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Introduction.

In recent years many mathematicians have come to be interested in the
(self-dual) Yang-Mills equations. This is mainly because of profound geometric
structure inherent in this nonlinear system, which now becomes an important
subject of differential geometry and topology ; see, for example, the book of
Freed and Uhlenbeck [1] and references cited therein. This nonlinear system
however has another significant property—complete integrability. This means
that various techniques developed in the study of so called completely integrable
systems, such as the celebrated KdV equation, can also be applied to the self-
dual Yang-Mills equations. Among these techniques, in particular, the Riemann-
Hilbert problem method, whose earliest application to the self-dual Yang-Mills
equations goes back to the work of Ward [2] and Zakharov, Shabat [3], has
grown up to a very powerful tool; see, for example, Ueno, Nakamura [47, Chau
[5], Wu [6] and references cited therein.

In [7] I proposed an alternative method also based on the viewpoint of com-
plete integrability. The main tool used there is an infinite system of differential
equations whose unknown functions take their values from an infinite dimen-
sional Grassmann manifold. This method has its origin in the work of Sato [8]
who described nonlinear equations related to soliton phenomena as dynamical
systems in an infinite dimensional Grassmann manifold.

The present paper is intended to supplement my previous paper by showing
further developments as well as the background of the ideas presented there.
In Sect. 1 we briefly review the previous paper. Sect. 2 is an introduction to
the Grassmann manifold method. In order to illustrate basic ideas, the Riccati
equation and its matrix analogues are discussed in detail as examples, and the
structure of Grassmann manifolds hidden in these equations is revealed. Based
on these arguments, the meaning of the results in [7, 8] is clarified. Sect. 3
deals with the concept of formal loop groups. This provides an algebraic
analogue of the Riemann-Hilbert problem, and leads to group-theoretical recon-
struction of the results obtained with the Grassmann manifold method. In Sect.
4 we present unified description of the two distinct sets of Riemann-Hilbert
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transformations introduced by Chau [5] and Wu [6]. The group-theoretical
tools developed in Sect. 3 are shown to be also useful in these arguements. In
Sect. 5 we seek for directions of further progress of our approach.

§1. Brief review of the previous paper.

1.1. Self-dual Yang-Mills equations. In what follows we obey the same
notation as used in [7]. In order to see the complete integrability of the self-
dual Yang-Mills equations, one needs to consider the equations in complex domains
in C* rather than in real ones. With an appropriate choice of coordinates (v, z,
¥, 2) in C*, the equations can be written as:

(1-1) [vy; '\’72]:"01 [vy; VE:]::O: [vg/x '\7!7],{.,,[’\7:’ vé]::()y

/

where ¥,=0,+A4, (u=y, z, 5, Z, 8,=0/0u) denote covariant derivative operators
with gl(r, C)-valued connection coefficients (gauge potentials) A,=A,(y, z, 7, 2),
and the sign [,] the commutator [X, Y]=XY—¥X. Gauge potentials are the
unknown functions of this nonlinear system, and we here only consider the case
in which rz2. In the above notation gauge transformations can be expressed as:

(1.2) Vo> g 'oVyeg=0,+g 'Aug+g'0ug, where g=gly, z, 3, 2)
is a GL{r, C)-valued function.

Applying an appropriate gauge transformation one may eliminate two of the
four gauge potentials, say A, and A, so that without loss of generaility one
may assume that

(13) vy:ay, Vz::(l, Vgxar“i“r’l; y '\7;:33—}-_%15.
Thus Egs. (1.1) reduce to:

(14) ag_/‘ilg“‘agr/’lg“‘;"[x‘lr, _/412]—“:0, ay[’lg*{‘az/lg‘;:o.

1.2. Infinite system. The object which played a central role in [7] is an
infinite system of equations that “dominates” Eqs. (1.4) rather than Egs. (1.4)
themselves. This means that there is an surjective map (a “dominant” map)
from the solution space of this infinite system onto that of Eqgs. (1.4). This in-
finite system has an infinite number of gi(r, C)-valued unknown functions &;;
indexed by a pair of integers / and j (—=0<i<oo, j<0), and takes the follow-
ing form:

(1.52) =081, ;70:8 8, 10,8, ;=0,
az&i»u,j“:"agfu‘—fi, _13250,,-':—0 (oo < <Ceo, j<0),

(1.5b) Eonr, =80 o1 HE5 21 {(—oa<i<an, j<0),
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(1.5¢) fijzatjlr (<0, 7<0),

where d;; denotes the Kronecker delta and 1, the »Xr unit matrix. The above
infinite system “dominates” Eqs. (1.4) by the following equations:

(16) Ay:a;?;:o,—x, Aéz_ayso.—lv

This fact can be rigorously proved for both formal power series solutions (. e.

solutions with A,eql(r, C[[y, z, ¥, 2]1)) and local holomorphic solutions; see
Sect. 1 of [7].

1.3. Infinite matrix expression. The characteristics of Egs. (1.4) can be
most neatly understood when written in a matrix form. Indeed, the description
of solutions and transformation groups presented in [7] deeply depends on this
matrix form. Furthermore, this is just the place where the concept of Gras-
smann manifolds occurs, as we shall see in later sections. This matrix expres-
sion of Egs. (1.4) takes the following form:

(1.7a) (—A0,-+0:)6=8A,  ([10,+0;)&=¢€RB,
(1.7b) Aeg=gC,
(1.7¢) §r=1,

where 1 is the coxoo unit matrix and &, &.,, 4, B, C and A denote the follow-
ing infinite matrices:

(L.8) 5:(§ij)i€z,j<o, 8(—):(S&ij>i,j<0y
0
(1~9> A:("'aygi'%l,j)i.j(o: y
\<“ay§o\j)j<o
st )
B: 82 i+, )L <o == 3
T 0.8 )50
1
C:(5i+1,;‘)zﬁ.j<o~"~“ ’
0, 1) i<0.
(1.10) A=(0¢41 31)1 ez, Z=the totality of integers.

In these formulas, just as in the usual notation for finite matrices, the indices
¢ and ; indicate the rows and column where the assigned component is to be
placed. For example:
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_a -0 -2 -1
e
=\ &y Eiina |, =] Eun Euy|ony
50—2 ‘So-l [ L ~1-2 E—l—l -1
E,\'-?. El-'l 1
-1 0 1
.o 0, .
A= 0, 1, 1 0,=the »Xr null matrix.
Or 17" 0
0o s

1.4. Description of solutions. Any solution & of Egs. (1.7) is uniquely
determined by its initial value &9™=§];_;.,, which therefore can be used as a
label for each solution. One of the main results in [7] is an explicit formula
that reconstructs & from &9 using “linear algebra of infinite matrices”. Note
that the initial value &9 =(£{"),cz j<oc may be given arbitrarily except that it
satisfies the algebraic part of Egs. (1.7):

(1.11a) Agim—gimCiin where CY™=(£f Vi ico»

(1.11b) gim=1, where &{7V=(£{M); ;<.

Under these constraints £9™ is uniquely determined if &% (j<0) are assigned,
whereas the latter components can be given arbitrarily (see Sect. 1.7). The re-

construction starts from the definition of two matrices éz(éi,-)iez,j@ and &.,=

(éij)i,j@i
(1.12) ézexp (ifiay—-'y_/laz)&“"’: ;;0(2/181,»51482)"5<‘“>//e I,

If ¥ and Z are sufficiently small, the negative index part &, is close to the unit
matrix and may be expected to be invertible. Using its inverse matrix, the re-
construction formula reads:

(1.13) g=8E&. .

