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1. String equation
String equation (also called Douglas equation)

e General form

Q,P]=1
where P and @ are differential operators (0, = 9/0x)
Q = 9% 4+ ux0l 2+ + uy,
P =004+ v0P 2 + ... 4wy
e [ his talk is focussed on the special case
q=2, p=29-+1,
Q=024+u, P=029T14...

e g is the genus of an underlying spectral curve.



Construction of operator P

P =Bps11+c1Boyg 1+ -+ cg_1B3+cgBa

® cy,...,Cqg are constants.
e By,41's are the differential operators

Bont1 = (Q"T1/2)54

used in the construction of the KdV hierarchy.
e Q1/2 is the square root

QY2 =08, + 900yt + 39,2+ -

of Q = 92 +wu. The coefficients go, g3, ..., are differential
polynomials of .



Gelfand-Dickey polynomials

U 1 3
Ro=1 Ry= 5, Ry = _uaq + —u2
1 5 2
R -
3 — 32 Uxrxxx ‘|‘ Uxx ‘|‘ +

e “Residue’ of Qn—1/2

Q" Y2 = Bopi1 + Rudyt + -+

e Recurrence formula (Lenard relations)

1 1

e (Q-adic expansion of By, 41

n

1 _
Bopt1= ). (Rm@w - ERm,x) Q"
m=0



String equation in terms of Gelfand-Dickey polynomials

e The commutator [By,41,Q] can be written as

[Bop+1,Ql = 2R, 414

e The commutator equation [Q, P] = 1 reduces to the
equation

2(Rg-|-1 + Cle + -+ CgRl)a: +1=0.

e Integrating it once and removing the integral constant
by * — x 4+ ¢, one obtains the equation

which is the final form of the string equation.
® cq is suppressed in the following.



Examples

e g =1, P = B3: 1st Painlevé equation (PI)

1
2Ry +2=0 <= Juw+ S 4 r=0

e g=2, P= Bg—+ coBj:
2R3—|—262R1—|—x_0 <~

1 5
16 :I::I:xa:‘l‘ zca:+ 2"‘ U3—|—CQ’LL—|—CU—O

e g=3, P= B7+ copB3+ c3B7:
2R4 4+ 2coRo + 2c3R1 + =0 <~

1
64 Uggzzxzzr + -+ =0



2. String equation as isomonodromic
deformations

e [, P] =1 <= integrability of linear system

QY =\, Py = 0\.
e Equivalent 2 x 2 matrix linear system for W = (¢ 9,¢):
W = UV, W = V(\)W,
where U(M) and V(X\) are 2 x 2 matrices

_( 0 1 _ [ a() B
U= ( A—u o)’ VA= < V) —a(d) )
of polynomials in \.

e [, P] =1 <= isomonodromic Lax equation

[0 — UV, 8y — V(N)] = 0.



e a(N),B(N),v(N\) are polynomials in A as follows:

BA) = Rg(A) + coRo(A) + -+ - + cgRo(N),
a(N) =~ B0, 1) = (A~ w)BO) — 026()

where

Rn(N\) = A"+ RN L4+ . 4+ R,

e In particular, dega(\) = g—1, deg 8(\) = g, deg B(\) =
g+ 1, and 3(\) and ~(\) are monic.

e V(X)) is the same matrix as used in the Lax form of the
stationary higher KdV equation

[Q, P] = 0.

The string equation is thus an isomonodromic analogue
of the stationary higher KdV equation.



3. Higher KdV flows as isomonodromic
deformations

Higher KdV flows

e The (Q,P) pair can be further deformed by the first
g—1flows i5,41, n=1,...,9 — 1 of the KdV hierarchy:

Otrpy1 = [Bon+1,Ql, 0Oty = [Bopt1, Pl
e The "constants” cp,...,cg now depend on the time
variables as
2g—1 3
> tog—1, ..., Cg= 5?53.
e Relation to the Lax and Orlov-Schulman operators
L, M of the KP hierarchy:

co =

1
Q=1°% P= 5ML—l.



These flows are also isomonodromic

e [ he higher KdV flows are obtained by adding the linear
equations

8t2n_|_1¢ — B2n—|—1¢
to the previous linear system Qv = A\, Py = O\v.
e [ hese equations are equivalent to the matrix form

where Up (M) are 2 x 2 matrices of polynomials in \.
e T he higher KdV flows can be thus converted to the
isomonodromic Lax equations

[0y, 1 — Un(A), 9y — V(M) = 0.

e The ti-flow can be identified with the deformations
with respect to x: Ug(A\) = U(N).
10



Technical remarks

e [ he matrix elements of

_ [ an(A)  bn(N)
U”(A)—<cn(/\) —an(A)>

have a structure similar to V(\):
1
bn(X) = Rp(N), an(X) = _EaiURn()\)a

1
cn(N) = (A —w)Rn()) — §8§Rn()\).
e V(X)) is a linear combination of U,(\)'’s:

