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Integrable Systems as Deformations of 2 -Modules

KANEHISA TAKASAKI

1. Introduction. Recently M. Sato and his collaborators including the au-
thor found, through several case studies, that the theory of nonlinear inte-
grable systems can be reconstructed on the basis of the notion of “deforma-
tions of Z-modules.” This article is an exposition of this point of view. In §2
we illustrate major ideas with a simple model, which is related to & -modules
in one-dimension, or, in a more familiar language, linear ordinary differential
operators. This model, though it looks too simplified, includes almost all the
points of our approach; we discuss this case in every detail. In §3 we deal with
the KP hierarchy. The KP hierarchy occupies a “universal” position among
other soliton equations in the sense that a number of soliton equations can
be derived from it (and its multicomponent version) as “specializations.” We
refer for the detail of the KP hierarchy to [Sat-Sat, Jim-Miw, Seg-Wil, Mul,
Shi] and references cited therein, and focus on the relation to 2-modules.
§4 is devoted to the issue of multidimensional generalization. An ultimate
goal of our approach is to find a unified theory of integrable systems on the
basis of the notion of &-modules. It would be fair to say that we are now
just at the beginning of the whole program. An overview on this program is
summarized in §4.5 and §5.

The author wishes to express his sincere gratitude to M. Sato, Y. Sato, and
M. Sato’s students, N. Suzuki, Y. Ohyama, and A. Nakayashiki. This article
owes much to a longstanding seminar with these people.

Before going forward to the text, we give a brief account of several basic
notions that will be used throughout the text. A differential ring is a ring #
with a set of derivations 8,, 0 < g < s, i.e., additive maps 3,: # — # with
the Leibniz rule

9:(f8)=0:(f) -8+ f-8,(g) VfgeR.

An element annihilated by all the derivations is called a constant of #. The
set of all constants {¢c € F#; 8,(c) = 0 for 0 < ¢ < s} is a subring of
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R. A differential operator with coefficients in Z is a linear combination of
higher-order derivations of the form: P = }"a,8" (finite sum), where v =
(vo,...,Vs-1), @ “multi-index,” ranges over s-tuples of nonnegative integers,
and 8 denote the higher derivations

8" := (80)"(0y)" - - - (B5—1)"~".

The use of such multi-index notations greatly simplifies the presentation. We
also use the notation

8” = (B)* (A1) -+ (Bs-1)"""s  W|i=wvo+ -+ Vs,
vY._ (wY.. (v Vg .=u,,(u,,—l)~-(u.,—xa+1)
k] \xo Ks-1/’ Ko/~ Ko! ’
VK= +Ko... Vs +Ks-1)

for v = (vo, V1. ..,Vs—1) and K = (Ko, K1,...,Ks—1). The set & = Fp of all
such differential operators forms a noncommutative ring with the rules of
summation and multiplication

Y a,8" +)_b8" =) (a + )8,
Za,,a” Z b,8" = Ecuau, Cy = z (”:)a,‘a"(b,,ﬂ_,,),

where the summation in the definition of ¢, ranges over all values of the
multi-indices # and x with nonnegative integer components. The order of a
nonzero differential operator P = ¥ a,8" is the maximal degree of deriva-
tions in P.

Such a notation as 8% f is occasionally confusing, because it is not clear
whether this represents the operator product of 8” and f, the latter being
considered an operator of order zero, or the operation of 3” on the operand
f. In case there is such confusion, let us use the following notations to
distinguish them:

8" - f := operator product € Z;
8" (f) := operation on f € Z#.

A left @-module is an additive group .# equipped with an action of &
from the left side. We write the sum of u, v € 4 as ¥ + v, and the action
of an element P of & on u as Pu. A left @-submodule of 4 is a subset #
that is a left @-module with regard to the summation and action rules of ..
The notion of right &-(sub)modules is defined in a fully parallel way.

2. Toy model in one dimension.

2.1. Setup—Rings and modules. Throughout this section & denotes a
differential ring with a single derivation 8, & the ring of constants in #,
and @ = D5 = H[0] the ring of linear ordinary differential operators with
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coefficients in #. We assume that all the rational numbers Q are included in
% . The left #-submodules

(2.1.1) DV =R+ RO+ + RO, 20,

incorporates into & a natural filtration. In the following we focus on all left
D -submodules {_#} of @ that satisfy the splitting condition

(2.1.2) D =709 (direct sum of left #-modules),

where m is a fixed positive integer. In other words, @ = & + @(m-1)
JN@m- =0,

2.2. Generators of @-modules. An immediate consequence of the splitting
condition above is the existence of a distinguished #-generator system.

PROPOSITION. Under splitting condition (2.1.2), there is a unique F-gener-
ator system (Wi, i 2 m} of &, F =3, RW,, of the form

m=-1
(2.2.1) Wi=8'-3" w;o/
j=0

that satisfies the relations (“structure equations”)
(2.2.2) Wisr1 =08 - W —wj Wy, = 0.