The above procedure can be rigorously justified for both formal power series
solutions and local holomorpgic solutions; see Sect. 2 of [7].

1.5. Description of transformations. “Linecar algebra of injinite matrices”
also works as a machinery for the construction of transformations that act on
the solution space of Egs. (1.7). As the data for such a transformation, we con-
sider a matrix P=(p;;); jez that depends on (v, z, ¥, Z) and satisfies :
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{1.14) [—A6,-+3;, P]1=0, (40,435, P1=0, [A4, P]=0.
The last condition in (1.14) shows that P can be written as
(1.15) P={(p:-pi ez,

and if one define a Laurent series p{4) in a new variable 1 as

(1.16) plA= T p,a,

J=—co
then the other two conditions in (1.14) are equivalent to:
(1.17) (—40,+0)p()=0, (20,+03)p(2)=0.

This data p(2) is just the same as required in the Riemann-Hilbert problem
method ; see Sect. 4.1, In the framework using the matrix &, a transformation
of solutions can be obtained as follows. First consider the product matrix P&=
((P&)i5)iez. j<0, deviding it into two blocks:

(P&) -
(P&) s

If this product matrix makes sense and P is sufficiently close to the unit matrix,
the negative index part (P&)., will be invertible. Again, using its inverse
matrix, we define

(1.18) P$:< ), (P&) -y =((P&):)):. j<0, (Pe)w):(([)é)u)iao,j@-

(1.19) Pe&=Pg(Pg),"",

which becomes a new solution of Eqs. (1.7). Some cases where the above con-
struction can be justified are discussed in Sect. 3 of [71.

1.6. Grassmann manifold. The above construction of solutions and trans-
formations is very similar to each other. This reflects the structure of an in-
finite dimensional Grassmann manifold inherent in Egs. (1.7). This point will be
discussed in detail in Sect. 2.

L.7. Connection with inverse scattering. Usually when one tries to apply
the Riemann-Hilbert problem method or any other technique of inverse scattering
to a nonlinear system, the most crucial postulate is the presence of a linear
system whose integrability conditions coincide with the nonlinear equation in
question. For the self-dual Yang-Mills equations such a linear system is:

(1.20) (— AV, +w=0, (A, 4T pw=0,

where w=1w(y, z, 3, 2, 4) denotes a GL(r, C)-valued unknown function and 2 a
parameter moving in the Riemann sphere P! (see [3-7] and references cited
therein). By changing w as w—g-'w according to gauge transformation (1.2),
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this linear system becomes gauge-invariant.

In order to connect Egs. (1.20) with our framework, we fix the gauge asin
(1.3), and try to eliminate the gauge potentials from Egs. (1.20). This leads, as
we shall see soon, to an infinite nonlinear system of differential equations to be
satisfied by the Laurent coefficients of w arround Z=co. Indeed, because of the
gauge-fixing we have adopted, Egs. (1.20) become:

(121) <’«'Za!/—‘:Aai”}'-/12)lU::0: (xaz'%"aﬁ"r'/lﬂ)zv—:‘()y

and one may choose w to have a Laurent expansion arround A=co of the follow-
ing form (see the above references):

o

(1.22) w= S w,A™", we=1,.

#=0

Putting this expression into Egs. (1.21) and examining the A" term, one finds:
(1.23) Ay=—0,w,, Az;=08,w,.

Taking them back into Egs. (1.21), one finally obtains:

(1.24a) (—40,+0;+0,w Hw=0, (0,405 — (0w Hw=0,

or equivalently,

(1.24b) =0y W ey 0 WGy w)w, =0, 0,Wns1—05Wa—(0,w)w,=0.

The last equations are what we have sought for; Egs. (1.24) become equiv-
alent to Egs. (1.7) when connected by the following relation (see Sect. 1 of [7]):

(1.25) o =—w-;  (j<O0).

This means that any solution of Egs. (1.7) yields via (1.25) a solution of Egs.
(1.25) and vice versa. However the converse will need some more comments,
because given a solution of Egs. (1.24), Eq. (1.25) in itslf gives only a part of
the whole components of & In fact, the components other than those appearing
in (1.25) are determined by the algebraic constraints (1.7b) and (L.7¢) in Egs. (1.7).
In other words, Eq. (1.25) defines a one-to-one correspondence between w and &
with constraints (1.7b) and (1.7¢). Note that this correspondence is purely alge-
braic. In particular it holds also for the initial values w™=w|y.;., and §V=
&1 5.0 ; this explains what we remarked in Sect. 1.4 concerning the arbitrariness
of &9, The equivalence of Eqs. (1.7) and (1.24) means the equivalence of
differential equations (1.7a) and (1.24) under the algebraic one-to-one correspond-
ence of w and & as above.

§2. Matrix Riccati equations and Grassmann manifolds.

2.1. Matrix Riccati equations. As well known, the ordinary Riccati equa-



A New Approach to the Self-Dual Yang-Mills Equations I 17

tion
du ' . . .
2.1 —B—t——i—ug—}—a:O, where a=a({) is a given function,
can be transformed into the linear equation
d%
RGN I P
@.2) o +av=0
by the change of dependent variable as
dv
el J Qb
2.3 U=y P

This machinary combining linear and nonlinear equations can be further gener-
alized to yield the concept of matrix Riccati equations; see, for example, Chau
[5], Winternitz [9], Harnad, Saint-Aubin, Shnider [10] and references cited
therein. In what follows we briefly review the basic features of matrix Riccati

equations.
Let us start from a matrix linear system
2.4 ——%—;—L&‘, where L=L(t) is an NXN matrix-valued

function with N=2.

We devide N into the sum of two positive integers m and n as N=m-4n, and
in order to make the representation similar to that of Sect. 1, label the rows and
" columns of L and § with integers from —m through n—1. Thus:

(2.4) E=(&))-mzi<a, L:(lij)—msi.j<n-

We furthermore assume that we have a set of m linearly independent column
vector solutions ™ ... £ of Eq. (2.4) for which the mXm matrix
(2'6) é(-—):(ét{j))—mst,j(o is invertible.

This matrix is exactly the negative index part of the NXm matrix

2.7 E=(EP)-nsicn ~mssco-
Now we consider what equations the n>m matrix
2.8) G=€w&",  where &= zicn, -mas<o,
will satisfy. The answer is:
2.9 —dd—?—:Lﬁ—LsG—GL,—GL.,G,
where L,, --+, L, denote the four blocks obtained by deviding} L with respect to

the signature of the row and column indices:
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Ll L4
(2.10) L= ; L2:<Zij)—m5i,j<0; etc.
LZ Ls

i)a (1)), Eq. (2.9) becomes the original Riccati equation

(2.1). In general, Eq. (2.9) is called a matrix Riccati equation. In the matrix
case the role of (2.3) combining linear and nonlinear equations is played by (2.8).

When m=n=1 and L:(

2.2. Derivation of (2.9). Eq. (2.9) may be checked by direct calculation,
but a more systematic way is to seek for a differential equations to be satisfied
by the NXm matrix

1y
2.11) (G)zee(_f‘, where 1 denotes the mXm unit matrix.

In order to derive such an equation, note that from the definition of &,

2.12) %:Lé .

