of holomorphic functions
»X,8) defined in Z' (a, b and £ are suitably cho-~
Sen) which satisfy (4.5) Y <Ur.6> and (4.7) .
5)=1 5,=1 g =1
In the following sections we shall construct such matrix

functions.

éfL Solutbions of O-th transport equations.

In the case V=0, (4.5)g1:1 is a homogeneous ordi-
nary differential equation with respect to t with poly—
nomial coefficients, in which (x,¥) is contained as a
holomorphic parameter. The point t== is an irregular
singular point of Poincaré's rank g+l. Hence general
theories on irregular singular points (see W. Wasow
[19], Chapter IV) are applicable with slightest modifi-
cations caused by the existence of the holomorphic
parameter (x,E).

Let us consider the ordinary differential equation

(5.1) <Dt + A<O>(“C,X,l,g>> v =0, v :%Vovvlv'-'7"/m,_g’>'



1172 TAKASAKT

The transformation

(5.2) v = T(tDw, w = t<w0’wl"'°’wm~l)
changes (5.1) into the equation

(5.3 (7%, - BVt ) w - 0,

where

(5.4) ROVt x,8) =t 97(t™9) a09%t x,1 80 26D

— qt7 9 Diag[0,1,2,...,0-1].

From (A-1l) and (A-~3) immediately follows

N . .y ) -
Proposition 5.1. (i) A(O> is a polynimial in t7% 1

whose coefficients are holomorphic matrix functions in

(x,¥) defined in a neighborhood of (x,8) = (0,0) in gt

X En—l, and are polynomials in &' at most of degree n.

Moreover
5.5 RO m - 4Oy + oD,
where 0, 1,
K<O><°°7E):'— . R ° . .
. o) .—1
A (1,%) A (1,8), & (1,8)

m,m,mq "7 2,2,2q l,l,q-J

" . . .
(ii) The eigenvalues of A<O)(w,?) coincide with
5\3(1,20 (l<j<m). In particular they are mutually
distinct. []
: . . A O) N
Since eigenvalues of the matrix A (,¥) are
mutually distinct, we can perform the process of

"formal diagonalizations" to obtain a formal fundamental
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matrix solution of the equation (5.3). (See Wasow {197,
Section 11, Theorem 12.%3.) Detailed arguments are
developed in Nakamura-Uryu [11]. The result is

Proposition 5.2. There exists a formal mnatrix

solution of (5.3) of the form

(5.6) W = i/; tTr(Xa g') ev:-Ig(ta g'>’

o . . -1
where W is a formal power series in t of the form

A oo .
<5-7) W o= kZOWKCX, g') 'tj_k, det wO<X’ 1= ) £ 0,
whose coefficients are holomorphic functions in (x,%

TI(x,8) and T(t,3") are mxm matrices of the form

T‘-(X3 i3 )

Hi

Diag[nl(x,l,g'), ceey nm<X717§'> ]7
(5.8)
Y(t, %)

it

Diag[i}i(t,l,z') ye ey %(tola%'> :'- 0

Next, we consider the existence of a holomorphic
matrix solution wg(t,x,g') of (5.3) such that the

asymptotic expansion of wytJHé—d—lgi

in the sector S
coincides with‘ﬁ} and the asymptotic expansion is
uniformly valid with respect to (arg(t), X, ¥ )$ namely,
for any integer N > 0 there exist positive constants tN
and Ky such that, for tefteS.;|t| th} and (x,% )eXx 7%,
N

(5.9) |t T VI 3 Wt <
K=0 =

-N-1
nl ] .

Hereafter we assume that b <(g+l)e. Then the positive

central angle of Sy is strictly smaller than n/(2q+2).

If (5.3) contains no parameter, the existence of
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Py

such a solution follows from well-known results. (See
Wasow [19], § 12, Theorem 12.3%.) But in our case (5.3)
contains a holomorphic parameter (x,% ). We must pay
attention to the geometric arrangement of the sector Sg

J:EVS(t,l,E')

and directions in which e increases at the
exponential rate. Now we notice that, from (A-1), (A-2)
and the assumption b<<(g+l) % , immediately follows

Proposition 5.3. TFor sufficiently small positive

constants £ and b there exist AOEZR and %rj’ X 5 %
3 LRV Rl

= 1 and

1
€5,

(j £ x, 0= il> such that ;O%Hjl = iC%337k]

S T A q+l
) éiéﬁe%&<%§l,%) )O>amj } >0,
(5.10)

s _'_"' Ny _ 1 Q""l []
gf\éfé’Rey l<23<lag) Ak<l’g>)0(0’,j,k } > 0.