The existence of such an F#-generator system, conversely, characterizes left
D -submodules of D with the splitting property.

PROOF. One can indeed obtain such generators by decomposing the mono-
mial 8 into the sum of an element of .# and an element of & (m—1) according
to the splitting @ = .7 @ @("~1), the first component then giving W, as re-
quired. From this argument the uniqueness of such a generator system is
also evident. Further, the left side of (2.2.2) is chosen so as to lie in the
intersection # N P™=1) hence vanishes due to the assumption. The former
half of the proposition thereby follows. The latter half can be checked by
simply reversing the present argument. Q.E.D.

(2.2.2) recursively determines W,,,,, Wy,2,..., in such a form as: (differ-
ential operator)-W,,. Thereby follows

COROLLARY. Under splitting condition (2.1.2), ¥ is generated, over 9, by
a single element as

(2.2.3) F =DW,.

This conversely characterizes left D -submodules of @, the generator W,, being
an arbitrary monic operator of order m.

2.3. Principle of deformations. Having obtained a family of left -
modules of &, we now consider a particular type of deformations (which
we call time evolutions) #(0) = F — (1), t being some time parame-
ter(s). The argument presented below is of heuristic nature, indicating a
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general scheme of how to incorporate time evolutions of such &-modules,
which can also apply to all other cases of deformations of &-modules. More
rigorous treatments are discussed later.

An “informal definition” of the time evolution reads:

(2.3.1) “F(t)=Fe "

where F is an element of & = %[3}, i.e., a differential operator with constant
coefficients. (One may also consider the case where F is a general element
of #[8], but we focus on the above case for simplifying the analysis.)

The “definition™ above inherits a subtlety, because the boost operator e~'F
of the time evolution is a differential operator of infinite order. Accordingly
Fe—'F does not lie in the ring & of operators of finite order. One thereby
cannot adopt (2.3.1) as a rigorous definition of 7 (1).

A remedy to overcome this (rather technical) difficulty is to re-interpret
(2.3.1) as a relation in an adequate extension P of @ admitting operators of
infinite order. As such an extension one may take, for example, the following.

(23.2) 9 =21 = {i 1" Ap; An e.@} .

n=0

A precise definition of the time evolution ¥ — .7 (¢) then reads
(2.3.3) DI =DFe .

2.4, Evolution equations of generators. Exploiting generators of Z-
modules as discussed in §2.2, one can give a more explicit form to such
a time evolution. Let us start once again with making clear the setting.

We formulate everything within the framework of formal power series in
t. The basic differential ring is therefore the ring Z[[¢]] of formal power
series with the derivation 8 uniquely extended from %# onto F[[¢]] by the
rule

a@) =0.

The basic ring of differential operators is then not D = J|[J], but its exten-
sion D = Z[[1)[8]. In this setting we now consider Fgpy-submodules
{F (1)} of Dgy that satisfy splitting condition (2.1.2) with & etc. replaced
by Daya-

Such a Dgy-submodule 7 (¢) has a unique system of % -generators

m-1
W) =0' - Y wy(ne’, izm,
j=0
with the coefficients w;;(¢) lying in Z[[?]]. As a Dg-module #(¢) is gen-
erated by a single element, W, (¢).
Let us derive an infinitesimal version of (2.3.3). While 9, defined as in
(2.3.2), is made up of differential operators with ¢-dependence, % itself is
independent of ¢. 8/8¢ therefore induces a %-linear map: DF — DS,
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Twisted by e’F, it gives rise to a #-linear map: I.7 (1) » DF# (1) sending
PeDF(1)— 8(Pe'F)/0t-e~F = 8P/d1 + PF. If P is of finite order (i.c.,
a member of 7 (1)), so is the image of this %-linear map. To summarize,
one obtains the following infinitesimal version of the law of time evolution:

(2.4.1) {0P/8t+ PF; Pe #(1)} C #(1).

Applying (2.4.1) to the aforementioned generators W;(¢), one obtains the
evolution equations

(2.4.2) % + Wi)F = Y bi()W;(1),

jzm
where b;;(f) are elements of Z[[7]], the right side being actually a finite
sum. Another equivalent expression of these equations is due to the Dy -
generator Wy, () of # (1), with which the time evolution is governed by the
single equation

W,

(2.4.3) 87”;@ + Win(t)F = B(1)W, (1),
where B(t) is an element of Daq- The coefficients b;;(7) and the operator
B(t) are uniquely determined by the equations themselves. For example,
comparing the 8/-terms in (2.4.2), one finds:

(2.4.4) bij(t) =Y Wijonfus
n20
where f, denotes the coefficients of F
(2.4.5) F=)"f0", fi€®.
n20

An explicit formula to B(¢) will be given in §3 in a more general context.

2.5. Matrix form of evolution equations. The evolution equations above
can be written in a more compact matrix form, which is a key to solving
them in a closed form as we shall see later. To derive it, we use the following
two matrices of infinite size.