From this equation,

d""’_—l -~ par Ed~- a
__(.e_ed‘t_>l:[,€$<-)_l+5$(—>_]147 A:_'HZ; ~§o7,

therefore,

4 (1 1\ /1
ey —E(C)-—*L(G>+(G?)A.

The remaining problem is to find an explicit expression of A in terms of G, but

this can be done quickly becuase Eq. (2.13) splits into the following two equa-
tions :

@2.14) 0=L,+LG+A, —fg:Lz—;—LaGJrGA.

Eliminating A from these equations one obtains Eq. (2.12).

2.3. Invariance property of an equation that reduces to Egs. (2.12) and
(2.13) in special cases. Generalizing the relation (2.11) that connects the two
differential equations (2.12) and (2.13), let us consider

(2.15) &=E&K, where K=K() is an mXm invertible matrix.

Immediately we see that & satisfies a differential equation of the form

(2.16) —%—f—zLE+&4, where A=A(t) is an m Xm matrix.

The last term A is in general different from that one in (2.13). Of course if
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K=1 then Eq. (2.16) reduces to Eq. (2.12), whereas if K=&_,"' it reduces to
Eq. (2.13). Note that as in (2.11), G can be reconstructed from & as

1
2.17 ( ):éém", where &, is the negative index part of &.
G

What is remarkable here is the following invariance property of Eq. (2.16).
Note that changing the above K just corresponds to transforming & as:

(2.18) & —> &H, where H=H(t) is mxXm and invertible.
If A transforms simultaneously as
(2.19) A—> HAH+H? fldH

then Eq. (2.16) preserves its form, i.e. Eg. (2.16) is invariant under such trans-
formations of & and A. It is interesting that this transformation takes the same
form as gauge transformations.

2.4. Dynamical system in a Grassmann manifold. Geometrically, the
above invariance property of Eq. (2.16) is connected with a Grassmann manifold,
which in the notation of Sato [8] is denoted by GM(m, n). GM(m, n) is by
definition the manifold formed by all m-dimensional linear subspaces in C™*",
Another equivalent expression is:

(2.20) . GMO(m, n)={&; constant NXm matrices with rank &=m}/~,

where the sign /~ means that for any HeGL(r, C) two matrices § and H& are
identified to each other and regarded as representing the same point in GM(m, n).
As one sees immediately from the previous arguments, the three matrices E=&(t),

<(1:>:(Giz)) and &=§(1) all correspond to the same point in GM(n, n) that moves

as t evolves; thus a dynamical system is defined in GM(m, n).

From the above geometric viewpoint, matrix Riccati equation (2.9) can be
considered an affine coordinate expression of the equation of motion of the above
dynamical system in an open subset of GM(m, n). In the notation of Sato [8] this
open subset is denoted by GM#(m, n), where ¢ is the empty Young diagram.
On GM#?(m, n) one has an affine coordinate system with coordinate map:

2.21) GM?(m, n) ——> C™
§
= —> &€&
e(‘i')

and if this coordinate map is applied to &=¢&(), or equivalently to &=£&(t), the
image becomes G=G(1), the unknown function of Eq. (2.9). In other words, the
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unknown function of matrix Riccati equation (2.9) takes its values essentially
from GM#(m, n). If the trajectory of motion intersects with the complement
GM(m, n)—GM#®(m, n), the intersection causes singularities of G=G({), but we
shall not go further into the problem of singularities here.

Roughly speaking, the description of nonlinear equations of soliton type by
Sato [8] can be derived from the above picture by letting m, n—oco.

2.5. Interpretation of self-dual Yang-Mills equations. Even apart from
the presence of algebraic constraint (1.7b) and the infinite dimensionality of
matrices, Egs. (1.7) have forms considerably different from Eq. (2.13). In par-
ticular, they do not fall into the cases discussed by Sato [8]. Nevertheless, a
similar machinary also works in the case of Egs. (1.7). This is due to the fact
that if we forget Eq. (1.7¢) for the moment and focus our attention on Egs. (1.7a)
and (1.7b), these equations are invariant under the transformations

(2.22) & —>&H,
A—>H''AH—-H'Co,H+H"'9;H,
B —> H'BH+-H'C3,H+H9;H,
C— H'CH,
where H=H(y, z, 5, Z) 1s an coXco {nvertible matrix.

Eq. (1.7¢) is fulfilled when we transform the above equations into the G-picture
as (2.17) shows.

Bearing in mind this invariance property, let us comsider the meaning of
formulas (1.13) and (1.19). For &, one can show the equations

(2.23) (— A2, +0)E=0, (48,+0)&E=0, AE=EC,

whre C is an coxoo invertible matrix whose explicit form is given in Sect. 2.2
of [7]. For P&, one has

(2.29) (—=A40,+0:)(P§)=PEA, (40,+0:)(P§)=PEB, APE=PEC.

Egs. (2.23) and (2.24) both have the same forms as Egs. (1.7) except for Eq.
(1.7¢). Therefore multiplying & and P& by their negative index part from the
right side, one can change into the G-picture; this leads to formulas (1.13) and
(1.19).

The above arguments clearly show : The manifold from which the unknown
functions of Egs. (1.7) take their values is essentially an infinite dimensional Gras-
smann manifold.

2.6. Special solutions that correspond to the semi-infinite case m<oco,
n=co. We here illustrate the construction of solutions reviewed in Sect. 1.5 in
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the case where for some integer m=1
(2.25) &im=0 for iz0 and j<-—m.
In this case & takes the following form:

*

(2.26) E= _lt____ ,  where E[mI=(8)-nsi<e, - mes<o-
0 |&0m]
Therefore
(2.27) = ____1_)_*“,_,_, ’ where é[77l](~):(§;ij)-m5i,j<o-
0 gé["l](—)_]
Thus:
] 0
(2.28) g=E8,=( 1 :

0 | E[m]EDm]

In particular, one sees that

(2.29) &1;=0 for /=20 and j<—m,

(2.30) EmI=(:)-mai<”, - masco=EmIE[m] )1

Besides, it is not hard to see that

(2.31) Elml=exp(¢A,0,—54,0,)“[m],  where
An=0s41.1) o mai j<oo,  §IMI=EE) iz icoo -maj<o-

The last two formulas clearly show that we may reformulate the whole cal-
culation by only using the truncated matrices &9 [m], &[m] and &[m]. This
construction enables us to generate in principle all the solutions that satisfy con-
dition (2.29). We can also charcterize these solutions in terms of w (see Sect.
1.7). Indeed, as can be quickly checked by recalling (1.25) and going back to
(1.5b) and (1.5¢), condition (2.29) is equivalent to w being a polynomial in A7?
of degree=m:

(2.32) w;=0 for j>m,

and the same is true for &Y™ gnd w%™.

The solutions thus obtained include some interesting classes of special solu-
tions. An example is that discussed in [11]; its original construction used a
version of algebro-geometric methods in soliton theory. Another example is
formed Dby solutions for which &;’s, or equivalently w;'s, are all rational in fus ;9“”(
(v, 2z, 3, ). These solutions can be characterized by the rationality of their . el
initial values in (v, z). [Proof: From Eq. (1.11) of [7] one can show after some




22 Kanehisa TAKAsAKI

calculation the following identity :

o . ) [ . N~l/=J=1 . o
P p) @33 5 apri=(Zwima) (Zwima).

i=-o0 = o
.. :u)\‘ . . . . ) . .
(s f) Because of this, if w{™’s are rational and vanish for j>m, the right hand side

of (2.33) becomes rational in (y, z, ). On the other hand, from the construction

£ x
Or $4;

Ms

(2.349) € t=exp (310, ~510.) igwsg;mz-f ,

i

i

therefore &;;s are also rational in (y, z, ¥, 2). Thus, finally using formula (2.30),
. one concludes that &;'s are rational in (y, z, ¥, 2).] It seems likely that these
rationa! solutions basically include all the instanton solutions of Atiyah, Drinfeld,
Hitchin and Manin [127; however their characerization in our framework is
still an open problem.

