Integrable structure in
melting crystal model of 5D gauge theory
joint work with Toshio Nakatsu

Kanehisa Takasaki
January 10, 2008

1. Melting crystal model
2. Fermionic representation of partition function
3. Quantum torus Lie algebra
4. Integrable structure

1. Melting crystal model

melting crystal corner = random plane partition

Okounkov, Reshetikhin & Vafa, “Quantum Calabi-Yau and classical crystal”, hep-th/0309208
ordinary partition = Young diagram

\[\lambda = (\lambda_1, \lambda_2, \ldots), \lambda_i \geq \lambda_{i+1}, \lambda_i \in \mathbb{Z}_{\geq 0} \text{ (length of } i\text{-th row).} \]

|\lambda| = \sum_i \lambda_i \text{ (area).}

plane partition = 3D Young diagram

\[\pi = (\pi_{ij})_{i,j=1}^{\infty} = \begin{pmatrix}
\pi_{11} & \pi_{12} & \cdots \\
\pi_{21} & \pi_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{pmatrix}, \quad \pi_{ij} \geq \pi_{i,j+1}, \pi_{ij} \geq \pi_{i+1,j}, \pi_{ij} \in \mathbb{Z}_{\geq 0} \text{ (height of } (i,j)\text{-th stack).} \]

|\pi| = \sum_{i,j=1}^{\infty} \pi_{ij} \text{ (volume).}

partition function of random plane partition

\[Z = \sum_{\pi} q^{|\pi|} = \prod_{n=1}^{\infty} (1 - q^n)^{-n} \text{ (McMahon function), } 0 < q < 1 \]
diagonal slices of plane partition (Okounkov & Reshetikhin)

The diagonal slices $\{\pi(m)\}_{m=-\infty}^{\infty}$ of the plane partition π is a sequence of Young diagrams that satisfy “interlacing relations”

$\cdots \preceq \pi(-2) \preceq \pi(-1) \preceq \pi(0) \succeq \pi(1) \succeq \pi(2) \succeq \cdots$.

interlacing relation:

$\lambda = (\lambda_1, \lambda_2, \ldots) \succeq \mu = (\mu_1, \mu_2, \ldots) \iff \lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots$
plane partition $\pi \mapsto$ pair (T, T') of semi-standard tableaux

The plane partition π determines a pair (T, T') of semi-standard tableaux of shape $\lambda = \pi(0)$ by putting "$m + 1$" in boxes of the skew diagram $\pi(\pm m)/\pi(\pm (m + 1))$.

T: $\lambda = \pi(0) \succeq \pi(-1) \succeq \pi(-2) \succeq \cdots$
T': $\lambda = \pi(0) \succeq \pi(1) \succeq \pi(2) \succeq \cdots$
partition function as sum over semi-standard tableaux

By the mapping $\pi \mapsto (T, T')$, the partition function $Z = \sum_{\pi} q^{||\pi||}$ can be converted to a sum over T, T' and their shape λ:

$$Z = \sum_{\lambda} \sum_{T, T': \text{shape } \lambda} q^T q^{T'}$$

The weights are determined by entries of the tableaux:

$$q^T = \prod_{m=0}^{\infty} q^{(m+1/2)|\pi(-m)/\pi(-m-1)|},$$

$$q^{T'} = \prod_{m=0}^{\infty} q^{(m+1/2)|\pi(m)/\pi(m+1)|}$$
partition function in terms of Schur functions

The partial sums over the semi-standard tableaux T, T' give a special value of the Shur function:

$$\sum_{T: \text{shape } \lambda} q^T = \sum_{T': \text{shape } \lambda} q^{T'} = s_\lambda(q^\rho), \quad \rho = \left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\right)$$

The partition function can be thus rewritten as

$$Z = \sum_\lambda s_\lambda(q^\rho)^2$$

Remark: Hook formula for $s_\lambda(q^\rho)$

$$s_\lambda(q^\rho) = q^{n(\lambda)+|\lambda|/2} \prod_{(i,j) \in \lambda} (1 - q^{h(i,j)})^{-1}, \quad n(\lambda) = \sum_{i=1}^{\infty} (i - 1)\lambda_i$$
deformation by potential $\Phi(t, \lambda, p)$

We consider a deformed model

$$Z_p(t) = \sum_{\lambda} s_{\lambda}(q^\rho)^2 e^{\Phi(t, \lambda, p)}, \quad \Phi(t, \lambda, p) = \sum_{k=1}^{\infty} t_k \Phi_k(\lambda, p)$$

with potentials

$$\Phi_k(\lambda, p) = \sum_{i=1}^{\infty} q^k(p + \lambda_i - i + 1) - \sum_{i=1}^{\infty} q^k(-i + 1)$$