(2.5.1) § =4§(F) = (Wij)ocicoo.0< j<ms
(2.5.2) n=n(S) = (~Wi;)mgicoo,0< j<oo,

where / and j denote the indices of rows and columns, respectively, and the
wy;'s outside the original range m < i < 00, 0 < j < m are supplemented as

(2.5.3) wij = 5,',' 0<i,j<m~1); =dij (m<i, j<oo)
Note the following simple relation connecting # and 7.
(2.5.4) t](aj)osj«;o = (Wi)m<i<oo-

Our goal below is to show what evolution equations are satisfied by &(1)
and n(¢). For simplicity we write ¢ and 7 instead of &(¢) and n(t) as far as
there is no fear of confusion. The first step is the following, which is an
immediate consequence of the construction of #.
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PROPOSITION. Evolution equations (2.4.2) are equivalent to the matrix sys-
tem

(2.5.5) dn/dt = Ben — nF(A),
where Br and F(A) denote the matrices

(2.5.6) B := (}: wl,j—nj;t) .
m<i,j<oo

n>0
F(A) =Y fih" A" := (ij-ndogij<oo-
n20

In order to transfer this matrix system for # into one for £, we note that
& and % are connected by the relation

(2.5.7) né = 0.
What we need here is the following

LEMMA. Suppose that a matrix §' = (};) of the same size as ¢ satisfies the
relation n&' = 0. Then there is a unique matrix A = (8ij)o<i,j<m with which
& is written &' = §A.

ProoF. Divide the matrices &, 1, & into blocks as

-(3) 1-cmn €= (5)

where W = (Wij)msicoo0gjcms &s—(——y = (§lImgicoo0gicm)0gj<m; and 1
represents unit matrices of various sizes. The relation #¢’ = 0 then reads
we,_ & _=0.

Therefore & = £B with B = &__, which is evidently unique. Q.E.D.
REMARK. The roles of & and # may be interchanged. lLe., if a matrix n' of
the same size as n satisfies W& = 0, then there is a unique matrix B such that

n' = Bn.

NoTaTioN. From here throughout we use, as in the above proof, the
signatures ++, +—, —+, —— to indicate the four blocks of an oo X oo matrix
A= (a,'j)()sj,j<°°. Thus

A__ A-
(2.5.8) A= ( + ) , A__ =(aij)o<ijem> €IC.
Ae- Aps

We now apply this lemma to prove

PROPOSITION. (2.5.5) is equivalent to the matrix system
(2.5.9) 8¢jot=F(A); —EAr,
where

(2.5.10) Ar = (Z f;w.-+n.,-) ,
0<i,j<m

n20
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the other notation being the same as in the previous proposition.

PROOF. Suppose (2.5.5) is satisfied. Differentiating (2.5.7) with regard to
t and using (2.5.5), one has
n(8§/0t - F(A)) = 0.
The lemma above then ensures that (2.2.9) is satisfied for some Ar. To see
that A is indeed given by (2.5.10), one divides each matrix in (2.5.9) into
“blocks™ as in the proof of the lemma, and compares the “upper-half part.”
Then
0=(F(A)X)-- — 4F.
This exactly implies (2.5.10). One can thus derive (2.5.9) from (2.5.5). A
precisely parallel reasoning deduces the converse. Q.E.D.
REMARKSs. (i) The argument above is also applicable to (2.2.2), the struc-
ture equations of the @-module .#. In terms of & and # they read

(2.5.11) Q) =A~84p,  Ap:=(Wis1j)ogijcms
(2.5.12) 8(n)=Ban—-nA,  Bp:=(Wij-1)msi,j<co-

(ii) As we have seen in the proof of the last proposition, the equations to
¢ and # are made up of two distinct parts, one of which may be interpreted
as algebraic equations defining the matrices A, Br, Ay, and By in terms of
the entries of ¢ and 5. The (—-) block of (2.5.9) and (2.5.11) and the (++)
block of (2.5.5) and (2.5.12) are of that nature. They can be readily solved to
reproduce (2.5.6), (2.5.10), etc. Therefore if one wishes to show that a matrix
¢ satisfies, say, (2.5.9), one has only to check (2.5.9) without identifying the
form of Ar, which nevertheless automatically agrees with the one given by
(2.5.10).

2.6. Solution of evolution equations.

PROPOSITION. Given Cauchy data £(t = 0), one can solve the evolution
equations in a closed form as:

(2.6.1) $() = exp(tF(A)(t = 0)- h()~',
h(1) = (exp(tF (A))(t = 0))-—,

where exp(tF(A)) := T2 o " F(A)*/n.

PrROOF. The matrix &(¢) := exp(tF(A))¢(t = 0) evidently satisfies the
following: N X N

/0t =F(A)X, <C(t=0)=¢(=0).

From this, one can readily derive (2.5.8) for &(¢) := &(¢) - h(f)~" with Af
unidentified, which however turns out to be given by (2.5. 10) due to the last
remark in §2.5. Q.E.D.

