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1 Introduction

The following nonlinear systems all provide valuable material to search for new
“nonlinear integrable systems”.

• self-duality equation in Yang-Mills theory
• self-duality equation in Kähler geometry
• super Kadomtsev-Petviashvili (KP) hierarchy

From these equations, one will be able to imagine several types of extensions of
so called “soliton equations” such as the celebrated Korteweg-de Vries (KdV)
equation etc. The first two cases are in a sense “higher dimensional” (or “multi-
dimensional”) nonlinear integrable systems; the last case will be interesting as
an extension of M. Sato’s work on the KP hierarchy [SS] and background ideas
[S] referred to under the key words “algebraic analysis.”

This lecture is a summary of my recent work on these equations, in par-
ticular, the self-duality equations, with focus on their symmetry properties. It
is nowadays widely recognized that symmetries of soliton equations can be de-
scribed by representation theory of Kac-Moody Lie algebras [DJKM]. A similar
observation to the self-duality equation of Yang-Mills theory has been known
for years [UN], [CGW], [D], [T1]. The case of the self-duality equation in Kähler
geometry seems to have remained less obscure [BP]. Recently I obtained an ex-
plicit description of infinitesimal symmetries, which exhibits a Poisson algebra
structure [T2]. Very recently, inspired by work of Leznov et al. [LMS], I noticed
that these infinitesimal symmetries can be “exponentiated” by a simple method
[T3]. This leads to a kind of “perturbative” construction of a class of general (lo-
cal) solutions. To stress underlying symplectic structures, I will illustrate these
results for a 4N -dimensional generalization of the self-duality equations rather
than in the original form.

The basic standpoint of my work largely relies on the philosophy of “algebraic
analysis,” which understands differential equations as a differential algebra, i.e.,
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a set of abstract symbols and differential-algebraic relations among them. This
language has turned out to be particularly useful [T4] in the case of the super KP
hierarchy of Manin and Radul [MR] as well as the original KP hierarchy. For the
treatment of the self-duality equations, we shall not specify such a differential-
algebraic interpretation; however, its spirit is included therein.

2 Generalized Self-Duality Equations
2.1 The Case of Yang-Mills Theory

We consider a 4N -dimensional space-time with coordinates

(x, p) = (x1, . . . , x2N , p1, . . . , p2N ) (1)

and a generalized self-duality equation of Yang-Mills theory on this space-time.
This equation, as in the four dimensional case, has two equivalent expressions
[C]. As we shall see later on, these two expressions have analogues in Kähler
geometry. The first expression is given by the equations

∂2K

∂xi∂pj
− ∂2K

∂xj∂pi
+

[
∂K

∂xi
,
∂K

∂xj

]
= 0, (2)

where the unknown function K = K(x, p) takes values in the Lie algebra LieG
of the structure group G. The second one is given by

∂

∂xi

(
∂J

∂pj
J−1

)
− ∂

∂xj

(
∂J

∂pi
J−1

)
= 0, (3)

where the unknown function J = J(x, p) now takes values in G.
As well known, these equations are the integrability condition (in the sense

of Frobenius) of the linear system
(

∂

∂pj
− λ

∂

∂xi
+ Ai

)
Ψ(λ) = 0. (4)

The gauge potentials Ai are combined with the previous unknown functions J
and K as:

Ai = −∂K

∂xi
= − ∂J

∂pi
J−1. (5)

We consider, in particular, a special pair of solutions

Ψ(λ) = W (λ), W (λ) = 1 +
∑

n≤−1

Wnλn,

Ψ(λ) = V (λ), V (λ) =
∑

n≥0

Vnλn (6)

connected with J and K by the relation

K = −W−1, J = V0. (7)

The linear system, with these expressions inserted, gives rise to a nonlinear
system with the new unknown functions Wn and Vn. Symmetries are to be
constructed for this nonlinear system rather than the original equation.
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2.2 The Case of Kähler Geometry