The right hand side of this definition of $\Phi_k(\lambda, p)$ is understood to be a finite sum (hence a rational function of q) by cancellation of terms between the two sums:

$$\Phi_k(\lambda, p) = \sum_{i=1}^{\infty} (q^k(p + \lambda_i - i + 1) - q^k(p-i+1)) + q^k \frac{1 - q^{pk}}{1 - q^k}$$
melting crystal model and 5D SUSY gauge theory

Melting crystal model with external potential:

\[Z_p(t) = \sum_{\pi} q^{\pi} e^{\Phi(t,\pi(0),p)} = \sum_{\lambda} s_{\lambda}(q^{\rho})^{2} q^{\Phi(t,\lambda,p)} \]

5D \(\mathcal{N} = 1 \) SUSY U(1) gauge theory:

\[Z_p(t) = \sum_{\pi} q^{\pi} Q^{\pi(0)} e^{\Phi(t,\pi(0),p)} = \sum_{\lambda} s_{\lambda}(q^{\rho})^{2} Q^{\lambda} q^{\Phi(t,\lambda,p)}, \]

\[q = e^{-R \hat{h}}, \quad Q = (R \Lambda)^2 \]

(5D analogue of Nekrasov’s 4D instanton sum)

Goal: Show that **1D Toda hierarchy** is a common integrable structure in these models.
2. Fermionic representation of partition function

complex fermion system

\[\psi(z) = \sum_{m=-\infty}^{\infty} \psi_m z^{-m-1}, \quad \psi^*(z) = \sum_{m=-\infty}^{\infty} \psi^*_m z^{-m} \]

with anti-commutation relations

\[\{\psi_m, \psi^*_n\} = \delta_{m+n,0}, \quad \{\psi_m, \psi_n\} = \{\psi^*_m, \psi^*_n\} = 0 \]

Ground state (Fermi sea) \(|p\rangle\) in charge \(p\) sector

\[\psi_m|p\rangle = 0 \quad \text{for} \quad m \geq -p, \quad \psi^*_m|p\rangle = 0 \quad \text{for} \quad m \geq p + 1 \]

Fock space spanned by states labelled by partitions (or Young diagrams)

\[F = \bigoplus_{p=-\infty}^{\infty} F_p, \quad F_p = \bigoplus_{\lambda} \mathbb{C} |\lambda; p\rangle \]
States labelled by Young diagrams (charge 0 sector)

\[
\emptyset = (0, 0, \ldots), \text{ charge } 0 \leftrightarrow |\emptyset; 0\rangle
\]

\[
\lambda = (\lambda_1, \lambda_2, \ldots), \text{ charge } 0 \leftrightarrow |\lambda; 0\rangle
\]

\[
\lambda = (\lambda_1, \lambda_2, \ldots) \leftrightarrow \{\lambda_i - i\}_{i=1}^{\infty} \subset \mathbb{Z} \text{ (Maya diagram)}
\]
States labelled by Young diagrams (charge p sector)

\[
\lambda = (\lambda_1, \lambda_2, \ldots), \text{ charge } p \mapsto |\lambda; p\rangle
\]

\[
(\lambda, p) \mapsto \{p + \lambda_i - i\}_{i=1}^{\infty} \subset \mathbb{Z} \text{ (Maya diagram of charge } p)\]

If $\lambda = (\lambda_1, \ldots, \lambda_n, 0, 0, \ldots)$,

\[
|\lambda; p\rangle = \psi_-(p+\lambda_1-1) - 1 \cdots \psi_-(p+\lambda_n-n) - 1 \psi_-(p-n) + 1 \cdots \psi_-(p-1) + 1 |p\rangle
\]
U(1) current and fermionic representation of tau function

\[J(z) = :\psi(z)\psi^*(z): = \sum_{k=-\infty}^{\infty} J_m z^{-m-1}, \quad J_m = \sum_{n=-\infty}^{\infty} :\psi_{m-n}\psi_n^*: \]

with commutation relations

\[[J_m, J_n] = m\delta_{m+n,0} \quad \text{(Heisenberg algebra)} \]

