Modified melting crystal model and Ablowitz-Ladik hierarchy

Kanehisa Takasaki (Kyoto University)

Gallipoli, Italy, June 24, 2013

Reference

Contents

1. Melting crystal model
 3D Young diagram, plane partitions, partition function, diagonal slicing, partial sums, final answer

2. Integrable structure in deformed models
 undeformed models, deformation by external potentials, summary of previous result, summary of new result

3. Fermionic approach to partition functions
 fermions, fermionic representation of partition functions, previous result, new result, technical clue

4. Integrable structure in Lax formalism
 Lax formalism of 2D Toda hierarchy, reduction to 1D Toda hierarchy, reduction to Ablowitz-Ladik hierarchy, result, technical clue
1. Melting crystal model

Crystal corner and 3D Young diagram

The melting crystal model is a statistical model of a crystal corner in the first octant of the xyz space. The crystal consists of unit cubes, and the complement in the octant is identified with a 3D Young diagram.
Plane partitions and 3D Young diagrams

- Plane partition = decreasing 2D array of non-negative integers

\[
\pi = (\pi_{ij})_{i,j=1}^{\infty} = \begin{pmatrix}
\pi_{11} & \pi_{12} & \cdots \\
\pi_{21} & \pi_{22} & \cdots \\
\vdots & \vdots & \ddots \\
\end{pmatrix}, \quad \pi_{ij} \geq \pi_{i,j+1}
\]

- 3D Young diagrams can be labelled by plane partitions. \(\pi_{ij} \) is the height of the stack of cubes on the \(xy \) plane.

\[
\pi = \begin{pmatrix}
3 & 2 & 2 \\
3 & 2 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]
1. Melting crystal model

Partition function

The Partition function of this model is the sum

\[Z = \sum_{\pi \in \mathcal{PP}} q^{|\pi|}, \quad |\pi| = \sum_{i,j=1}^{\infty} \pi_{ij} \]

of the Boltzmann weight \(q^{|\pi|} \) \((0 < q < 1)\) over the set \(\mathcal{PP} \) of all plane partitions. \(|\pi|\) is the volume of the 3D Young diagram.
1. Melting crystal model

Diagonal slicing

\[m\text{-th diagonal slice } \pi(m) = \begin{cases} (\pi_{i,i+m})_{i=1}^{\infty} & \text{if } m \geq 0, \\ (\pi_{j-m,j})_{j=1}^{\infty} & \text{if } m < 0 \end{cases} \]
There is a one-to-one correspondence between plane partitions $\pi \in \mathcal{PP}$ and triples (λ, T, T') of the principal slice $\lambda = \pi(0)$ and two semi-standard tableaux T, T' of shape λ.

Mapping $\pi \mapsto (\lambda, T, T')$
Converting Z to sum over (λ, T, T')

The Boltzmann weight q^{π} is factorized as
\[
q^{\pi} = q^T q^{T'},
\]
\[
q^T = \prod_{m=0}^{\infty} q^{(m+1/2)|\pi(-m)/\pi(-m-1)|},
\]
\[
q^{T'} = \prod_{m=0}^{\infty} q^{(m+1/2)|\pi(m)/\pi(m+1)|}.
\]

The partition function can be thereby decomposed to sums over $\lambda = \pi(0) \in \mathcal{P}$ and $T, T' \in \text{SSTab}(\lambda)$
\[
Z = \sum_{\lambda \in \mathcal{P}} \left(\sum_{T \in \text{SSTab}(\lambda)} q^T \right) \left(\sum_{T' \in \text{SSTab}(\lambda)} q^{T'} \right).
\]
Partial sums over semi-standard tableaux

Partial sums over T and T' turn into the special values

$$\sum_{T \in \text{SSTab}(\lambda)} q^T = \sum_{T' \in \text{SSTab}(\lambda)} q^{T'} = s_\lambda(q^{-\rho})$$

of the Schur functions $s_\lambda(x_1, x_2, \cdots)$ of infinite variables at

$$q^{-\rho} = (q^{1/2}, q^{3/2}, \ldots, q^{n+1/2}, \ldots).$$
Final answer

By the Cauchy identity

$$\sum_{\lambda \in \mathcal{P}} s_\lambda(x_1, x_2, \ldots)s_\lambda(y_1, y_2, \ldots) = \prod_{i,j=1}^{\infty} (1 - x_i y_j)^{-1},$$

the partition function can be cast into the final form

$$Z = \sum_{\lambda \in \mathcal{P}} s_\lambda(q^{-\rho})^2 = \prod_{i,j=1}^{\infty} (1 - q^{i+j-1})^{-1} = \prod_{n=1}^{\infty} (1 - q^n)^{-n}.$$