We now turn to Kähler geometry. Our notational conventions are as follows. Let
i, j, . . . be symplectic indices with values in integers 1, . . . , 2N . ∈ij and ∈ij denote
the standard symplectic ∈-symbols normalized as ∈2i−1,2i= − ∈2i,2i−1= 1 and
∈2i−1,2i= − ∈2i,2i−1= 1. The Einstein summation convention is understood only
for symplectic indices. Symplectic indices are raised and lowered as ξi =∈ij ξj

and ηj = ηi ∈ij .
A 4N -dimensional generalization of the self-duality equation in Kähler ge-

ometry is provided by hyper-Kähler geometry. As pointed out (or re-discovered)
by Plebanski [P] in the four dimensional (self-dual) case, hyper-Kähler geometry
(also called “H-space”) has two equivalent local pictures based upon the first and
second “heavenly equations.” The “second” picture consists of a 4N -dimensional
coordinate system (x, p) = (x1, . . . , x2N , p1, . . . , p2N ), a scalar unknown function
Θ = Θ(x, p), and the “second heavenly equation”

∂2Θ

∂xi∂pj
− ∂2Θ

∂xj∂pi
+

{
∂Θ

∂xi
,
∂Θ

∂xj

}

(x)

= 0, (8)

where { , }(x) stands for the Poisson bracket in x,

{F, G}(x) =∈ij ∂F

∂xi

∂G

∂xj
. (9)

In the “first” picture, one has a 4N -dimensional coordinate system (p, p̂) =
(p1, . . . , p2N , p̂1, . . . , p̂2N ), a scalar unknown function Ω = Ω(p, p̂), and the “first
heavenly equation” {

∂Ω

∂pi
,
∂Ω

∂pj

}

(p̂)

=∈ij , (10)

where we use another Poisson bracket,

{F, G}(p̂) =∈ij ∂F

∂p̂i

∂G

∂p̂j
. (11)

Geometrically, Ω represents a Kähler potential, and pi and p̂i correspond to
complex coordinates and their complex conjugate. In the following, however, we
understand (p, p̂) or (x, p) as 4N independent complex variables and consider
formal aspects of the above differential equations.

The role of W (λ) and V (λ) is now to be played by two sets of functions (or
formal Laurent series)

ui(λ) =
∑

n≤−1

ui
nλn + xi + piλ (1 ≤ i ≤ 2N),

ûi(λ) =p̂i +
∑

n≥1

ûi
nλn, (1 ≤ i ≤ 2N) (12)

subject to the exterior differential equations
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∈ij dui(λ) ∧ duj(λ) =∈ij dûi(λ) ∧ dûj(λ), (13)

and

dΘ =∈ij ui
−2dpj+ ∈ij ui

−1dxi,

dΩ = − ∈ij ui
0dpj+ ∈ij ûi

1dp̂j . (14)

Here ui
n and ûi

n are understood as unknown functions of (x, p) (in the second
heavenly picture) or of (p, p̂) (in the first heavenly picture); λ is considered
a constant under the total differential d, i.e., dλ = 0. Symmetries are to be
constructed for this nonlinear system.

3 Infinitesimal Symmetries

3.1 The Case of Yang-Mills Theory [T1]

For the
(
W (λ), V (λ)

)
-system, a one-parameter family of transformations
(
W (λ), V (λ)

)
%→

(
W (ϵ, λ), V (ϵ,λ)

)
(15)

of solutions is defined by the Riemann-Hilbert factorization

W (ϵ,λ)e−ϵX(λ)W (λ)−1 = V (ϵ,λ)e−ϵY (λ)V (λ)−1. (16)

Here X(λ) = X(λ, x, p) and Y (λ) = Y (λ, x, p), the data of transformations, are
LieG-valued functions of 4N + 1 variables of the form

X(λ) = X(λ, x1 + p1λ, . . . , x2N + p2Nλ),
Y (λ) = Y(λ, x1 + p1λ, . . . , x2N + p2Nλ), (17)

where X and Y are arbitrary LieG-valued functions of 2N + 1 variables with
Laurent expansion