In the rest of this paper we develope our arguments

under the assumption that statements of Proposition 5.3.

ave fulfilled and U, g; n(x,1,8) and A (1,8) are

vounded in Xx$2' (by shrinking X and GP', if necessary).

By virtue of this proposition we can show the
exlstence of Wy as follows:

At first notice that the transformation w p—-—
weJ:i?btq+l/<Q+l> changes eigenvalues of X(O>(w,2)into
%53429~ZO (1< j< m). Hence we have only to consider
the case }O = 0.

We intend to apply the proof of Theorem 12.% of[19]

to our case. Remember that one of the most crucial
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points of arguments in & 14 of [19] is the choice of
paths of integrations in 8§ 14.3. If we can choose
suitable paths so that the integral equation (14.16) in
8 14.2 make sense, other arguments in § 14 are also
entirely valid in our case.

In fact it is possible to choose such paths.
Change variables in such a manner that
(5.11) = 3 gl A1
and set
(5.12) §(8) = {§+ & T2 v >0 (1<3<n).
(Here we used the same notations as those of[19],814.%.)
Then pafhs corresponding to S&(g)(lf i< m) by (5.11) are
what we need, for 0%?3 satisfies the former half of
(5.10).

Thus we obtained

Proposition 5.4. There exists a holomorphic matrix

solution wc(t,x,g) which is holomorphic in (E-0)xX x G2
and satisfies (5.9). []
Set

(5.13) V, (t,x,8) = D(z&

)wg(t,x,g>.

Then Vg is a holomorphic solution of (5.1) defined in
(E-0)xXx &2'and invertible . Hence it is continued to a
holomorphic solution defined in Zz which we denote by
the same notation V. Immediately follows

Proposition 5.5. There exists a positive constant

C, such that, if (t,x,8)€ 7J,
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1 TCaCt, 1) Dvge” VL Fa(h,1) D) l}
(5.14 <o,

' I3 -1
lace, DG VIR G =1 e )9y |
where C1 1s a positive constant and

(5.15) M(x,%) = Diaglpy (,1,8), .00y pp(x,1,80]. O

Remark 5.6. Here we used the inequalities

kotacs,D%< 6% ka1,

HJ-<X71,E') TE3<X7112)'51—()&(4‘:’1)“3(}{31,%')

kgt s, < |t

( it‘ >1, (t,X@')EZ{,—)s

where kO is a positive constant. [J

(5.14) may be false outside of Z&, for "Stokes'
phenomena’ may occur. (See [19], & 15. ) We need
another set of holomorphic and invertible matrix solu-
tions of (5.1) for the later use.

Let us take a family of sectors

P e igﬁig'wks‘;, WSl 5k = 0,1,...,2q41},

where €' = E-—@&l>_lb and W= eJ'lﬂ/(q+l). S covers

the whole plane and containes Sg. Then we have

Propogition 5.7. If &€ and b are sufficiently
small, there exist dS,j’ O(S,J.,kGS (; £ k, sed) such
that o .9*1 _ o atl el o arl oy

- %1 0 %s,5.x 35k

particular the same assertion as (5.10) holds for each
sed.
Hence arguments so far are also valid for each Sejz

Thus we obtain
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Proposition 5.8. For each s€d there exists a

holomorphic matrix solution VS of (5.1) defined in Z' and

invertible such that, if (t,x,é)e Zé,

}T(d(t,l)‘q)vse‘J:ig3d<t’l)—M(x,§0I
(5.16) ' s _<_Cl7
§d<t,l)M<X’E>eV_ngVS_lT(d(t,l)Q> |

where C1 is a positive constant and we set

2y = SxxxS2. 0O

Now we proceed to construct solutions of O-th
transport equations with the growth conditions and the

initial conditions. Set, for 1 < j,k <m,
0 -1
(5.17) U (6,3,8) = V(5,80 By V(0,87