V(A) = Ug(N) + caUg—2(A) + -+ + cgUp(N).
e 1) satisfies the linear constraint

2n + 1
8>\¢ — Z ( n2 )t2n+13t2n_1¢-
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4. Darboux coordinates and Hamilto-
Nnian system

Spectral Darboux coordinates

Recall that V(M) is a matrix of the form

_ (o) B
””‘(%\) —aw)'

e \We introduce a collection of new dynamical variables
Ny i (3 =1,...,9) as follows:

g
B = 1] (A=2X), pnj=al).
j=1
e [ hey play the role of Darboux coordinates in our Hamil-
tonian formulation of the string equation and the higher
KdV flows.
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Spectral curve

° Aj and 1 satisfy the algebraic relation

ps = p(X;),
where p(\) is a polynomial of degree 2g + 1 defined by
p(N) = a(A)? + B(A)Y(N) = —det V().

e In other words, (>\j7lu’j):?:]_ are a collection of points
(or divisor) on the hyperelliptic curve (spectral curve)

p?=pA) = X9t

which, too, deforms in isomonodromic deformations.
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Structure of p(\)

p(A) is a polynomial of the form

p(A) = Io(\) + N9 L+ 1,

e Ip(N\) is a linear combination of quadratic polynomials
of co = (29 — 1)7529_1/2, ..., ¢g = 313/2 and z = t1:

IO(A) — >\2g+1 —I— 202)\29_1 —I— 203)\29_2 _|_ (264 _I_ C%))\Qg—3
+ -+ (CU + C2Cg—2 + -+ Cg_QCQ)Ag.

Note that this part does not contain true dynamical vari-
ables (i.e., u,uz, Uzz,...).
e [1,...,1I4 are differential polynomials of w. In the sta-
tionary KdV equation, they are conserved quantities; in
the present setting, they are not conserved.
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Relation to 2nd order ODE

The 1st order system €Y = V(M)W can be reduced to

d\
the 2nd order scalar equation
d2
PV +p(e =0
The coefficients are given by
B'(N) J
)\ = — = — ,
p1 (M) 500 j;l A=A
B'(N)
A\) = —p(\ .
p2(A) p(A) 500

Consequently, A;'s are apparent singularities, and u;'s are
the residue of po(\) at these points.
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Hamiltonian form of string equation

Theorem 1 The string equation is equivalent to the non-
autonomous Hamiltonian system

0\, OH dp;  OH

Br  op;  ox | ox
with the Hamiltonian

Proof is done by naive calculations: First derive differ-
ential equations of A; and u; from the Lax equations
of V(A), and rewrite these equations into the Hamilto-
nian form. Then show that the Lax equations can be
reconstructed from the Hamiltonian system.
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Hamiltonian form of higher KdV flows

Theorem 2 The higher KdV flows are equivalent to the
non-autonomous Hamiltonian system

o\; _ 9Hy Ouj _  OHnp
Otopt1  Opj Otopyq OA;
with the Hamiltonians
9 w2 —Io(X;) g .
K O\ M /
H, = J Rn(\;) — —J R (X)),
' j; CTE j; B ™

Here R,,’s are understood to be functions of Aj’s that are
implicitly defined by the relation between 3(\) and R),’s:

BA) = Rg(A) + coRgo(A) + -+ cgRo(A).

Proof is again by calculations (far more complicated than
the proof of Theorem 1).
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4. Examples

g=1 (PI)

¢ 2Ry + = = Fuge + 2u® + 1 = 0.
e B(A\) = A+ B1, f1=R1 =35.

e\ =01, 11 = —%51,:1;-

o p(\) = Io(\) + I1, Ig(A\) = A3 + 2.

o H=p%— 23 —x)\.
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g = 2 (degenerate 2D Garnier system)
e 2R3+ 2coR1 +x =0, cp = %t3, r =11.

¢ BA) =X+ B1A+ B == A1)\ =),
B1 = R1, B> = Ry + co.

o a(N) = —3(B1aX+ Boz), 1j = a()).
e p(N\) = Io(\) + I1 A+ In, Ig(\) = X2 + 2e5)03 + 222

o Hy = Mi=ToQ) | p3-Io(A2)

0 — 2>\1—)\2 )\22—>\1 !
— _.Ul_IO()\l) o MQ_[O()\Q) M1 o
Hy = A1—A2 A2 Ao—Aq A1 A1—=A2  Ax—Ap”

(cf. H. Kimura; S. Shimomura)
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g = 3 (degenerate 3D Garnier system?)
e 2Rps+2coRo+2c3R1+x =0, co = %t5, c3 = %t3, T =11.

¢ B(N) = X34 8102+ BoA+ 83 = (A= A1) (A= 2A2) (A —A3),
B1 = Ry, B> = Ry +cp, 83 = R3+ cpR1 + c3.

o a(N) = —3(B127A% + Boah + B3 ), = a())).

e p(\) = Ig(\) + 1A% + I\ + I3,
Io(A) = AT 4 2¢o0° 4 2¢30* + (z + 3)A3.
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