X(λ, u) =
∞∑

n=−∞
Xn(u)λn, Y(λ, u) =

∞∑

n=−∞
Yn(u)λn. (18)

[In fact, some restriction on these data is required for the Riemann-Hilbert fac-
torization to work well; a prescription is to put upper and lower bounds to the
range of n as −∞ < n ≤ nX for X(λ) and −nY ≤ n < ∞ for Y(λ). A simi-
lar remark also applies to the hyper-Kähler case. This is a somewhat technical
issue.] The associated infinitesimal transformations

δX,Y W (λ) =
∂W (ϵ, λ)

∂ϵ

∣∣∣∣
ϵ=0

,

δX,Y V (λ) =
∂V (ϵ,λ)

∂ϵ

∣∣∣∣
ϵ=0

(19)

have the following structure.
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Proposition 1. The infinitesimal symmetries act on W (λ) and V (λ) as follows.

δX,Y W (λ) · W (λ)−1 =
(
W (λ)X(λ)W (λ)−1 − V (λ)Y (λ)V (λ)−1

)
≤−1

,

δX,Y V (λ) · V (λ)−1 =
(
V (λ)Y (λ)V (λ)−1 − W (λ)X(λ)W (λ)−1

)
≥0

, (20)

where ( )≥0 and ( )≤−1 are linear maps on the space of Laurent series of λ
defined by

( )≥0 : λn %→ θ(n ≥ 0)λn,

( )≤−1 : λn %→ θ(n ≤ −1)λn. (21)

Further, these infinitesimal symmetries obey the commutation relations

[δX1,Y1 , δX2,Y2 ] = δ[X1,X2],[Y1,Y2]. (22)

Thus, in particular, the infinitesimal symmetries give rise to a nonlinear realiza-
tion of a direct sum of two loop algebras (with extra 2N variables u1, . . . , u2N ).
The associated infinitesimal transformations of J = V0 and K = −W−1 can be
readily derived from the above result.

3.2 The Case of Kähler Geometry [T2]

The case of
(
u(λ), û(λ)

)
-system requires a more involved factorization, i.e., a

factorization with respect to composition of maps. Let us consider this issue
within the (x, p)-coordinate system. [A fully parallel treatment is possible with
the (p, p̂)-coordinate system.] u(λ) and û(λ) are now interpreted as maps

u(λ) : x %→ u(λ, x, p),
û(λ) : x %→ û(λ, x, p) (23)

from the x-space into the u-space or û-space respectively. A one-parameter family
of transformations (

u(λ), û(λ)
)
%→

(
u(ϵ, λ), û(ϵ,λ)

)
(24)

of solutions can be defined by the Riemann-Hilbert factorization

u(ϵ,λ)−1 ◦ e−ϵξF (λ) ◦ u(λ) = û(ϵ,λ)−1 ◦ e−ϵξF̂ (λ) ◦ û(λ), (25)

where ξF (λ) and ξF̂ (λ) are Hamiltonian vector fields of the form

ξF (λ) = ∈ij ∂F (λ)
∂ui

∂

∂uj
,

ξF̂ (λ) = ∈ij ∂F̂ (λ)
∂ûi

∂

∂ûj
. (26)

The generating functions F (λ) = F (λ, u) and F̂ (λ) = F̂ (λ, û) are arbitrary
functions of 2N + 1 variables with Laurent expansion
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F (λ) =
∞∑

n=−∞
Fn(u)λn, F̂ (λ) =

∞∑

n=−∞
F̂ (û)λn. (27)

The infinitesimal transformations

δF,F̂ ui(λ) =
∂ui(ϵ, λ)

∂ϵ

∣∣∣∣
ϵ=0

,

δF,F̂ ûi(λ) =
∂ûi(ϵ, λ)

∂ϵ

∣∣∣∣
ϵ=0

(28)

have the following structure.