2.7. Conclusion of this section. Starting from linear systems we derived
matrix Riccati equations with quadratic nonlinearity. The nonlinearity of the
self-dual Yang-Mills as well as soliton type equations turned out to have its
origin in this quadratic nonlinearity, which geometrically reflects the curved
feature of Grassmann manifolds. Tracing back the above process from linear
sytems to nonlinear systems, we can find an ultimate form of linearization of
these completely integrable systems.

§3. Formal loop groups.

3.1. From Riemann-Hilbert problem to its algebraic analogue. The §&-
matrix formulation we have viewed is not the only possible approach to the self-
dual Yang-Mills equations ; as sketched in Sect. 4 of [7], an alternative approach
which is in close relationship to the Riemann-Hilbert problem method can be
developed. In what follows we shall discuss this in more detail.

In order to motivate our arguments, we start from brief review of the
Riemann-Hilbert problem. Take a circle C centered at the origin in the Riemann
sphere P* with affine parameter 2, and let C. and C. denote the connected com-
ponents of the complement P!—C for which C,20 and C_®co. The Riemann-
Hilbert problem is stated as follows: For a given matrix valued, say GL{r, C)-
valued, analytic function () defined on C, find a pair of GL(r, C)-valued
holomorphic functions v(d) and w(A) which are defined respectively in a neigh-
borhood of C\UC, and in a neighborhood of C\UC_ and satisfy the equations

(3.1a) w(H=wA @) (A0,
(3.1b) w(oo)=1,.
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The second equation is a normalization condition which ensures the uniqueness
of the solution if it exists. This problem can be reduced to an integral equa-
tion, and if u(2) is sufficiently close to the unit matrix, a unique solution exists;
see [3-6] and references cited therein.

The above Riemann-Hilbert problem may be viewed as a grouptheoretical
decomposition problem as follows. Let us define:

3.2) Ge={u; analytic maps 2—u(4) from C to GL(r, C)}

’

Jle={u&Gc; extendable to a holomorphic map from C. to
GL(r, C) with u(c0)=1,},

Pe={uegc; extendable to a holomorphic map from C, to
GL(r, O)}, '

Gc forms a group with pointwise multiplication of maps, which is usually called
a loop group; Jlc and P become subgroups of @.. The Riemann-Hilbert pro-
blem means in terms of these groups the problem of decomposing an element u
of ¢, as:

3.3 u=w, wedl,, vePc.

If u is sufficiently close to the unit element 1, of ¢, as we mentioned above,
such decomposition is actually possible and unique. By defining some appropriate
topology to these groups, such decomposability will be formulated as the open-
ness of the map e X Pe—gc sending (w, v)ET X Py to w~'y, but we shall not
go further in this direction.

We shall below introduce algebraic analogues of loop groups, which we call
formal loop groups, and formulate a similar decomposition problem. It will be
shown that this decomposition problem always has a unique solution, thus the
situations being much simpler for formal loop groups. These formal loop groups
will be formed by formal Laurent series in one variable 1 with coefficients taken
from an associative filtered algebra over the field C of complex numbers or any
other field; the algebraic part of the arguments below does not depend on the
selection of base fields. Such abstract formulation will not only clarify the
algebraic structures concerned, but also be advantageous to various applications
not limited to the self-dual Yang-Mills equations; see Sect. 5.

3.2. Associative filtered algebras. Let R be an associative (but in general
noncommutative) algebra over € which has a unit element 1 and a decreasing
filtration R=R,DR,DR,D -+ of C-vector subspaces with the following properties:

(B.4a) RuR,CRnin for any m and n.

(3.4b)  For any sequence a,=R, (n=0) there exists a unique element a SR
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for which a—3X¥.00,€ Ry (N20); in what follows this element a
s denoted by Zn-0ln.

ItYfollows immediately that:
(3.4c)  For any sequence a,€R, (n=m), 25-na, belongs to R,.

In addition, for simplifying the notation in later arguments we prolong the filtra-
tion by defining
(3.44) R.,=R for n<0,

which does not affect properties (3.4a)-(3.4c). An example of R is:

3.5) R=gl(r, C[[y, 2, 5, Z]1)
=D aany'ZIE; aiaellr, C) G, j, b, m=0, 1, 2, --)},
with Ro={3aiwny 2 5*2™; Qijpn=0 if i+j+k4+m<n}.
In the terminology of abstract algebra the property stated in (3.4b) has an

equivalent expression as:

(3.6) The canonical homomorphism R-—proj.lim. R/R, induced by the
quotient homomorphisms R- R/ R, is isomorphic.

As for the invertibility of elements of R, we have the following result:

3.7 For any sequence a,€ R, (n20), Xr-e@. is invertible in R if and
only if a4 is inveritble in R.

Proof. Suppose that a, is invertible. Since a=qa(14->%.,a,"'a,), in order
to prove the invertibility of a one has only to show the invertibility of the
second factor of the right hand side. On the other hand, note that for any
element » of R;, 147 is invertible; indeed its inverse element is given by the
Neumann series as:

(3.8) (P =l e e = 7;"';‘0(4)”

which actually becomes an elenent of R because of (3.3a) and (3.3b). The in-
vertility of 1+3%-.a,"'a, follows from this fact. Conversely, suppose that
S saxb=1. Then a,=b"'—3%_,a,b"?, the right hand side being invertible
because of what we have just proved above. This proves (3.7).

3.3. Formal loop groups. For an associative filtered albegra R with pro-
perties (3.3), we define:

3.9) Gr={u=3uA"; u,€R, (—oo<n< ), u, is invertible in R},
Np={u=UuA"€8r; u,=0 (n>0), u,=1},
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Pr={u=3u,A"€8r; u,=0 (n<0)}.
We show below that @5 forms a group with respect to the usual multiplication of

Laurent series, and that Jig and Pp become subgroups of Gp.

Product. For two elements uW=3>uPA* and uP=3uPi* of &p we
define their product as:

oo

(3.10) uNp® =3y, A", where u,= ¥ uPun.

M-

Then u®u® becomes an element of Gg.

Proof. From (3.4a) and (3.4d), one sees that
uPuP eRaNR, for m=0,
uPuP eR,..N\R, for mZn,
uPuP . eR, otherwise.

Therefore by virtue of (3.4b) and (3.4¢) SuPu®,, defines an element of R,
Furthermore, because of the fact that

Al
o= ug ug® -+ 2 (ui uln-tulnu),
=

TARETAC is invertible,
uPuB+uuPer, (m=1, 2, -},

and (3.7), it turns out that u, is invertible. This proves (3.10).
Invertibility. Any clement of Gr has its inverse element in Gp.