\(J_m \)'s play the role of "Hamiltonians" in the usual fermionic formula of tau functions of the KP and (2D) Toda hierarchies:

\[\tau_p(t, \bar{t}) = \langle p | \exp(\sum_{m=1}^{\infty} t_m J_m) g \exp(-\sum_{m=1}^{\infty} \bar{t}_m J_{-m}) | p \rangle, \ g \in \text{GL}(\infty) \]
Hamiltonians for fermionic representation of $Z_p(t)$

$$H_k = \sum_{n=-\infty}^{\infty} q^{kn} :\psi_n \psi_n^* :$$

The states $|\lambda; p\rangle$ are eigenvectors of these “Hamiltonians” and the potential functions $\Phi_k(\lambda, p)$ are their eigenvalues:

$$H_k |\lambda; p\rangle = \Phi_k(\lambda, p) |\lambda; p\rangle$$

ferminonic representation of $Z_p(t)$

$$Z_p(t) = \langle p| G_+ e^{H(t)} G_- |p\rangle$$

where

$$H(t) = \sum_{k=1}^{\infty} t_k H_k, \quad G_{\pm} = \exp\left(\sum_{k=1}^{\infty} \frac{q^{k/2}}{k(1 - q^k)} J_{\pm k}\right)$$
\(G_\pm \) generate random plane partition (Okounkov & Reshetikhin)

\(G_\pm \) are a product of vertex operators \(\Gamma_\pm(m) \):

\[
G_+ = \prod_{m=-\infty}^{-1} \Gamma_+(m), \quad G_- = \prod_{m=0}^{\infty} \Gamma_-(m),
\]

\[
\Gamma_\pm(m) = \exp\left(\sum_{k=1}^{\infty} \frac{1}{k} q^{\mp k(m+1/2)} J_{\pm k} \right)
\]

They generate a “half” of random plane partition \(\pi \):

\[
\langle p | G_+ \rangle = \sum_{\lambda} \sum_{T: \text{shape } \lambda} q^T \langle \lambda; p \rangle = \sum_{\lambda} s_\lambda(q^0) \langle \lambda; p \rangle,
\]

\[
G_- | p \rangle = \sum_{\lambda} \sum_{T: \text{shape } \lambda} q^T | \lambda; p \rangle = \sum_{\lambda} s_\lambda(q^0) | \lambda; p \rangle
\]

Consequently, \(\langle p | G_+ e^{H(t)} G_- | p \rangle = \sum_{\lambda} s_\lambda(q^0)^2 e^{\Phi(t, \lambda, p)} = Z_p(t) \).
3. Quantum torus Lie algebra

basis $V_m^{(k)}$ ($k = 0, 1, \ldots, m \in \mathbb{Z}$)

$$V_m^{(k)} = q^{-km/2} \sum_{n=-\infty}^{\infty} q^{kn} \psi_{m-n} \psi_n^*;$$

$$= q^{k/2} \oint \frac{dz}{2\pi i} z^m \psi(q^{k/2}z) \psi^*(q^{-k/2}z);$$

Remark: $J_m = V_m^{(0)}$, $H_k = V_0^{(k)}$. $V_m^{(k)}$ coincides with Okounkov and Pandharipande’s operator $\mathcal{E}_m(z)$ specialized to $z = q^k$.

commutation relations

$$[V_m^{(k)}, V_n^{(l)}] = (q^{(lm-kn)/2} - q^{(kn-lm)/2})(V_{m+n}^{(k+l)} - \delta_{m+n,0} \frac{q^{k+l}}{1-q^{k+l}})$$

Remark: This is a (central extension of) q-deformation of the Poisson algebra of functions on a 2-torus.
adjoint action by G_{\pm} (1)

Fermion fields $\psi(z), \psi^*(z)$ transform as

$$
G_+ \psi(z) G_+^{-1} = (q^{1/2}z; q)_\infty^{-1} \psi(z),
$$

$$
G_+ \psi^*(z) G_+^{-1} = (q^{1/2}z; q)_\infty \psi^*(z),
$$

$$
G_- \psi(z) G_-^{-1} = (q^{1/2}z^{-1}; q)_\infty \psi(z),
$$

$$
G_- \psi^*(z) G_-^{-1} = (q^{1/2}z^{-1}; q)_\infty^{-1} \psi^*(z)
$$

where $(z; q)_\infty = \prod_{n=0}^{\infty} (1 - zq^n)$.
adjoint action by G_\pm (2)

The foregoing formulae for fermion fields imply that the fermion bilinear $\psi^* (q^{-k/2} z) \psi (q^{k/2} z)$ transforms as

$$ G_+ \psi^* (q^{-k/2} z) \psi (q^{k/2} z) G_+^{-1} $$

$$ = \frac{(q^{1/2} \cdot q^{-k/2} z; q)_\infty}{(q^{1/2} \cdot q^{k/2} z; q)_\infty} \psi^* (q^{-k/2} z) \psi (q^{k/2} z) $$

$$ = \prod_{m=1}^{k} (1 - z q^{(k+1)/2-m}) \psi^* (q^{-k/2} z) \psi (q^{k/2} z) $$