Proposition 2. The infinitesimal symmetries act on u(λ) and û(λ) as:

δF,F̂ ui(λ) =
{[

F
(
λ, u(λ)

)
− F̂

(
λ, û(λ)

)]

≤−1
, ui(λ)

}

(x)

,

δF,F̂ ûi(λ) =
{[

F̂
(
λ, û(λ)

)
− F

(
λ, u(λ)

)]

≥0
, ûi(λ)

}

(x)

. (29)

Further, the infinitesimal symmetries obey the commutation relations
[
δF1,F̂1

, δF2,F̂2

]
= δ{F1,F2}(u),{F̂1,F̂2}(û)

. (30)

Thus the infinitesimal symmetries give a nonlinear realization of a direct sum of
two Poisson (loop) algebras.

Remarkably, the above infinitesimal symmetries can be extended to Θ and
Ω without modifying the Poisson algebra structure.

Proposition 3. The infinitesimal symmetries can be consistently extended to Θ
and Ω by the following rule.

δF,F̂ Θ = res
λ=∞

F
(
λ, u(λ)

)
+ res

λ=0
F̂

(
λ, û(λ)

)
,

δF,F̂ Ω = − res
λ=∞

λ−2F
(
λ, u(λ)

)
− res

λ=0
λ−2F̂

(
λ, û(λ)

)
, (31)

where the residues are normalized as

res
λ=∞

λn = −δn,−1, res
λ=0

λn = δn,−1. (32)

These extended infinitesimal symmetries obey the same commutation relations
as in Proposition 2.
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4 Perturbative Method [T3]

The infinitesimal symmetries, as we have seen, have a considerably simple and
beautiful structure. The Riemann-Hilbert factorization problems in general are
hard to solve explicitly. For the case of Yang-Mills fields, several solution meth-
ods are developed; for the hyper-Kähler case, only existence theorems are known
(except for a few very special families of solutions). The method presented here,
so to speak, “exponentiate” the infinitesimal symmetries by expanding every-
thing in powers of ϵ. As Leznov et al. [LMS] pointed out, the parameter ϵ plays
the role of “coupling constants” in field theory; therefore we call the following
method “perturbative.”

4.1 The Case of Yang-Mills Theory

Let us consider the previous Riemann-Hilbert factorization in case where

W (λ) = V (λ) = 1 (trivial solution), Y (λ) = 0. (33)

Let us define
X (ϵ,λ) = W (ϵ,λ)X(λ)W (ϵ,λ)−1 (34)

Since ∂/∂ϵ corresponds to the action of δX,0 on
(
W (ϵ,λ), V (ϵ,λ)

)
, one can readily

find a closed differential equation satisfied by X (ϵ,λ) with respect to ϵ.

Proposition 4. X (ϵ,λ) satisfies the differential equation

∂X (ϵ,λ)
∂ϵ

=
[(
X (ϵ,λ)

)
≤−1

,X (ϵ,λ)
]

(35)

and the initial condition

X (ϵ = 0,λ) = X(λ, x + pλ). (36)

Further,

Proposition 5. K(ϵ) = −W−1(ϵ) and J(ϵ) = V0(ϵ) obey the differential equa-
tions

∂K(ϵ)
∂ϵ

= res
λ=∞

X (ϵ,λ),

∂J(ϵ)
∂ϵ

J(ϵ)−1 = res
λ=∞

λ−1X (ϵ,λ). (37)

Substitution of the Taylor expansion (“perturbation series”)

X (ϵ,λ) =
∞∑

k=0

X (k)(λ)ϵk/k! (38)
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into the above equation yields a set of recursive relations

X (0)(λ) = X(λ) = X(λ, x + pλ),

X (k+1) =
k∑

ℓ=0

(
k

ℓ

)[(
X (k−ℓ)(λ)

)
≤−1

,X (ℓ)(λ)
]
. (39)

The unknown functions K(ϵ) and J(ϵ) of the generalized self-duality equations,
too, can be determined by expansion into powers of ϵ.

In the original formulation of Leznov et al. [LMS], the projection ( )≤−1

is represented by an integral operator; they exploit its algebraic properties to
check, by brute force, the validity of their formula.