Proof. For any element u=3u,A" we decompose it as:
(3.11) U=U_~+uUy, U= U A", U= U A",
n<o nzl
The second term u. itself belongs to Gz, and it is not hard to check that u, is
invertible in gz Indeed, u. is a formal power series in A with invertible lead-

ing term u,, therefore its invertibility is due to well known facts; other condi-
tions the coefficients of u,~! should satisfy can also be checked easily. Thus

3.12) uy”t lies in @p,
and one may write
(3.13) u={(1-+u " HDu,.

The remaining problem therefore is to prove the invertibility of the first factor
on the right hand side of (3.13). This can be proved by using the Neumann
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series

3.14) IR TR L IR S ORI Lt

Indeed, writing each term of this Neumann series as
(3.15) (uou Y= 25 afmA",
e

one can easily check from (3.11) and (3.12) that
(3.16) aym ERaym,

therefore because of (3.4b) and (3.4c) Tm-oai™ becomes an element of R, and,
in particular, because of (3.7) it is invertible in R when n=0; thus one sees
that Neumann series (3.14) belongs to ¢ and gives an explicit expression of the
inverse element of 14-u_u."*. This proves the invetibility of u in &z

3.4. Decomposition in ¢. The main result of this section is:
(3.17) Any element u of Gp can be uniquely decomposed as
u=w v, wEJly, vVELPLj,.

We show below a proof of this result, which at the same time provides an
explicit expression of the factors w and v. For the proof we again use “/inear
algebra of infinite matrices” that played crucial roles in the &-matrix formula-
tion. As we shall see later (see Sect. 3. 6), the above decomposition is in close
connection with the &-matrix formulation.

Proof of (3.17). Step 1. The uniqueness of v and w can be checked as
follows. Suppose that another pair w’ €391 and v’ & P satisfies u=w’"'v’. Then
ww =0 e pN\Pr. On the other hand J1xN\Pr== {1}, therefore w'w *=v'v~!
=1, 'This proves the uniqueness.

Step 2. The construction of w and v starts from rewriting the equation
wu=v into the matrix form

(3.18) (w~j)jel<uj~i>i.jGZ:(vj>jE;Zy

where u,, v,, w, (neZ) denote the Laurent coefficients of u, v, and w:

(3.19) U= ﬁ: UAY, v= iﬁvnl", w= ii‘own).‘",

R -0
with we=1, v,=w,=0 for n<0.

We devide the matrix (u;-;): jez into four blocks as in (2.10):
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U, U,

(3.20) (uj~i>i,jel::< ), Uy=(uj-1) j<0, €LC.

2 U({

Step 3. From Eq. (3.18) one can at least formally derive explicit formulas
for v and w. Indeed, taking into account the last conditions in (3.19), one can
split Eq. (3.18) into the following two equations:

(3.21a) (w- ) s<ol 141 5) j<0=0,
(3.21b) (W- Dol s34 (U ) s20=5) 20 -

Therefore if U, is shown to be invertible, one obtains in particular the following
formula :

(3.22) (W-pjco=(—ujz)icelU .

For such w=1+3%.,w,A"}, the product wu clearly belongs to %p. Thus the
problem comming next is to justify formula (3.22).

Step 4. In order to consider the above problem from a more general view-
point, we introduce the set 4 formed by all matrices H=(/,;); j<, that satisfy
the conditions

(3.23a) hi;eR;-; for ¢, 7<0,

(3.23b) the principal diagonal components h;; are invertible in R.
What we want to prove is:

(3.24) I forms a group with respect to matrix multiplication.

Indeed, from this it follows immediately that formula (3.22) makes sense.

Step 5. Assuming for the moment that (3.24) is true, let us check the
validity of formula (3.22). If one applies (3.24) to the matrix U, which clearly
belongs to i, it follows that U, is invertible and the components of its inverse
matrix also satisfy conditions (3.23). On the other hand another problem in
justifying formula (3.22) is that the definition of each component of the product
matrix {—u;)cU, " involves an infinite series because of the infinite dimension-
ality of the matrices concerned; but due to what we have viewed above about
the inverse matrix of U,, this infinite series turns out to become a well defined
element of R as assumptions (3.4) assure. Thus we see that formula (3.22) is
valid. Therefore the remaining problem is to prove (3.24).

Step 6. Finally we verify (3.24) and complete the proof of (3.17). The
proof given here is almost a repetition of the arguments we used in the latter
half of Sect. 3.3. First, for any element H=(h;;); j<, of 4 we decompose it as:
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(3.25) H=H_+H., Hi=(hy0G—2), H-=(h:,(1-0G-2),

where 6 denotes the Heaviside function, 8(x)=1 for x=0 and (x)=0 for x <0.
Since H. is an upper triangular matrix with invertible principal diagonal com-
ponents, it is invertible, and besides one can show easily that

(3.26) H.™' is an upper triangular matrix and belongs to 4.
Therefore
3.27) H=Q1+H H, )H,,

so one has only to check the invertibility of 14+H_.H,* in 4. This can be
checked by using the Neumann series

(3.28) 20(—H-]L‘l)":l-—H-H+"+(H-H+“1)2— ST

Indeed, writing the components of each term as
(3.29) (—H_H,)=(a{}):, i<0,
one sees from (3.25) and (3.26) that

(3.30) P € Rjeian,

therefore the above Neumann series turns out to become an element of 4 and
gives an explicit expression of the inverse element of 1--H_H."*. This com-
pletes the proof of (3.24).

3.5. Applications to self-dual Yang-Mills equations. We here show ap-
plications of the above result to the description of solutions and transformation
groups of the self-dual Yang-Mills equations. In these applications the basic
algebra R is set equal to that one shown in (3.5), or its appropriate extensions
including additional parameters other than (v, z, 7, z). Except that everything
is formulated in terms of formal loop groups, the arguments we adopt below are
almost the same as those of the Riemann-Hilbert problem method.

Description of solutions. Let w®™ be an arbitrary formal power series of
the form

(3.31) Wi =14 S wimrr,  wiveglr, Clly, z 7 21D,
n=1

and define

(3.32) w=exp (240, — §20,)w ™ = kio (220, — 520,)Fw ™ [k 1,

whicn is an element of @, with R=gl(», C[[y, 2z, 7, 2]1]) as in (3.5). We now
decompose u as (3.17) shows:



A New Approach to the Self-Dual Yang-Mills Equations 1I 29

(3.33) exp (220, — 50, )w iV =w-1p, WeENg, vEPp.
Then the conclusion is:
(3.34) w solves Egs. (1.24) under the initial condition
Wl gazmp=w ™,
Proof of (3.34). The initial condition can be checked immediately; so we
here derive Egs. (1.24). From the construction,
(3.35) (—20.+05)u=0,  (A0,+08;)u=0.
By the substitution u=w"'v, one obatins:
(3.36) (—Zaz+ai)w-w"::(—~282+6g)v-v",
(20, +0:)w - w™=(28,+8;)v- v,

Now examine the both hand sides of the last equations. The left hand side is
a formal power series in 27!, whereas the right hand side a formal power series
in 4. Therefore they should be independent of 4, i.e. become elements of R.
This means that Egs. (1.21) are satisfied. Eliminating gauge potientials as we
did in Sect. 1.7, we obtain Eqgs. (1.24).

Description of transformation groups. Let we&Jlp be a solution of Eqgs.
(L.24), and p an element of @, that satisfies Egs. (1.17). We set

(3.37) u=pw-!

and again perform the decomposition of (3.17); in this case we denote the (w, v)
pair as (pew, v):

(3.38) pwli=(p.w) v, Pw&ETg. vEPLP,.
The conclusion here is:
(3.39) © pew becomes a new solution of Egs. (1.24).