(5.18) USO) o | (5,%,8) = Vg(t,x,80E 08 o (x,D)E, |

x vV (Osxa ')MJE
where o ks
(5-19) CS,G‘<X’E'> = VS<O7X7E'>~1 V0.<07X72|)7

(5.20) E. = Diagl0,...,0,1,0,...,0].
J (3)

Then from Propositions 5.5 and 5.8 immediately
follows

Proposition 5.9. (i) TFor each S€ J, U'<Q?o )
S, 035,k

satisfies (4.5)y . for V= 0 and
El~1

oy _ % (0)
(-0 Ugs = B Yogisx
V1Y -
(5.22) |m(a6,D Ve k oy (0 lat, D L\i:c/m,
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for (t,x,8)€ Zé, where C is a positive constant.

) J
and (4.7)5121 for V= 0. [0

(ii) Uéo? (1 < J < m) satisfy <4‘5>§1=l’<4'6>§1=1

Remark 5.10. CS 5 is the "Stokes' multiplier"
bl
for sectors S and 8§ with respect to VS and V.. One
can show from(5.14) and (5.16) that Cq o s bounded in
bl

PR TN

§t5. Solutions of higher transport equations.

In this section we construct solutions of V-th
transport equations by the method of variations of
constants, using the same paths as those of Nishimoto
[13] , and estimate them by the induction on V.

By some technical reasons we shall establish, for
certain constants B>1, L>1, the following inequalities

for any sufficiently small $>0, instead of(&.?)g e
1

—V=1Y. §
(6.1) [2(a,0™De I <ot8 OV nae, (v i x
(x,1,Y
d(t,l))ua %1550 if (t,x,8)€2! o,

w(x,1,8) v (t,1,8)
at,D e J if (t,x,8)e Zg.

Moreover in order to establish the latter half of (6.1)
it is sufficient to construct, for each S€ ¥, matrix
. (v . . .
functions U \4? L (I<ijk<m, = 31) defined in Z' such
0,735,k - - -
that they satisfy transport equations of the same form

as (4.5)§ -1 and the following conditions
1=
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N\ m
(6.2 vl o p g )
6-2) 3 k=1 UG/73§Svk ’
VY
(6.3) [T(a¢,D™De  Ku M| <(e/my(§HED Y«
0,058,k =
. 1 }“L_(t »X 51 E)’)
x 4@, By Wae,y & T (£,%,8) € 24 o
Dy

Here we set
Zc'r,S = So"x ngQ'., ZlS,S = SstxQ', Z’s_ :(ﬂstxgl"
X¢ = { xeX; dist(x,0%) >§}.
6.a. Hereafter we proceed to construct and esti-

e o () v the i -
mate Lv,j and JG}j;S,k by the induction on V.

Now we assume, as the assumption of the induction,
o
0,350,
~ e o o v
and (6.1), (6.2) and (6.3) are fulfilled. If Ug % and

)
g V)
0,359,k
(6.2), our proof of Theorems 1 and 2 is completed, for

)y __. . (@)
Uo'aj anc UO‘)jSS’k

that Ug?g and U " (A< V) are already constructed
s i

are constructed and satisfy (6.1), (6.2) and

are obtained in § 5.

In the following arguments we often omit to write
the variable (x,¥) for the simplicity of notations.
bl

6.b. At first we construct Ug?g and estimate

it in the domain 2!

o,5"
Set
6o )< =i ) G
(6.5 ¥(e) - 3

1

~1(v) .
J T ()8, 7 () 1) (5)as,
(I

k2

6.6) UM )¢ 0 P
(6.6) UL)(t) = v{ o) —Ué’?j(t)k;vgji(m,
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where 9 . .
0“‘7]-73

(t) is a path starting at s = « and ending
in s = t, which we choose later.