A similar transformation law holds for the adjoint action by G_- as well.
shift symmetry among $V^{(k)}_m$'s

From the foregoing formulae, one can deduce the following symmetry among the basis of the quantum torus Lie algebra:

$$G_- G_+ \left(V^{(k)}_m - \delta_{m,0} \frac{q^k}{1 - q^k}\right) (G_- G_+)^{-1} = (-1)^k \left(V^{(k)}_{m+k} - \delta_{m+k,0} \frac{q^k}{1 - q^k}\right)$$

In particular,

$$G_- G_+ \left(V^{(k)}_0 - \frac{q^k}{1 - q^k}\right) (G_- G_+)^{-1} = (-1)^k V^{(k)}_k,$$

$$(G_- G_+)^{-1} \left(V^{(k)}_0 - \frac{q^k}{1 - q^k}\right) G_- G_+ = (-1)^k V^{(k)}_{-k}$$

This is a key to identification of the integrable structure.
4. Integrable structure

rewriting partition function of melting crystal model (1)

\[Z_p(t) = \langle p| G_+ e^{H(t)} G_- |p \rangle \]

Split \(G_+ e^{H(t)} G_- \) into several pieces as

\[
G_+ e^{H(t)} G_- = G_+ e^{H(t)/2} e^{H(t)/2} G_- \\
= G_+ e^{H(t)/2} G_-^{-1} \cdot G_+ G_- \cdot G_-^{-1} e^{H(t)/2} G_-
\]

and use the formulae (a special case of shift symmetry)

\[
G_- G_+ \left(H_k - \frac{q^k}{1 - q^k} \right) (G_- G_+)^{-1} = (-1)^k V^{(k)}_k,
\]

\[
(G_- G_+)^{-1} \left(H_k - \frac{q^k}{1 - q^k} \right) G_- G_+ = (-1)^k V^{(-k)}_k
\]
The foregoing formulae imply that

\[G_+ \left(H_k - \frac{q^k}{1 - q^k} \right) G_+^{-1} = (-1)^k G_-^{-1} V_k^{(k)} G_- , \]

\[G_-^{-1} \left(H_k - \frac{q^k}{1 - q^k} \right) G_- = (-1)^k G_+ V_{-k}^{(k)} G_+^{-1} \]

\[V_{\pm k}^{(k)} \] on the right hand side can be transformed to \(J_{\pm k} \) as

\[q^{W/2} V_k^{(k)} q^{-W/2} = V_k^{(0)} = J_k , \quad q^{-W/2} V_{-k}^{(k)} q^{W/2} = V_{-k}^{(0)} = J_{-k} \]

where \(W \) is a special element of \(W_\infty \) algebra:

\[W = W_0^{(3)} = \sum_{n=-\infty}^{\infty} n^2 : \psi_n \psi_n^* : \]
Thus we have the relation

\[G_+ \left(H_k - \frac{q^k}{1 - q^k} \right) G_+^{-1} = (-1)^k G_-^{-1} q^{-W/2} J_k q^{W/2} G_-, \]

\[G_-^{-1} \left(H_k - \frac{q^k}{1 - q^k} \right) G_- = (-1)^k G_+ q^{W/2} J_k q^{-W/2} G_+^{-1} \]

hence

\[G_+ e^{H(t)/2} G_+^{-1} = \exp \left(\sum_{k=1}^{\infty} \frac{t_k q^k}{2(1 - q^k)} \right) G_-^{-1} q^{-W/2} \exp \left(\sum_{k=1}^{\infty} \frac{(-1)^k t_k J_k}{2} q^{W/2} G_- \right), \]

and a similar expression for \(G_-^{-1} e^{H(t)/2} G_- \).
rewriting partition function of melting crystal model (4)

We can thus eventually rewrite $G_+ e^{H(t)} G_-$ as

$$G_+ e^{H(t)} G_- = \exp \left(\sum_{k=1}^{\infty} \frac{t_k q^k}{1 - q^k} \right) G_-^{-1} q^{-W/2} \exp \left(\sum_{k=1}^{\infty} \frac{(-1)^k t_k J_k}{2} \right) \times$$

$$\times g \exp \left(\sum_{k=1}^{\infty} \frac{(-1)^k t_k J_{-k}}{2} \right) q^{-W/2} G_+^{-1}$$

where

$$g = q^{W/2} (G_- G_+)^2 q^{W/2} \in \text{GL}(\infty)$$
rewriting partition function of melting crystal model (5)