In particular, the transformations w—peow obtained as above form a transforma-
tion group on the space of Jig-solutions to Egs. (1.24).

Proof of (3.39). From the assumptions,
(3.40) (=20,40:+A:)wp =0,  (A0,40;+A;)wp=)=0,
where A; and A4; are the gauge potentials corresponding to w. By the substitu-
tion pw t=(pew) -y,
(3.41) (=20, +0:+AN)pow) - (pow) ' =(—20,+0;+A)v-v-1
(20405 +Ag)(pow)pow) ' =(20,+05+ Az -v-1,
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and examining the both hand sides one sees that they are independend of A
This proves (3.39).

Parametric solutions and transformations. In the above arguments the
algebra R is set equal to that one shown in (3.5), but this is not the only one
choice. The same arguments are also valid when one replaces the above R by
its extensions including some additional parameters other than (y, z, ¥, Z) and
modifies the filtration appropriately. This leads to the description of various
parametric solutions and transformations; the examples of papametric solutions
presented in Sect. 3.3 of [7] can be reconstructed from the above view point.

3.6. Connection with Grassmann manifold method. The decomposition
equation u=w"'v in (3.17) has the following equivalent expression :

(3.42) (U5-iez, j<o=(WE Diez, j<olVj-1)1, j<0,

where w}’s denote the Laurent coefficients of w™,
(3.43) wil= 3 wki-*, wi=0 for n<O0.
n=0

Eq. (3.42) means that (u;-,)icz j<o and (W¥.))icz, j<o correspond to the same point
in an infinite dimensional Grassmann manifold, whereas (v;.:); ;<o plays the role
of H-matrices that define the equivelence relation ~; see Sect. 2.4. This pro-
vides a very clear interpretation of decomposition problem (3.17) from the view-
point of Grassmann manifolds.

In order to show more direct connection with the &-matrix, one has to re-
write Eq. (3.42) further. Note that from (3.42),

(3.44) U= (1201, o= (WF )i, j<o0s- )4, j<o-
Also note that because of the triangularity of (Wi )i j<o
(3.45) (WE i, j<o™ = (Wi 51, j<on

Combining these facts with Eq. (3.42), one obtains:

1

241

(3.46) (uj—i)iez,j<0U1_l:( ):(ll/"ﬁj)tez,j<o<wj»i)i,j<o-

Relation to the &-matrix formulation manifests itself in the last equation.
Indeed, according to Proposition 3 in [7], the right hand side of Eq. (3.46) is
exactly the &-matrix that corresponds to w via the one-to-one correspondence
mentioned in Sect. 1.7. In particular, extracting the 0'" row from Eq. (3.46)
one can recover formula (3.22).

3.7. Analytical version. The basic ideas developed in Sect. 3.4 for solving
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the decomposition problem are alse applicable to analytical situations such as
Riemann-Hilbert problem (3.1), though we omit the details here. It turns out in
particular that as far as u of the left hand side of (3.1) is sufficiently close to
the unit {matrix, formula (3.22) makes sense even analytically and provides an
explicit expression for the solution of the original Riemann-Hilbert problem.

Similar arguments can be applied to analytical elements (i.e. elements with
some convergence domains) of a formal loop group, say Goter city. 2, 5, :m-  Indeed,
it follows that if » is such an analytical element, then the factors w and v also
become analytical; in other words, the decomposition problem can ce solved
within the subset of such analytical elements. Decomposition theorems of this
type can be formulated for various formal loop groups.

3.8 Connection with groups of formal microdifferential operations. In
order to give a group-theoretical interpretation to the Grassmann manifold method
of Sato [8], Mulase [13] introduced a group of formal microdifferential operators
and established a decomposition theorem. Formal microdifferential operators con-
sidered there take forms such as u=3 - «,(0/0x)", where the coefficients u,
are taken from a filtered algebra on which 8/8x acts as a derivation operator.
The decomposition theorem of Mulase then shows that such x can be uniquely
decomposed as:

(3.47) u=wl, we éwn@/ax)*", we=1, v= éovn(a/ax)".

The situations concerning formal loop groups can be recovered if one only con-
sider the case in which du,/dx=0 for every n; indeed, via the replacement
0/0x<2 such u’s may be identified with elemtents of formal loop groups.

3.9. Conclusion of this section. We considered a decomposition problem
in formal loop groups. Although this decomposition plays the same role as the
Riemann-Hilbert problem in applications to completely integrable systems, our
formal loop group approach seems to be advantageous in some respects. First,
in constrast to the Riemann-Hilbert problem, the decomposition problem in a
formal loop group always has a unique solution, thus the situations being much
simpler. Second, one has an explicit formula for the solution. By seeking for
its origin we found its relation to the Grassmann manifold method. Third, con-
siderably large part of remarkable features of completely integrable systems is
usually concerned with their formal aspects rather than analytical ones, and the
formal loop group approach provides a suitable language for describing them.

§4. Riemann-Hilbert transformations.

4.1. Motivation. If G is replaced by @, the construction of transforma-
tions presented in Sect. 3.5. reduces exactly to the Riemann-Hilbert transforma-
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tions of Ueno and Nakamura [4]. To be more pricise, we start from a solution
w=w(y, z, ¥, 2, &) of Egs. (1.24) with w(y, 2z, 3, 2, -)€3Jl; and a GL{r, C)-
valued holomorphic function p=p(y, 2z, ¥, 2, ) satisfying Egs. (1.17) with
p(y, 2, 3, 2, -)=8&¢, where w(y, z, 5, Z, )€, etc. means that w belongs to Ji¢
for any fixed value of (v, z, #, Z) etc. Then by solving the Riemann-Hilbert
problem (see Sect. 3.1)

4.1y pwi=0ew) v A€C), pow(y, z 7,2 )€, vy, 2 ¥, 2 )P

one obtains a transformation w—p-w sending w into a new solution pow of
Eqs. (1.24).

Here however arises a problem. As clearly pointed out by Wu [6], the
above set of Riemann-Hilbert transformations involves fairly trivial ones that do
not change gauge potentials. Indeed, if p(y, z, #, 2, -) lies in J¢, then

4.2) pew=wp-t,

the corresponding gauge potentials being the same as those of w.

In order to fill up this gap, Chau [5] and Wu [6] (see also Wu and Ge [14])
introduced another set of Riemann-Hilbert transformations, and mixing these
two families of transformations (to be more precise, their infinitesimal generators)
they obtained symmetry algebras that act non-trivially on gauge potentials.
They also remarked that the symmetry algebras thus obtained are just the same
as those constructed in Refs. [15] without using the Riemann-Hilbert problem.

In what follows we try to reformulate the above enlarged set of Riemann-
Hilbert transformations as transformations acting on a pair of w-functions rather
than a single one. Here a central role will be played by the direct product of
two loop groups. Such a viewpoint considerably clarifies the group-theoretical
meaning of the above transformations.

4.2. Riemann-Hilbert transformations acting on a pair of w-functions.
For the definition of the above two distinct sets of transformations, Chau and
Wu used two w-functions with different analytical properties. Inspired by this,
we here describe these transformations as transformations acting on a pair, not
a single one, of w-functions.