This is the so called MacMahon function.
2. Integrable structure in deformed models

Undeformed models

\[Z = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(q^{-\rho})^2 Q^{\mid \lambda \mid} = \prod_{n=1}^{\infty} (1 - Q q^n)^{-n}, \]

\[Z' = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(q^{-\rho}) s_{\lambda}(q^{-\rho}) Q^{\mid \lambda \mid} = \prod_{n=1}^{\infty} (1 + Q q^n)^n \]

1. \(Z \) is a slight modification of the foregoing melting crystal model.
2. \(Z' \) is a modification replacing \(s_{\lambda}(q^{-\rho})^2 \rightarrow s_{\lambda}(q^{-\rho}) s_{\lambda}(q^{-\rho}) \). \(^t \lambda \) denotes the conjugate partition of \(\lambda \). This is no more a statistical model of 3D Young diagrams. (3D Young diagrams are cut in half and glued together in a twisted way.)
Deformation by external potentials

\[\Phi(\lambda, s, t) = \sum_{k=1}^{\infty} t_k \Phi_k(\lambda, s), \]

\[\Phi(\lambda, s, t, \tilde{t}) = \sum_{k=1}^{\infty} t_k \Phi_k(\lambda, s) + \sum_{k=1}^{\infty} \tilde{t}_k \Phi_{-k}(\lambda, s) \]

\[Z(s, t) = \sum_{\lambda \in \mathcal{P}} s_\lambda (q^{-\rho})^2 \mathcal{Q}_{[\lambda]} + s(s+1)/2 \epsilon_{s, t}, \]

\[Z'(s, t, \tilde{t}) = \sum_{\lambda \in \mathcal{P}} s_\lambda (q^{-\rho}) s_{t, \lambda} (q^{-\rho}) \mathcal{Q}_{[\lambda]} + s(s+1)/2 \epsilon_{s, t, \tilde{t}} \]

\[t = (t_1, t_2, \ldots) \] and \[\tilde{t} = (\tilde{t}_1, \tilde{t}_2, \ldots) \] play the role of “time variables”, s a lattice coordinate in an integrable lattice system.
2. Integrable structure in deformed models

External potentials

Heuristic definition

\[\Phi_k(\lambda, s) = \sum_{i=1}^{\infty} q_k(\lambda_i + s - i + 1) - \sum_{i=1}^{\infty} q_k(-i + 1) \]

True definition by recombination of terms

\[\Phi_k(\lambda, s) = \sum_{i=1}^{\infty} (q_k(\lambda_i + s - i + 1) - q_k(s - i + 1)) + \frac{1 - q^{ks}}{1 - q^k} q_k \]

This is related to “normal ordering” of operators in a 2D free fermion system.
Previous result: summary

$Z(s; t)$ is related to a tau function $\tau(s, t)$ of the 1D Toda hierarchy as

$$Z(s, t) = \exp \left(\sum_{k=1}^{\infty} \frac{t_k q^k}{1 - q^k} \right) q^{-s(s+1)(2s+1)/6} \tau(s, \iota(t)),$$

where $\iota(t)$ denotes the alternating inversion

$$\iota(t) = (-t_1, t_2, -t_3, \ldots, (-1)^k t_k, \ldots)$$

of $t = (t_1, t_2, \ldots)$. $\tau(s, t)$ has a fermionic representation.
New result: summary

\(Z'(s, t, \bar{t}) \) is related to a tau function \(\tau'(s, t, \bar{t}) \) of the 2D Toda hierarchy. \(\tau'(s, t, \bar{t}) \) has a fermionic representation. Moreover, this solution of the 2D Toda hierarchy is actually a solution of the Ablowitz-Ladik (or relativistic Toda) hierarchy.