Since \(\langle p | G_+^{-1} q^{-W/2} = q^{-p(p+1)(2p+1)/12} \langle p | \) and \(q^{-W/2} G_+^{-1} | p \rangle = q^{-p(p+1)(2p+1)/12} | p \rangle \), the partition function \(Z_p(t) \) can be expressed as

\[
Z_p(t) = \exp\left(\sum_{k=1}^{\infty} \frac{t_k q^k}{1 - q^k}\right) q^{-p(p+1)(2p+1)/6} \times \\
\times \langle p \exp\left(\sum_{k=1}^{\infty} \frac{(-1)^k t_k J_k}{2}\right) g \exp\left(\sum_{k=1}^{\infty} \frac{(-1)^k t_k J_{-k}}{2}\right) | p \rangle
\]

The last piece \(\langle p | \cdots | p \rangle \) may be interpreted as a special value of the tau function

\[
\tau_p(t, \bar{t}) = \langle p | \exp(\sum_{k=1}^{\infty} t_k J_k) g \exp(-\sum_{k=1}^{\infty} \bar{t}_k J_{-k}) | p \rangle
\]

of 2D Toda hierarchy. However, this is not the end of the story.
identities of expectation values

Actually, we can start from different splitting of $G_+ e^H(t) G_-$ as well:

$$G_+ e^H(t) G_- = G_+ e^H(t) G_+^{-1} \cdot G_+ G_- = G_+ G_- \cdot G_-^{-1} e^H(t) G_-$$

This leads to apparently different expressions of $Z_p(t)$, which imply that the following identities hold:

$$\langle p | \exp \left(\sum_{k=1}^{\infty} \frac{(-1)^k t_k J_k}{2} \right) g \exp \left(\sum_{k=1}^{\infty} \frac{(-1)^k t_k J_{-k}}{2} \right) | p \rangle$$

$$= \langle p | \exp \left(\sum_{k=1}^{\infty} (-1)^k t_k J_k \right) g | p \rangle$$

$$= \langle p | g \exp \left(\sum_{k=1}^{\infty} (-1)^k t_k J_{-k} \right) | p \rangle$$

What do they mean?
\[g = q^{W/2}(G_-G_+)^2q^{W/2} \] determines solution of 1D Toda hierarchy

The foregoing identities can be directly derived from the relations

\[J_kg = gJ_{-k}, \quad k = 1, 2, 3, \ldots \]

(a consequence of the shift symmetry of \(V_{m}^{(k)} \)'s). From these relations one can derive the identities

\[\tau_p(t, \bar{t}) = \tau_p(t - \bar{t}, 0) = \tau_p(0, \bar{t} - t) \]

for the tau function \(\tau_p(t, \bar{t}) \) of 2D Toda hierarchy, which thereby reduces to a tau function of 1D Toda hierarchy. Thus 1D Toda hierarchy turns out to be an underlying integrable structure of the partition function \(Z_p(t) \) of the melting crystal model.
integrable structure in 5D SUSY U(1) gauge theory

$Z_p(t)$ has a fermionic representation of the form

$$Z_p(t) = \langle p| G + Q^{L_0} e^{H(t)} G^- |p \rangle$$

where $L_0 = \sum_{n=-\infty}^{\infty} n : \psi_n \psi_n^*: \quad \text{(element of Virasoro algebra)}$. The foregoing calculations can be repeated for this case as well and lead to a similar conclusion. The counterpart of g is given by

$$g = q^{W/2} G^- G^+ Q^{L_0} G^- G^+ q^{W/2}$$

and satisfies the relation

$$J_k g = g J_{-k}, \; k = 1, 2, 3, \ldots$$

Thus a relevant integrable structure is again 1D Toda hierarchy.
Concluding remarks

4D limit ($R \to 0$) (cf. Marshakov and Nekrasov's work on 4D case)
Not straightforward

relation to topological strings
1. Another interpretation of $\langle p | G + Q^L_0 e^{H(t)} G_- | p \rangle$ ($q = e^{-g_{st}}$, $Q = e^{-a}$) as A-model amplitude on $\mathcal{O} \oplus \mathcal{O}(-2) \to \mathbb{CP}^1$
2. Generating function of $W_{\lambda \mu} \sim c_{\lambda \mu}$ as solution of 2D Toda hierarchy with $g = q^{W/2} G_+ G_- q^{W/2}$ (Zhou)

thermodynamic limit (rescaling t_k's and letting $\hbar \to 0$ in $q = e^{-Rh}$)
Dispersionless Toda hierarchy? (work in progress)

more relations satisfied by g Constraints with quantum/classical torus algebraic structure? (work in progress)