3.2 The Case of Kähler Geometry

We now start from the Riemann-Hilbert factorization with

ui(λ) = ûi(λ) = xi + piλ (trivial solution), F̂ (λ) = 0, (40)

and derive differential equations satisfied by

F(ϵ,λ) = F
(
λ, u(ϵ,λ)

)
(41)

and Θ(ϵ) with respect to ϵ.

Proposition 6. F(ϵ,λ) satisfies the differential equation
∂F(ϵ,λ)

∂ϵ
=

{
[F(ϵ,λ)]≤−1 ,F(ϵ,λ)

}

(x)
(42)

and the initial condition

F(ϵ = 0,λ) = F (λ, x + pλ). (43)

Proposition 7. One can obtain Θ(ϵ) by solving the differential equation
∂Θ(ϵ)

∂ϵ
= res

λ=∞
F(ϵ,λ) (44)

under the initial condition
Θ(ϵ = 0) = 0. (45)

These equations can be solved by the same “perturbative method” as illustrated
in the case of Yang-Mills fields.

The above construction is not suited for the first heavenly picture based
upon (p, p̂,Ω). To give a similar construction for the first heavenly picture, we
just have to restart from the situation where

ui(λ) = ûi(λ) = p̂i + piλ, F (λ) = 0, (46)

and consider equations satisfied by Ω(ϵ) and

F̂(ϵ,λ) = F̂
(
λ, û(ϵ,λ)

)
. (47)
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5 KP and Super KP Hierarchies [T4]

In the differential-algebraic approach mentioned in the introduction, a nonlinear
system is represented by a commutative algebra A with a set of derivations
∂1, ∂2, . . .. If one is not interested in a particular choice of such derivations, it is
convenient to understand a differential algebra as a pair (A,∆) of a commutative
algebra and an A-module ∆ of derivations in A. Infinitesimal symmetries are
then, by definition, derivations δ : A → A that satisfy the condition

[δ, ∂] ∈ ∆ (∀∂ ∈ ∆). (48)

In most applications, the derivations ∂1, ∂2, . . ., are chosen to be commutative,
and symmetries are characterized as extra derivations of A that commute with
these derivations. (The super KP hierarchy is somewhat distinct; not only A be-
ing a supercommutative algebra, the set of derivations are neither commutative
nor supercommutative. One can however see that its basic structure is almost
parallel to the case of the KP hierarchy.)

The generalized self-duality equations, too, can be formulated as such an ab-
stract differential algebra. Its algebraic part A should be a commutative algebra
(over a suitable differential subalgebra that specifies in which domain to seek for
solutions) generated by the Laurent coefficients of W (λ) and V (λ), or of u(λ)
and û(λ). In the latter case, one may also add Θ or Ω. This certainly provides
an umbiguous framework for the notion of infinitesimal symmetries; however,
one will gain nothing practically new from this reinterpretation.

The situation is considerably different for the case of the KP and super KP
hierarchies. For these equations, the differential-algebraic language seems to have
a substantial meaning. Of articular importance is a D-module structure hidden
in the formulation of the KP and super KP hierarchy. (This observation for the
case of the KP hierarchy is due to Sato, who stresses the relevance of the notion
of D-modules even in more general perspectives [S].) With the aid of this D-
module structure, one can find a new set of generators wij (i ≥ 0, j ≤ −1) in
A. This is the most direct way to see a connection with the geometry of infinite
dimensional (super) Grassmannian manifolds; wij ’s can be identified with affine
coordinates on an open subset therein. This also leads to an explicit description
of infinitesimal symmetries δA parametrized by elements A of an infinite matrix
Lie algebra gl(∞) (for the KP hierarchy) or of its super-version gl(∞|∞) (for the
super KP hierarchy), a differential-algebraic characterization of the τ function,
its symmetry contents related to central extensions of gl(∞) and gl(∞|∞), etc.

In fact, Θ and Ω, may be in a sense considered an analogue of the τ function.
This analogy becomes quite reasonable if we consider a hierarchy of the gener-
alized self-duality equations discussed here. Their representation-theoretic and
geometric properties are however considerably different from the τ function.
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