REMARKS. (i) If the differential ring (%, 8) is given a more explicit struc-
ture, the structure equation written in matrix form (2.5.10), too, can be solved
along a parallel way. Consider for example the case where

£ =€[[x]), d=d/dx.
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The structure equation then takes the same form as the equation of the time
evolution generated by F = 3; thereby the result above provides the solution
formula

(2.6.2) &=exp(xA)é(x=0)-h(x)~",  h(x)=(exp(xA)(x = 0))--,

which gives, in terms of the constant matrix data {(x = 0), a parametrization
of the family {# } of 2-submodules of & with splitting property (2.2.2).

(ii) The argument used to derive (2.6.1) is of universal nature, and also ap-
plicable to the evolution equation of 7. This leads to the following expression
of solutions:

(2.6.4) n(t) = k(2)~" - n(t = 0) exp(~tF(A)),
k(t) = (n(t = 0) exp(—tF(A)))++-

Note, however, that a new circumstance occurs here; k(¢) is an infinite matrix.
One has to make sense of its inverse and multiplication with other matrices.
This is in principle the same issue as we shall encounter in the case of the
KP hierarchy in §3. A prescription to be presented therein will give a definite
meaning to the above formula.

2.7. Matrix Riccati equations. Let us reconsider the meaning of the con-
tents of §2.5 and §2.6 from a more general point of view.

A “matrix Riccati equation” is a system of differential equations of the
following form:

(2.7.1) dUjdt=L, +L__U-UL__-UL_,U,
where U is an n x m matrix of unknowns of the independent variable ¢,
(2.7.2) U = (uij)ogi<n0< j<ms
n and m positive integers, and L.y the four blocks
L__ L_
(2.7.3) L= ( L, L+:) v Lo—={(lijloci<nogj<ms e€LC.

of an (n + m) x (n + m) square matrix L = (/ij)ogi,j<m+n Of functions of .
The familiar Riccati equation of the second order

(2.7.4) dujdt = a + bu — u?
corresponds to the case where

01
(2.7.5) m=n=1, L_(a b)‘

Matrix Riccati equations can be “linearized.” In the case of the original
Riccati equation, one can reduce it to the linear equation

(2.7.6) d®e/dt? - bde/dt—a=0
via the so called Cole-Hopf transformation

-4
2.7.7) u=—/p.



INTEGRABLE SYSTEMS AS DEFORMATIONS OF £-MODULES 15t

In a matrix case one starts from the linear system

(2.7.8) d®/dt = LD,
where @ is a rectangular matrix with m columns
O__
(2.7.9) = (¢+ ), D__ = (9ij)ocicmogj<n,  EIC.

Under the assumption that ®__ is invertible, the “matrix Cole-Hopf trans-
formation”

(2.7.10) U=®,_ - (d__)"

sends any solution of (2.7.8) to a solution of (2.7.1), and vice versa.
“Linearization” can also be achieved in a dual form based on the linear
system

(2.7.11) d¥/dt = -YL,

where ¥ is a rectangular matrix with n rows

(2.7.12) ¥=(¥:- Y. Y.t = (Wij)mgicmenn<jcmen, €tC.
The transformation

(2.7.13) U=—-(¥s) - ¥so

combines the linear system with the matrix Riccati equations.
To make contact with the previous setting, we introduce the rectangular
matrices

(2.7.14) c:=(:j), n:=(-U 1),

where 1 stands for unit matrices of suitable size. Note that they are perpen-
dicular to each other:

(2.7.15) nt=0.

Matrix Riccati equation (2.7.1) then allows the following two equivalent ex-
pressions:

(2.7.16) difdt=1§{-{4, A:=L__+L_,U,

(2.7.17) dn/dt = Bn-nL, B=L,.-UL_,.

“Matrix Cole-Hopf transformations™ (2.7.10) and (2.7.13) can be rewritten
as

(2.7.18) (=@ (0__)"', n=(¥.) T

What we have seen in §2.5 and §2.6 is evidently a special case of the setting
above; the infinite matrix W = (W} ;)m<i<co,0<j<m corresponds to U.

2.8. Grassmann manifolds. Geometrically, a matrix Riccati equation de-
fines a dynamical motion in a Grassmann manifold, the matrices ¢ and n
playing the role of “frame matrices” representing a point on it.
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Following the notation of [Sat-Sat], let GM(m, V) denote the Grassmann
manifold formed by all m-dimensional vector subspaces of a fixed vector
space V, which we now define to be the vector space of column vectors of
size m + n, dimV = m + n. For such a vector subspace one can take a
basis {¢@, &M, ..., Em-D} and construct from them a rectangular matrix § :=
(EO,...,Em=D) of size (m + n) x m. We call £ a frame matrix. A different
choice of bases that span the same vector subspace corresponds to a change
of the frame matrix of the form

(2.8.1) §—¢&h, h € GL(m).

Allowing for this nonuniqueness, one obtains the following expression of
GM(m, V).