If infinite integrals in (6.5) make sense, the
matrix functions Ugfg (L<j<nm) actually satisfy

<4'5>21:1 and (4.6) The problem is how to estimate

g,=L"
. . R . -

them in the domain ZO}S'
At first we obtain

Proposition 6.1. If B>1, L>1, SL@*DhOml/@‘LD

< h/2, st~ 1 ana (t,x,g)e Zs g then
st n
(6.7) I2(ate, D™ De ! Fg,”gld(m) s
< 02(3"1’/&1*1) nYact, (Bys1) YT,

L il 1 1 ]
where C,= on (§TAa+ >ho+r1 ACR C,C/h.  (Cy and hy are
those which appeared in Proposition 3.2.) [J
In order to prove this proposition we prepare

Lemma 6.2. Under the same assumptions as above,
ol Y1V ek
(6.8) |7(at, D De JDXUSY?‘gld(t,l) J

Proof of Lemnma 6.2. We prove (6.8) by the induc-

tion on J|. In the case X|= O, (£.8) is nothing but
what we assumed as the assumption of the induction on VY

Ug}/) and v Y

£ h onstruction of . . .
or the cons 5 d 0,J:8,k

Suppose that (6.8) holds for any muti-index f3

with I8]< IX|. We may assume that Nk;>O for certain k.
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Set ﬁ:(x~(o,...,o,l,o,...,o) and apply the assumption

of the induction to P and the domain Z&'{W—Odl+ﬁﬂg+l»'%8
s 11 ;

he "or (F ! ! -

Then for (t ,X,g)e ZG‘,{l—(lNI-{-;\/{(rPl))l}S,

. =J-1¢. . -H
|26aCe,1™ e 9 BUM  jags, 1)

=o' T&WD §)~LIELAMaD); g, mpT IAHEDED)

Hence Cauchy's inequality implies that, if (t,x,g')eZ('Y 57
bl

Va2 ik
IT(a(t,1) De S NISOALTCID &

X 6]
- ALg+1)

1
(—MC- e |
% d(t, (e HA+@ D I-1

)5} LK -1+ Mg +1) A

<c

- éLgflCEJKMH%@ﬁDE@d@7@ml+Bqu%+@+DMh

Here we used the following inequalities

(1- |xH1 — )—LQX!—1+2A@+ID < eL,

Udhﬁﬁylbd@,O«HBQT5“+@+DGdFD

< a(t, (I +1+8) " HA+(a+1e,

This proves Lemna 6.2. Q-E.D.

Proof of Proposition 6.1. (6.8) and (%.7) implies

that, for (t,x,8)€ 2} §
b

-V-1Y. M
IT(a(t,1)™ De J F%id(t,l) &

<m0 0 £*nlin? SO D)y (1 Y1

X d(t,(hﬂ+82+lyJ)A*<ﬂW}N“'
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gm%cz%&ﬁ%*w””&ﬁdeMQWQYHY

Here we used the inequality
a(e, 1 ae, Ga+pasny 1 ORI G e (Burny TV
Since
Z*hOKhxé—L(kﬂ+A/(q+l))
< (e (aF gy z[(éL/<O+l) 1/Larl)y pmyo-h

A=0
- + L + 1 +1
< 2(s7H/ @ty (/e l)ho + /(a0
(6.7) follows. Q.E.D.
Now we choose the n Y (t) as follows:
pat N
o, i, ]
Change variables ag follows:®
- LQ+l +1
(6.9) z = t3 7, §= s4 .
Denote by LL the sector in the G-plane corresponding to
the sector Sy in the s-plane. Let 1&
segment from t to O in the S-plane and L(e) (A £ D
be, 1f t€Bg, the path in S' corresponding to the path

in the § ~plane

.
j(z) = { Z+'dv¢i,jq+_3?; r > o}.

3 A= oy T 4 (=8} T 71 X . TN

(See Proposition 5.3 .) If bé&%q we choose ‘15173<E/

4

(i # 3) to be the union of the segment from O to t and

ﬁ (O)
We can rewrite (6.5) in the form
*{r1¢(t> m _ :: "
(6&0)v8@(tk FO_5 (o 0e ¥z
RERIVE ATINES
- = VAR t,5)
] 1 ——Af ‘ AN ]
% (Tg{s)e Llﬂo&Q<F&3®ﬁaJl%<w)e 1sd ds,
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where we set
MFIGDERL AR A RN AON ACIE
Jriv&,j(t,s>

(5.10) implies that, for i # 3, e

deacreases exponentially ats = o along U

o i 3(t), while

(5.14) and (6.7) imply that other factors in the integrals
of (6.10) increase at most at the rate of polynomial
growth. Hence the integrals in (6.10) actually converge
and make sense.