Remark: \(Z'(s, t, \bar{t}) \) coincides with the amplitude of topological string theory (equivalently, a generating function of Gromov-Witten invariants) on the resolved conifold. Brini conjectured that this generating function is related to the Ablowitz-Ladik hierarchy, and confirmed the conjecture for genus \(\leq 1 \) of the genus expansion (A. Brini, Commun. Math. Phys. 313 (2012), 571–605, arXiv:1002.0582 [math-ph]). Our result is an answer to Brini’s conjecture from a different approach.
3. Partition functions in fermionic formalism

Fermions

- 2D fermion fields

\[\psi(z) = \sum_{n \in \mathbb{Z}} \psi_n z^{-n-1}, \quad \psi^*(z) = \sum_{n \in \mathbb{Z}} \psi_n^* z^{-n}. \]

- Creation-annihilation operators

\[\psi_m \psi_n^* + \psi_n^* \psi_m = \delta_{m+n,0}, \quad \psi_m \psi_n + \psi_n \psi_m = \psi_m^* \psi_n^* + \psi_n^* \psi_m^* = 0 \]

- Ground states of charge \(s \) in the Fock space

\[\langle s \rangle = \langle -\infty | \cdots \psi_{s-1}^* \psi_s^* \rangle, \quad |s\rangle = \psi_{-s} \psi_{-s+1} \cdots | -\infty \rangle \]

- Excited states are labelled by partitions \(\lambda \in \mathcal{P} \) as \(\langle \lambda, s \rangle \) and \(|\lambda, s\rangle \).
3. Partition functions in fermionic formalism

Fermionic representation of partition functions

\[Z(s, t) = \langle s| \Gamma_+ (q^{-\rho}) Q^L_0 e^{H(t)} \Gamma_- (q^{-\rho}) |s \rangle, \]
\[Z'(s, t, \bar{t}) = \langle s| \Gamma_+ (q^{-\rho}) Q^L_0 e^{H(t, \bar{t})} \Gamma'_- (q^{-\rho}) |s \rangle \]

- \(L_0 \) and \(H_k \) are fermion bilinears:
 \[L_0 = \sum_{n \in \mathbb{Z}} n: \psi_n \psi^*_n :, \quad H_k = \sum_{n \in \mathbb{Z}} q^{kn}: \psi_n \psi^*_n :. \]

- \(H(t) \) and \(H(t, \bar{t}) \) are linear combinations of \(H_k \)'s:
 \[H(t) = \sum_{k=1}^{\infty} t_k H_k, \quad H(t, \bar{t}) = \sum_{k=1}^{\infty} t_k H_k + \sum_{k=1}^{\infty} \bar{t}_k H_{-k}, \]
3. Partition functions in fermionic formalism

- $\Gamma_\pm(q^{-\rho})$ and $\Gamma'_\pm(q^{-\rho})$ are infinite products

$$
\Gamma_\pm(q^{-\rho}) = \prod_{i=1}^{\infty} \Gamma_\pm(q^{i-1/2}), \quad \Gamma'_\pm(q^{-\rho}) = \prod_{i=1}^{\infty} \Gamma'_\pm(q^{i-1/2})
$$

of the vertex operators (Okounkov & Reshetikhin, Bryan & Young)

$$
\Gamma_\pm(z) = \exp \left(\sum_{k=1}^{\infty} \frac{z^k}{k} J_{\pm k} \right), \quad \Gamma'_\pm(z) = \exp \left(- \sum_{k=1}^{\infty} \frac{(-z)^k}{k} J_{\pm k} \right)
$$

specialized to $z = q^{i-1/2}$, $i = 1, 2, \ldots$. J_k's are the usual basis of the $U(1)$ current algebra:

$$
J_k = \sum_{n \in \mathbb{Z}} :\psi_{-n} \psi^*_{n+k}:.
$$
The partition function $Z(s, t)$ is related to a tau function $\tau(x, t)$ of the 1D Toda hierarchy as

$$Z(s, t) = \exp \left(\sum_{k=1}^{\infty} \frac{t_k q^k}{1 - q^k} \right) q^{-s(s+1)(2s+1)/6} \tau(s, \iota(t)),$$

where

$$\tau(s, t) = \langle s | \exp \left(\sum_{k=1}^{\infty} t_k J_k \right) g | s \rangle = \langle s | g \exp \left(\sum_{k=1}^{\infty} t_k J_{-k} \right) | s \rangle,$$

and

$$g = q^{W_0/2} \Gamma_-(q^{-\rho}) \Gamma_+(q^{-\rho}) Q^{L_0} \Gamma_-(q^{-\rho}) \Gamma_+(q^{-\rho}) q^{W_0/2}.$$