(2.8.2) GM(m, V) =~ Fr(m + n,m)/GL(m),
where Fr(m + n, m) denotes the set of all frame matrices
(2.8.3) Fr(m + n,m) := {(m + n) x n matrices of rank m},

on which GL(m) acts as shown in (2.8.1).
This Grassmann manifold is covered by a finite number of affine coor-
dinate patches. Each coordinate patch is numbered by a sequence § =

(50, S1...,5m—1) Of increasing integers, 0 < 5o < §| < =+ < Sy < M + 1,
and given by
(2.8.4) GM(m, n)s := {& € Fr(m; n, m); det({s,;) # 0}/GL(m).

In this coordinate patch one can take a distinguished frame matrix that sat-
isfies the conditions

(2.8.5) &,j=0i for0<i,j<m,

the other mn entries of ¢ then giving a system of affine coordinates on
GM(m, n)s.

The unknown functions ;; of matrix Riccati equation (2.7.5) are thus
nothing other than the affine coordinates on the coordinate patch
GM(m, n)o,....m-1). (2.7.16) defines, through (2.8.2), a dynamical system
on GM(m,n). The matrix Riccati equation can be understood as represent-
ing the dynamical motion in a particular coordinate system.

In this respect the GL(m) freedom of frame matrices play the role of
“gauge transformations.” Up to here we have understood (2.7.16) as equa-
tions to the special frame matrices of the form as shown in (2.7.14) (i.e. under
normalization (2.8.5) with S = (0, 1,...,m — 1)), but if this normalization is
removed, (2.7.16) allows the transformation

(2.8.6) § —¢h, A—h~'Ah+ h~"dh/dt,

where h is an arbitrary GL(m)-valued function of ¢. The “matrix Cole-
Hopf transformation” is a special case of these transformations, connecting
a “gauge-fixing” to another one.
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As we have already seen in several stages, this dynamical motion admits
another representation in terms of the matrix #. This reflects a general duality
principle among Grassmann manifolds. Let V* denote the dual vector space
of V, {, ) the canonical pairing of V* and V. Then a canonical identification

(2.8.7) GM(n, V*) ~ GM(m, V)

is obtained by assigning to each V C V (V' € V*) its polar subspace V' =
{vVevisweV, v v)=0} (VL :={veV;,Ww eV, (v,v)=0}). If one
regards V* as the set of row vectors of size m + n, the counterpart of (2.8.2)
for GL(n, V*) becomes:

(2.8.8) GM(n,V*) ~ GL(n)\Fr(n,m + n).

The matrix # is thus nothing other than a representative (“dual frame ma-
trix”) of the “dual Grassmann manifold” GL(n, V*).

2.9. Simultaneous time evolutions. We have discussed, up to here, the case
with a single time variable, but this is just for simplifying the presentation.
One can actually consider simultaneous time evolutions ¥ — 7 (1),4,...)
caused by the right multiplication of the boost operator exp(—¢, Fy —t2F,—---)
with a set of differential operators F|, F5,... with constant coefficients. The
time evolutions are described by a system of evolution equations with respect
to the multidimensional time variables, each of which takes the same form
as presented in §2.4. The contents of §2.5 and §2.6 can be readily extended
as well without substantial change.

If F; =8, i=1,2,..., the evolution equations of the simultaneous time
evolutions with time parameters ¢ = ({),,...) agree, in essence, with the
KP hierarchy restricted to a special sector of its solution space. The micro-
differential operator W(t) = 1 + w8~' + --- of the KP hierarchy (cf. §3) is
connected with W,,,(¢) as:

W(t) = Wy(t)d—",
“Rational” and “soliton” solutions of the KP hierarchy fall into this class.

3. KP hierarchy as deformations of Z’-modules.
3.1. Setup—microdifferential operators. Throughout this section (%, ),
%, Z are the same as in §2. Also the following notations are used:

Z:={0,£1,%2,...} (the set of all integers),
N:={0,1,2,...}, N = {-1,-2,...}.

Since the notion of microdifferential operators is one of the most basic in-
gredients of the theory of the KP hierarchy, we give a brief account of it and
related notions.

Let & denote the following set of formal Laurent series in 8, which we
call microdifferential operators (or, in the traditional language of analysis,
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pseudodifferential operators):

(3.1.1) g=g_ﬁ’ = {Zana"; (i) Vn,an Eg,
nez

(i) Im,Yn > m, a, = 0}.