Next, let us consider the estimation of these

(V).
3"

(5.14) and (6.7) imply that, if (t, X,i)e ZW 57

integrals and U

m

V=1, )
|V<V) Jlf§m502<5—LKQ£DmV 2 (o, (BvaD "Y1y

> d

d(t l) Re[J“lwi j(tﬁs)]

Y. .
lSJ 3
x (3 s,l)) e lds| ,
where we set

= ! - r
ui,j Ui(xslgg ) UJ<X:1:E ).
As for the estimation of these integrals, we have

Proposition 6.3. If B2 2(q+l) '87% ana te s,

Re[ /=1y, .(t,s)] TI .o
(6.11) e o (Q%ELA%) 2dace, (Bv+n) " HV as
Yo,1,5(%) Bt

< Cha(t,(Burl)™HY

where C3 is a positive constant and
8 = min inf Re[{- l(A (1,8') - A (1,871,
i#j ¥e'
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Proof. In the case 1 = j, (6.11) follows imme-
diately if we take C3 2 1.

Let us consider the case i # j. (5.14) and the
definition of 8 imply that, if £ = z + aj ; jQ+1r (r >
3 3
0) and s and t are the same as (6.9),

Re[/iiwi j(t,s)](d<s (Bv+1)‘1)v“1)
e b 3
d(t (Bv+1)"H)Y

< e—Br (d(s (Bv+1)~ ) )v
a(t,(Bv+1)" )

r )\)/<q+l)
[zt +B +1 :

e_Br (1 +

One can show by simple calculations that, if B;ZTE%TT_’
-Br

2 1 v/ (q+1)
e (1 + Teriovil ) £ 1 for r20.

dg
(q+l)CQ/(q+l)’

On the other hand, noting that ds =

one can show easily that

-Br .. q
T2 da(t,1) M, d(t,1) 1,9 -z g+l
e ( y “29 gs < sup[( == ]
(ggs D) cesy At 1 ‘ z l
Yo,i,] SEYO,I,J(t>

1 —Br
X q+1S° q/(q+ 1)’

and each factor in the righthand side of this inequality
is a finite number which is independent of t.

This proves Proposition 6.3. Q.E.D.

Summing up; if BE:max[l,2(q+1)‘lB"1], LSL_lg 1,

then we

B L/(q+1)ho + /(g h/o ang (8,3,81) €25

have the following inequality

/=1y, -V,
'Vév?e Hace,1) J £ 2m“COC3C(6‘L/<Q+1)h)VX

x (6 L/<q+l)h0+n1/<Q+l))h"ld(t,(Bv+1)“1)“,

HYPERBOLIC DIFFERENTIAL OPERATORS 1185

and hence the following estimation

V=, (v) .
(6.12) [T(acs,1) e J Ugvjld(t,l) J

L/(9+1)y, ypl/ (at1) -3

< 2m“coc3(1+m6)(6
x crs~/ At ) b oqce, (Bv+1) Y

Hence, if h is chosen sufficiently large for any

lB—l] U(v)

¢ satisfies
> Vo, ’

constants L>1 and B2 max{[1,2(q+1)"
the former half of (6.1) for sufficiently small § > O.

This completes the induction on v for the construc~

(v)

tion and the estimation of U,
6.c. Next we construct and estimate U (Y? :
= 0,333,k
We proceed once more by the induction on v,and

repeat the same arguments as 6.b.

. (v) .
We obtain U_*. in the form
0,338,k

x [(kzlvg(g)s L (0))- U§j§<o>3,

where we set

(V) - % 7 (V) i
(6.14) v, ;S, K (8) = 2 WV (£)E, Vg (s) "F_ ":lq  (s)ds,
i=}1 (t) ] J 3
¥s,1,3
(6.15) F E?is k © T Z*~_ (3 A(K))(DXU0532$ K)o

(6.16) U<0‘(t) = Vg (6)E,V(0)™

We choose vg 4 j(t) to be the path defined in the
3 3

same way as X@i,j<t)’ using aS,i,j instead of LRIEIRE
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(See Proposition 5.3 and 5.7.) Then the integrals in
(6.14) make sense, and (6.2) is fulfilled.

Moreover we can show by the same arguments as 6.b
that, if h is sufficiently large, the condition (6.3)
is fulfilled for any sufficiently small §>0. Since
the estimation is the same as 6.b, we omit details.

Thus we have proved Theorems 1 and 2.
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