As such a pair, we here take the one to be obtained from the Riemann-
Hilbert problem (3.1) in which % is assumed to depend also on (y, 2z, ¥, Z) with
u(y, z, 3, Z, -)=&G¢ and to satisfy the equations

4.3) (—20,+0)u=0,  (0,+8;)u=0.

To make the notation more suitable for later arguments, we write the (w, v)
pair of this Riemann-Hilbert problem as w®=w®(y, z, 7, %, A) and w® =
(3,2, 5,2, A:
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4.4 u=ww® Wy, 2z, 3,2 V€I, w9y, 2z 5§, 2 )EP;.

By means of the same arguments as used in the proof of (3.34), we see that
w and w® satisfy Egs. (1.21) for a common set of gauge potentials. It should
be noted that this is exactly the way by which Ward [2] and Zakharov and
Shabat [3] constructed solutions.

Now we consider the effect of changing u as:

4.5) u-—pug™?, where p=p(v, z, 5, z, 4) and ¢=¢q(v, z, 5, Z, A) are solutions
of Egs. (1.17) for which (p(y, 2, 7, 2, ), ¢(3, 2, 7, Z, " ))EL8c X Gc.

This of course causes change of (w®’, w'®), which we write as:
(4.6) (W, w®) ——>((p, @)ew™, (p, Qow™).

Transformation of the (w®?, w®) pair thus obtained are what we have sought for.
Note that if one forgets the functional dependence on (y, z, 5, 2), both (4.5) and
(4.6) may be viewed as group action of the divect product group GcX &Gy on,
respectively, Q¢ and o X Pg.

Let us examine the above transformations further. The Riemann-Hilbert
problem that characterizes transformation (4.6) is:

4.7) pug r=p, @)ow ) (p, ow®) Ael).
By the substitution u=w ™ 'w®, Eq. (4.7) becomes:
4.8) (P, Qew)pw1=((p, QewP)qw®*  (2€().

If ¢=1, the right hand side of Eq. (4.8) lies in @ for any value of (y,z,¥5,2);
then Eq. (4.8) reduces to Eq. (4.1) and one has:

4.9) (B, Dew @ =pow™.

On the other hand if p=1, one obtains another type of transformations, the
roles of w® and w being exchanged in that case. Obviously, the action of
(p, 1) and that of (I, ¢) commute with each other, and their composition yields
a general transformation induced by (p, ¢).

4.3. In case the domains where w™ and w® are defined do not overlap.
Even in this case we can define similar transformations acting on the pair
(w®, w®). Accordingly, w® and w® are simply assumed to satisfy Eqs. (1.21)
for a common set of gauge potentials together with the constraint w(y, z, y, z, co)

=1,:
4.10) (—A0,+0;:+ A w=0, (20,+0;--A5)w=0 (w=w™, w®),

and we here do not assume that w and w® are those obtained from Riemann-
Hilbert problem (4.4).
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The construction of transformations consists of the following steps.

Step 1. Take small circles C* and C respectively centered at co and 0
in the Riemann sphere P! so that (w*'(y, z, ¥, %, ), w'™(y, 2, %, , )€ Tcw
K Pcw. Note that the complementary set P'—(C“UJC'") splits into three con-
nected components, the disc C, the annulus C2N\CE?, and the disc C,

Step 2. Take two GL(», C)-valued functions p=p(y, z, ¥, 2, 2) and ¢=
q(y, z, 5, z, A) with the following properties:

(4113) (i)(y; Z, 3’., E» ')7 q(yy 2, 5: Ey '))Egc{)wxgc(o),
(4.11b) p and g satisfy Eqs. (1.17).

Step. 3. Solve the following Riemann-Hilbert problem which is defined with
respect to the disconnected curve C*\JC®

(4.12) pw@i=((p, Pew™) v (A&l
quw'®7'=((p, @)ew®) v (eC™),
(P, P-w)(, 2, 3, Z, -)ETlee,
(P, Pow™Ny, 2, 3, 2, )EPcw,

U(,V, z, ¥, Ey ')Egc(n)'c(f»),

where
(4.13)  Gew cem=={v; holomorphic maps 1—v(2) of CNCE into GL(, C)}.

If the above Riemann-Hilbert problem has a solution ((p, ¢)ew®, (p, g)ow®),
it is unique and becomes a new pair of w-functions, i.e. (p,g)ew™ and (p, glew'®
satisfy linear equations of the form

4.14) (—2A0,-+0;-+ AP Mw==0, <zaz+a,7-.:—/1§ﬂ)wzo,
with transformed gauge potentials Ag-‘l and Af-% Indeed, from (4.12),
(4.15) (=40, +0:+ AP, @)ew)-((p, @ow) ' =(—20,+0:+ Av-v7?,
(20.+05+ A5)((P, @)ow)-((p, Q)ew) ' =(20,+3;5+ Apv-v7?,
for w=w®, w®,

and examining the both hand sides just in the same way as we proved (3.39),
we find that they are independent of 2; this means that Eqs. (4.14) are really
satisfled. Thus by means of Riemann-Hilbert problem (4.12) we obtain a trans-
formation (w*, w)—((p, ¢)ew®™, (p, @)ow™) of the pair of w-functions.

It should be noted that also in the present set-up, if one forgets the functional
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dependence on (y, z, ¥, 2), the above transformations can be regarded as group
action of the direct product group GowX Gocw on its subgroup Jper X Pew. This
generalizes the description of transformations in Sect. 4.2, the latter being re-
covered when C*™ and C' are set equal to C. However, one should be careful
about the fact that it may happen that the Riemann-Hilbert problem defining a
transformation does not have a solution; of course if p and ¢ are sufficiently
close to the unit matrix, it certainly has a solution, but otherwise the existence
of a solution depends on (p, ¢). This means that in a mathematically rigorous
sense the above action on Jl¢e» X Pew 18 meaningful only for a subset (group germ)
of the whole group Qo X Gcw.

4.4. Formal loop group approach. The above construction of transforma-
tions can be generalized to the level of formal loop groups. We here define:

(4.16) G =Gp, NP =g, P ==, (see Sect. 3.3),

4.17) R ={u=FuA"; u, € R_,(—oo<n<0), u, is invertible},
NP ={u=1,2"€ 0 ; u,=0 (n>0), uy=1},
PR =Au=3u, "8 ; u,=0 (n<0)},

(4.18) GO ={u=3u, A% ; U, € R (—oo<n<eo), u, is invertible}.

It can be checked in the same way as the arguments in Sect. 3.3 that these sets
of formal Laurent series all form groups with respect o the usual multiplication ;
besides, they are in the following subgroup relation:

3]5;0) :) 32(0)
(4.19) @R D ey 6w
e e

Replacing the groups G, Gow, T, Pow and Gee, o respectively by
their formal counterparts €%, ¢f, 715, @ and ¢§=, we obtain formal loop
group analogues of the transformation discussed in Sect. 4.2 and 4.3. Here the
algebra R is, as in Sect. 3.5, set equal to gl(r, C[[y, 2, 7, 2]11) or its appropriate
extensions including some additional parameters. The pair (w®, w®) to be
transformed is an element of 915 X P satisfying Eqs. (4.10); the data (p, ¢) of
a transformation is taken from ¢%'x g% and assumed to satisfy Eqs. (1.17).
Then, considering a decomposition prob]em of the same form as (4.12) for the
above formal loop groups and solving it (this is always possible; see below), we
obtain a transformation (1w, w)—((p, g)ew™, (p, q)ew ™),




36 Kanehisa TAKASAKI

Let us examine in more detail the decomposition problem needed in the
above procedure. The problem is to find, for a given element (U™, U®)c g%
X @R, a triple (W, W@ v) that satisfles the following conditions:

(4‘20) U(m):pV(DO)—-IU7 U(O):M/’(O)—lv’
Weeny, Woeef, vegd.