The notions of summation and multiplication are defined by the following
rules:

(3.1.2a) Y and" + ) bud" =) (an+ bn)0",
(3.1.2b)

a0 Y bad" =) cnd", =) (;c) ;0% (bpsk-i)s

where the summation ) in the definition of ¢, ranges over all i € Z and
k € N. Actually only a finite number of terms can survive in this sum because
of the assumption on a, and b, and of a property of the binomial coefficients:
(§) = 0 for i < 0. These rules give a natural generalization of the calculus
of differential operators, and & thereby acquires a ring structure, 2 being a
subring. Another basic operation is the formal adjoint

(3.1.3) (T @) =Y (-0)an,

which causes an anti-automorphism of &.
The left #Z-submodules

(3.1.4) 0 = {Za,,a" €&; a,=0forn> i}, iet,

give a filtration of &. Just as in the case of differential operators, a micro-
differential operator }°, __ _ a,8" is said to be of order i if a; # 0, a; then
being called the leading coefficient. A microdifferential operator is said to be
monic if the leading coefficient is equal to the unity. It is not hard to see that
a microdifferential operator is invertible (i.e., has an inverse in &) if and
only if the leading coefficient is invertible in &#. In particular, any monic
microdifferential operator is invertible.
& can be decomposed as:

(3.1.5) & =&Y (direct sum of left #-modules).
Let ( )+ denote the projections onto the first (+) and second (—) components:

(3.1.6) (X and"), =3 ad" (L and")_:= Y ard".
n>0 n<0

3.2. KP Hierarchy—Review. The KP hierarchy is made up of a set of
evolution equations that describe an infinite number of simultaneous time
evolutions of a monic microdifferential operator of order zero:

(3.2.1) Wi=1+wd ' +wd 2+,
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Three equivalent representations are now available to the KP hierarchy, two
of which are referred to as the “Lax” and “Zakharov-Shabat” representations,
respectively. The third one has no widely accepted name at present; let us
call it, for the moment, the “W -representation.”

The Lax representation reads as:

(3.2.2) OL/adt, = [By, L), n=12,...,
where L (the Lax operator) and B, denote the following:

(3.2.3) L:=Ww.0-w-!,
(3.2.4) B, :=(L"),.

Since W is monic, as remarked in §3.1, it is invertible and the definitions
above are meaningful. L becomes a monic microdifferential operator of order
one, and B, a monic differential operator of order n.

The Zakharov-Shabat representation is the following system of equations:

(3.2.5) aBm/atn - aBn/atm + [Bm,Bn] = 0, mn= 1,2,. vee

If B, are parametrized by a single Lax operator L as in (3.2.4), this indeed
becomes equivalent to the Lax representation above.
The W-representation takes the form of evolution equations to W:

(3.2.6) oW /oty = B,W — Wo", n=12,...,

where the B, are understood to be defined through (3.2.3) and (3.2.4). Note
however that (3.2.6) itself, under the requirement that B, be differential op-
erators, uniquely determines the relation of B, and W; from (3.2.6) the B,
are written

B,=W.9" W'+ (0W/ot,)W!,

and the ( ), part of both sides gives the relation
(3.2.7) By=(W-8"-Ww-'),,

which is a restatement of the definition of B, in (3.2.3) and (3.2.4). This
circumstance is of the same nature as we met in §2 in various representations
of evolution equations.

3.3. D-modules to be deformed. As @-modules, we consider left &-
submodules {_#} of & with the splitting property

(3.3.1) &=F0&Y (direct sum of left #-modules).

One can specify the structure of such &-modules with basically the same
reasoning as presented in §2.2, as follows.

First, under splitting condition (3.3.1) there is a unique #-generator sys-
tem {W;; i > 0} of & of the form

(3.3.2) Wi=8'-) w0
j<0
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with the relations (“structure equations”)
(3.3.3) Wip1 -0 -Wi—w;_ W =0.

The existence of such a #-generator system, conversely, characterizes left
D -submodules of & with the splitting property.

Second, as a corollary of this result, & turns out to be generated, over &,
by a single element:

(3.3.4) I =W,

This conversely characterizes left Z-submodules of &, the generator W, being
an arbitrary monic element of & of order zero.

3.4. Deformations and evolution equations. The contents of §§2.3, 2.4,
and 2.9 carry over to the case above without any change. One can thereby
introduce an infinite set of time evolutions caused by the monomials 87,
n=1,2,..., with time variables #,, n = 1,2,.... Let F(t) = S (t1,4,...)
be the result of these time evolutions, which is now a Dg-submodule of
&) that satisfies splitting condition (3.3.1) with & = & replaced by &)
According to §2.3 an “informal” definition of .7 (¢) reads (cf. (2.3.1)):

(3.4.1) “F(t) = F exp(=4,8 — 0% —---).”
A more rigorous formulation is due to the relation (cf. (2.4.1))
(3.4.2) {6P/8t, + PO"; P F(t)} CcF(1), n2l.

With the Z[[t]]-generators W;(t), { > 0, of #(¢) one can write (3.4.2) in
the form of evolution equations, which reads:

(3.4.3) OW(1)[0ty + Wi()0" = 3 bin(Wi(1),  n21,

Jj<0
where b;(t) are elements of Z[[t]] uniquely determined from the equations
themselves (cf. (2.4.4)). Another representation of the time evolutions is due
to the Dg(()-generator Wo(t):
(3.4.4) OWo(1)[0ty + Wo(1)3" = Ba()W5(2), n21,

B,(t) being elements of Zg(y. This is nothing other than the W-represen-
tation of the KP hierarchy under the identification W = W,. One can thus
reproduce the KP hierarchy as deformations (time evolutions) of &-modules.