Previous result (K.T. & Nakatsu, loc. cit.)
W_0 is the fermion bilinear

$$W_0 = \sum_{n \in \mathbb{Z}} n^2 \psi_n \psi_n^*.$$

g satisfies the algebraic relations

$$J_k g = g J_{-k}, \quad k = 1, 2, \ldots.$$

This implies that the associated tau function

$$\tau(s, t, \bar{t}) = \langle s | \exp \left(\sum_{k=1}^{\infty} t_k J_k \right) g \exp \left(- \sum_{k=1}^{\infty} \bar{t}_k J_{-k} \right) | s \rangle$$

of the 2D Toda hierarchy depends on t and \bar{t} through $t - \bar{t}$:

$$\tau(s, t, \bar{t}) = \tau(s, t - \bar{t}).$$
3. Partition functions in fermionic formalism

The partition function is related to a tau function $\tau'(s, t, \bar{t})$ of the 2D Toda hierarchy as

$$Z'(s, t, \bar{t}) = \exp \left(\sum_{k=1}^{\infty} \frac{q^k t_k - \bar{t}_k}{1 - q^k} \right) \tau'(s, \nu(t), -\bar{t}).$$

The tau function $\tau'(s, t, \bar{t})$ is defined by the fermionic formula

$$\tau'(s, t, \bar{t}) = \langle s | \exp \left(\sum_{k=1}^{\infty} t_k J_k \right) g' \exp \left(- \sum_{k=1}^{\infty} \bar{t}_k J_{-k} \right) | s \rangle,$$

where

$$g' = q^{W_0/2} \Gamma_-(q^{-\rho}) \Gamma_++(q^{-\rho}) Q_{L_0} \Gamma'_-(q^{-\rho}) \Gamma'_+(q^{-\rho}) q^{-W_0/2}.$$
“Shift symmetries” (K.T. & Nakatsu, loc. cit.) in a quantum torus algebra of the fermion bilinears

\[V^{(k)}_m = q^{-km/2} \sum_{n \in \mathbb{Z}} q^{kn} \psi_{m-n} \psi^*_{n}; \]

\[H_k = V^{(k)}_0, \quad J_m = V^{(0)}_m. \]

Shift symmetries imply algebraic relations among \(H_k, J_{\pm k} \):

\[\Gamma_+ (q^{-\rho}) H_k \Gamma_+ (q^{-\rho})^{-1} = (-1)^k \Gamma_- (q^{-\rho})^{-1} q^{-W_0/2} J_k q^{W_0/2} \Gamma_- (q^{-\rho}) + \frac{q^k}{1 - q^k}, \]

\[\Gamma'_- (q^{-\rho})^{-1} H_{-k} \Gamma'_- (q^{-\rho}) = \Gamma'_+ (q^{-\rho}) q^{-W_0/2} J_{-k} q^{W_0/2} \Gamma'_+ (q^{-\rho})^{-1} - \frac{1}{1 - q^k}. \]

They are used to convert \(Z(s, t) \) and \(Z'(s, t, \bar{t}) \) to the tau functions.
4. Integrable structure in Lax formalism

Lax formalism of 2D Toda hierarchy

- Lax operators of the 2D Toda hierarchy

\[L = e^{\partial_s} + u_1 + u_2 e^{-\partial_s} + \cdots, \]
\[\bar{L}^{-1} = \bar{u}_0 e^{-\partial_s} + \bar{u}_1 + \bar{u}_2 e^{\partial_s} + \cdots \]

- Lax equations

\[\frac{\partial L}{\partial t_k} = [B_k, L], \quad \frac{\partial \bar{L}}{\partial t_k} = [B_k, \bar{L}], \]
\[\frac{\partial L}{\partial \bar{t}_k} = [\bar{B}_k, L], \quad \frac{\partial \bar{L}}{\partial \bar{t}_k} = [\bar{B}_k, \bar{L}] \]

where

\[B_k = (L^k)_{\geq 0}, \quad \bar{B}_k = (\bar{L}^{-k})_{< 0}. \]
Reduction to 1D Toda hierarchy

Reduction to the 1D Toda hierarchy is achieved by the condition

\[L = \bar{L}^{-1}. \]