In the application to the above mentioned transformations we set U®=puw -1
U =quw®-!. Therefore a question coming next is whether decomposition pro-
blem (4.20) has a solution. The answer is ves:

(4.21) For any (U, U®)egR> e, there is a unique triple
W WO vy that satisfies (4.20).

4.5. Proof of (4.21). Checking the uniqueness is simple. Suppose that
another triple (W™, W™ v’) satisfies (4.20). Then W/ OW©®lwmp/py=i=
W/ e PN\ NJ1E ; on the other hand, P NEE N7 = {1}. There-
fore W' =W W ®O=W® and v’==y. This proves the uniqueness.

The existence can be proved by successively performing the decomposition
discussed in Sect. 3.4 as follows. Note that this method can also be applied the
analytical case, i.e. Riemann-Hilbert problem (4.12).

Step 1. Decompose U™ g% as:

U==U0,""Vy, U,eqg, V,e®p.

This is due to the decomposition presented in Sect. 3.4.

Step 2. Decompose UV legd as:
UV =01V, U,ePl, Vysqf.
This decomposition is also possible. Indeed, replacing 2 by 2°!, one may reduce
the problem into a decomposition problem in ¢
Step 3. Finally, define:
W= =V,U,, W®=U,, v=V,V,.

Taking into account the subgroup relation as shown in (4.19), one can easily
check that the above triple (W, W, v) becomes a solution of (4.20). This
completes the proof of (4.21).

4.6. Grassmann manifold approach. We viewed in Sect. 3.6 that decom-
position problem (3.17) in formal loop groups is in close connection with the
Grassmann manifold method. In this respect one may naturally expect that
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another proof of (4.21) will be obtained from the viewpoint of Garssmann mani-
folds. Of course the proof presented in Sect. 4.5 is certainly connected with
some Grassmann manifolds via the decomposition problems in ¢ and in 2§,
but this seems to be still indirect. If possible, one may as well seek for a more
direct proof using a Grassmann manifold. Indeed, slight modification of the
arguments in Sect. 3.6 enables us to develop such an approach to decomposi-
tion problem (4.20).

As in the arguments of Sect. 3.6, we start from rewriting the two equations
n (4.20) into the following matrix equation:

( % £ 1
U'w) [ U(_oi) i-1 V1 (30) W (ﬂl Vi iy-—i~j—l
(42 [—— T S A ML aa| ,
% (0)
Ui ‘ Uue ez, <0 WL Jiez, s<o\ Visjer | Vinj 7, j<0

T j+1
where the components of the above matrices denote the coefficients of the
Laurent expansion

(4.23) U =30, U=3UP",

W=, WO =W p=S 2"

Note here that the size of rows and columns of the matrices in (4.22) is the
double of those that appear in Sect. 3.6; except for this difference, Eq. (4.22)
has almost the same form as Eq. (3.42).

In view of the arguments in Sect. 3.6, what we have to do next is to
multiply the left hand side of Eq. (4.22) by its negative index part. Performing
this calculation and writing the result in terms of the coefficients of the Laurent
expansion

(4.24) W=, WoO=Swer,
W = =Wo- IIV(”’“ZW(“’)Z‘ , ﬁ/(m)—):EW%ﬁk(w)R—n ,

W(u) =W ® zzﬁﬂo)p , Wm)”’:EWﬁ(“)Z” ,
we obtain :

(o0} Ty (c9) (c0) 1
(4.25) (Ei‘im, T ) (.EL_JELL{_‘_)
UQ | UD, e U U i

(I"V'i*(?) W%“éﬁ'ﬁll) (W 25000 )
WERAAWEY ez i<\ 0 [ W /4 <0

<Wf‘§°’ w'm’zl) (Wm 0 )
KO NWEY iz o\ 0 | WO, /s

In particular, we obtain the following explicit formula for the solution of decom-
position problem (4.20):
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F PG I F7 (0 (oo ) o0 H (2 -
—Wep | we, U; )sU(_;)_l U S\
420 | ) = ‘ i
W - WO /i< SUY ] i< 21 ! U, i, j<0

4.7. Conclusion of this section. We have viewed how an enlarged family
of Riemann-Hilbert transformations can be formulated as transformations acting
on a pair of w-functions. A key idea was to use the direct product of two loop
groups, or formal loop groups, rather than a single one, and the transformations
were then realized as group action of elements of the direct product group on
its subgroup. This considerably clarifies the group-theoretical structure of the
above transformations. In particular, the set of their infinitesimal generators can
accordingly be embedded into the direct sum of two loop algebras; this seems
to explain the meaning of “richer group structure” of Riemann-Hilbert trans-
formations pointed out by Wu and Ge [6, 13]. Finally it should be noted that
also in the present section, as well as in the previous section, the use of formal
loop groups much simplifies the description.

§5. Further developments of our approach.

A number of applications and generalizations may be expected ; among them
we first point out that our approach can also be applied to the supersymmetric
Yang-Mills equations. Recently there appeared several papers that deal with
supersymmetric gauge fields from the viewpoint of complete integrability; see
Volovich [16], Devchand [17], Chau, Ge, Popowicz 18], Chau [19] and re-
ferences cited therein. Our approach can readily be applied to these supersym-
metric cases with slightest modification; what one has to do is just to change
the basic algebra R (see Sect. 3.2) appropriately so that it includes anti-commut-
ing variables as well as ordinary ones. In particular the coefficients of Laurent
series and the components of infinite matrices that appear in the arguments
depend on both type variables.

Another application would be expected to higher dimensional generalizations
of gauge field equations. In a recent paper Ward [20] presented some examples
of such integrable gauge field equations and gave a solution technique that
generalizes his previous work [2]. Another example in eight dimensions can be
found in a paper of Witten [21], and it was recently solved by Suzuki [22]
using the Grassmann manifold method. The paper of Witten is also concerned
with a geometric interpretation of supersymmetric gauge fields from the view-
point of twistor theory; its relation to complete integrability is discussed in [19].
In a sense supersymmetric extension is a sort of higher dimensional extension
which involves anti-commuting coordinates besides ordinary ones, so some unified
viewpoint might be found in this direction.

We finally note that the present approach will be of much use in studying
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the Einstein equations as well, especially in their self-dual sector. In this respect
recent work of Boyer and Plebanski [23] seems to provide very interesting
material. One of their remarkable conclusions is that an infinite dimensional
group of loop type appears also here and plays the role of transformation group
for the self-dual Einstein Eqtations. This loop group however is considerably
different from the previous ones which we discussed for Yang-Mills fields.
Indeed, this loop group is formed by maps on a circle with values in the group
of canonical transformations; note that the latter group in itself is infinite
dimensional. Thus the situations become much more complicated than in the
case of Yang-Mills fields in which related loop groups are obtained from finite
dimensional matrix groups such as GL(r, C). Accordingly our tools such as
formal loop groups should be appropriately modified; research in this direction
is now in progress. It seems likely that the self-dual Einstein equations may be
viewed as a completely integrable system of new type.
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