3.5. Matrix form—Bridge to Grassmann manifold. From the coefficients
wij(t) of the Z[[t])-generators we construct the following matrices (cf.
(2.5.1), (2.5.2)):

(3.5.1) &(t) == (wij(t))iez.jenv,

(3.5.2) n(t) := (—w;j(1))ien.jez-

As in §2.5, we supplement the w;;’s outside the original range as:
(3.5.3) w;j(t):=6;; (i,jeN);  —6&; (i,j€EN).
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Also we use the signatures ++, +—, —+, —— as subscripts to indicate the
four blocks of an infinite matrix whose rows and columns are numbered by
integers. E.g., if 4 = (ai;)ijez,

A__ A
(3.5.4) A= (A+_ A.._:) , A__ = (aij)ijen, etc.
Another important set of matrices are
(3.5.5) A" := (i j-n)ijez, nel

Following the argument of §2.5 one can rewrite (3.4.3) in terms of ¢(¢) and
n(t). This results in the following two matrix systems, which are equivalent
to each other.

(3.5.6) 88()/0ta = A"E(1) = §(0)An(1), n21,
(3.5.7) n(1)/dtn = Ba(t)n(t) — n()A", n21,
where

(3.5.8) An(t) := (A"G(1))-=,  Ba(t) := (n()A")44.

One can also rewrite (3.3.3), which are structure equations for W;’s to form
a D-module, into a similar matrix form.

The matrices {(¢) and n(f) may be thought of as “frame matrices” (cf. §2.8)
representing a point (which moves as ¢ varies) of the “universal Grassmann
manifold” of Sato and Sato [Sat-Sat]. Segal and Wilson [Seg-Wil] argued
basically the same fact from a somewhat different point of view. To be more
precise, these two approaches are “dual” to each other; Sato and Sato adopted
the ¢ representation as the fundamental picture, whereas the argument of
Segal and Wilson, based on the notion of “Baker functions,” may be thought
of as providing a realization of the n representation. In the case of # =
Z[[x]] and 8 = 8/8x, for example, a complete system of Baker functions is
given the following formal Laurent series of a new formal variable A (“spectral
parameter™)

(3.5.9) wi(x,0,2) 1= w;;A exp (xl + Zt,.l") , i>0.
JEZ n=1

Their linear combinations with coefficients in £ = Z[[x]] form a 2-module
isomorphic to .#. In terms of matrices the relation to .# takes the following
very compact form:

o0
(3.5.10) n- ().j exp (x). + Z t,,l")) = (¥i)iez,
Jjez

n=1

which shows how to connect the setting of Segal and Wilson with ours.
Finally, let us discuss the meaning of a modification of the 5 representa-
tion. To this end we use the matrix

(3.5.11) §*(0) == I'n(t) = (—w_ioy.—j-1(0))iez jene,
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where the superscript “t” denotes the transpose, and J the Z x Z matrix

(3.5.12) J = (0ivjs1,0)ijez-

(3.5.7) can be transferred into a matrix system for £*(¢):
(3.5.13) 88" (1)/8ty = =A"E* (1) = & (D) A5(1),
where

(3.5.14) An(1) = =(A"E (1)) --.

Thus &*(¢) satisfies a matrix system of basically the same form as that of
&(1), except that the first term on the right side has an opposite sign. This is
equivalent to saying that £*(¢) obeys the same law of time evolution as (—¢),
i.e., the “time reversal” of the KP hierarchy.

The circumstance above is, in fact, specific to the case of the KP hierarchy.
The relationship to the time reversal above is rather a coincidence, which is
due to the “self-duality” of the fundamental index set, Z, under the involution
caused by the action of J. This is not the case in multidimensional theories
(cf. §4).

3.6. Solution—Linear algebra of infinite matrices. An advantage of writing
evolution equations in matrix forms (3.5.6) and (3.5.7) is, as we have argued
in §2.6, that one can solve them in a “closed form.” Thus one obtains the
following solution formulas (cf. (2.6.1), (2.6.4)):

(3.6.1) &(t) = exp (i t,.A") Et=0) A",
n=I1
(3.6.2) n(t) = k(2)~" - n(¢ = 0)exp (- i tnA") ;
n=1
where

(3.6.3) h(t) = (exp (f: tnA") S(t= 0)) )

(3.6.4) k(t) := (n(t = 0) exp (- i t,,A"))
n=1

Since these formulas include the inversion and multiplication of infinite ma-
trices, one has to show how to make sense of these operations. (We have
encountered a similar issue even in the case of the model discussed in §2; see
the last remark in §2.6.)

Assigning to each monomial in ¢ an integer-valued weight (or what physi-
cists call “dimensions™) as

(3.6.5) weight(£]' - £ ----) := ) _ nuy,

n2l

++



INTEGRABLE SYSTEMS AS DEFORMATIONS OF 9-MODULES 159

one can introduce into the ring Z[[¢]] a filtration {Z#[[{]],; v € N} of Z#-
submodules:

(3.6.6) Z[[t])y := {linear combinations of monomials in ¢
with weight > v}.