The reduced Lax operator \(\mathcal{L} = L = \bar{L}^{-1} \) has the familiar form

\[\mathcal{L} = e^{\partial_s} + b + ce^{-\partial_s} \]

and satisfies the Lax equations

\[\frac{\partial \mathcal{L}}{\partial t_k} = [B_k, \mathcal{L}] = -[\bar{B}_k, \mathcal{L}] \]

for the single set \(t = (t_1, t_2, \cdots) \) of time variables.
Reduction to Ablowitz-Ladik hierarchy

Reduction to the Ablowitz-Ladik (equivalently, relativistic Toda) hierarchy is achieved by assuming the factorized form

\[L = BC^{-1}, \quad \bar{L}^{-1} = -CB^{-1}, \]
\[B = e^{\partial_s} - b, \quad C = 1 + ce^{-\partial_s} \]

Remark: \(L \neq -\bar{L} \). \(C^{-1} \) in \(L \) is an operator of the form \(1 + c_1 e^{-\partial_s} + \cdots \). Formally, \(\bar{L} = -BC^{-1} \), but \(C^{-1} \) in \(\bar{L} \) is a different operator of the form \(e^{\partial_s} \cdot c + \bar{c}_1 e^{2\partial_s} + \cdots \).
4. Integrable structure in Lax formalism

The Lax operators L, \tilde{L} associated with $\tau'(s, t, \bar{t})$ do have the factorized form of Brini et al., hence give a solution of the Ablowitz-Ladik hierarchy.

Technical clue

1. Correspondence between fermion bilinears and $\mathbb{Z} \times \mathbb{Z}$ matrices

$$X = \sum_{i,j \in \mathbb{Z}} x_{ij} E_{ij} \quad \longleftrightarrow \quad \hat{X} = \sum_{i,j \in \mathbb{Z}} x_{ij}:\psi_i \psi_j^*:$$

2. Matrix factorization problem

$$\exp \left(\sum_{k=1}^{\infty} t_k \Lambda^k \right) U \exp \left(- \sum_{k=1}^{\infty} \bar{t}_k \Lambda^{-k} \right) = W^{-1} \tilde{W}$$
Matrix representations of important fermion bilinears read

\[L_0 = \Delta, \quad W_0 = \Delta^2, \quad H_k = q^k \Delta, \quad J_k = \Lambda^k, \]

\[\Gamma_{\pm}(z) = (1 - z\Lambda^{\pm1})^{-1}, \quad \Gamma'_{\pm}(z) = 1 + z\Lambda^{\pm1} \]

where

\[\Delta = \sum_{i \in \mathbb{Z}} iE_{ii}, \quad \Lambda = \sum_{i \in \mathbb{Z}} E_{i,i+1}. \]

In particular, the vertex operators turn into **matrix-valued quantum dilogarithm**:

\[\Gamma_{\pm}(q^{-\rho}) = \prod_{i=1}^{\infty} (1 - q^{i-1/2} \Lambda^{\pm1})^{-1}, \quad \Gamma'_{\pm}(q^{-\rho}) = \prod_{i=1}^{\infty} (1 + q^{i-1/2} \Lambda^{\pm1}). \]
4. Integrable structure in Lax formalism

- The factorization problem

\[
\exp \left(\sum_{k=1}^{\infty} t_k \Lambda^k \right) U \exp \left(- \sum_{k=1}^{\infty} \bar{t}_k \Lambda^{-k} \right) = W^{-1} \bar{W}
\]

captures all solutions of the 2D Toda hierarchy. \(W \) is a “monic” lower triangular matrix, and \(\bar{W} \) is an upper triangular matrix with nonzero diagonal elements. The Lax operators are obtained from \(W \) and \(\bar{W} \) as \(L = W \Lambda W^{-1} \) and \(\bar{L} = \bar{W} \Lambda \bar{W}^{-1} \).

- In the case of \(\tau'(s, t, \bar{t}) \), the matrix \(U \) reads

\[
U = q^{\Delta^2/2} \Gamma_-(q^{-\rho}) \Gamma_+(q^{-\rho}) Q^\Delta \Gamma'_-(q^{-\rho}) \Gamma'_+(q^{-\rho}) q^{-\Delta^2/2}.
\]

Fortunately, one can solve this problem explicitly at the “initial point” \(t = \bar{t} = 0 \). This is enough to show that \(L \) and \(\bar{L} \) satisfy the factorization ansatz of Brini et al.