This filtration plays the role of a “norm” that measures the convergence of
infinite series in Z[[]). A basic property is summarized as:

LEMMA. Given a sequence a, € Z[[!]},,, n = 1,2,..., with v, — oo
as n — oo, the infinite sum Y77 | a, converges and defines an element of
R [[!]]min(u,;n20}~

PROOF. Let us consider the coefficient of a monomial in ¢ arising in the
infinite series } 72, a,. It takes the form of an infinite sum of elements
of &#. Under the assumption, however, only a finite number of terms can
survive in that sum, which has thereby a definite meaning within &#. The last
part of the lemma is evident because the coefficients of monomials less than
min{v,; n > 1} all vanish in that situation. Q.E.D.

Bearing this in mind, let us turn to the analysis of A(t). To this end we
split (¢ = 0) into two pieces as

1 0 o _
=0=(g)+ () Wi=G=0.-,
and apply exp(}_ t,A") to each term. Then A(¢) can be written

(3.6.7) h(t) = ho(8) + hi(2),

ho(t) := (exp (z t,,A")) ,

hy(t) = (exp (X wma7) (3))--

The first term Ag(¢) evidently has a unique inverse because it is an upper
triangular matrix whose diagonal part is the unit matrix. Hence we seek to
construct A(f)"! as:

[+ <}

(3.6.8) h(1)™" := Y (<) ho(t)™ (e (Dho(2) )"
n=0

We have to deal with the following two issues:

(i) Does the multiplication of matrices in each term on the right side make
sense? Since these are infinite matrices, each entry of the matrix product is
formed by the sum of an infinite number of terms.

(ii) Does the infinite series on the right side converge? This is also related
to infinite series in FZ[[/]].

To settle these issues, let us first note the following properties of the entries
of ho(t) = (hoij(t)) and A, (¢) = (hy;;(?)), which one can readily verify from
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the construction:

(3.6.9a) hoij(1) € R1[M])j—i for all i, j;

(3.6.9b) hoij(t)=0 fori> j;

(3.6.9¢c) hoi(t) are invertible in F[[¢]] for all i;
(3.6.9d) hyij(t) € Z[[t))-; forall i, ).

PROPOSITION. The set of all N x N matrices h(t) = ho(t) + hy(t) with each
Jactor satisfying (3.6.9) forms a group under matrix multiplication, the inverse
h(t)~! being given by (3.6.8).

Proor. Let us focus on the invertibility of each 4(¢); the other part is
much easier to check. From the first three conditions of (3.6.9) Ag(¢) is
invertible with an inverse that satisfies just the same properties. From (3.6.9)
one can show, using the lemma above, the convergence of the infinite series
that occur in the evaluation of each entry of the nth power of the matrix
hi()ho(2)~!, which thereby acquires a definite meaning. As a by-product of
this estimate, the (i, j)th entry of the nth power turns out to lie in Z[[¢]]-isn-
Hence, again by virtue of the lemma, the infinite sum over n = 1,2,... on
the right side of (3.6.8) is entry-wise convergent and fulfills the last condition
of (3.6.9). Q.E.D.

One can thus make sense of A(¢)~! in (3.6.1) with the following estimate:

(3.6.11) (h()~")ij € Zl[t)-i=1 forall i, j.

From this, once again appealing to the lemma, one deduces that the matrix
product on the right side of (3.6.1) makes sense as a matrix with entries lying
in Z[[1]).

One can justify (3.6.2) with a parallel reasoning.

4. Attempt at multidimensional generalizations.

4.1. Microdifferential operators in multidimensions. The notion of mi-
crodifferential operators becomes more involved in multidimensions. This
is mostly due to the fact that one has to distinguish various “co-directions”
(i.e., rays of cotangent vectors), to each of which corresponds a different way
of “microlocalization.” In the following we give an abstract version of micro-
differential operators with the co-direction fixed to a special one throughout.

Let # be a differential ring with s derivations 8, 8,,...,8—, which com-
mute with each other, % its ring of constants, which we require to include all
rational numbers Q, and & = Yy = #[dy,...,0-] the ring of differential
operators with coeflicients in &#. The “order” of a differential operator is,
as in the one-dimensional case, the maximal degree of powers of derivations
included therein. This gives rise to a filtration of 2 with the #-submodules
DW= {PeD; Pisof order < i}, i > 0. To simplify the presentation, we



INTEGRABLE SYSTEMS AS DEFORMATIONS OF £-MODULES 161

freely use the multi-index notation as mentioned in §1:

8" = (8p)* ()" -+ - (851 )", vl :=vo+ - + sy,

()= G Go) ().

for v = (vo,V1,...,Vs~1) €T and k = (Ko, K|,...,Ks—)) €L X N*),

We now define a ring & = &5 of (s-dimensional) microdifferential oper-
ators as the following set of formal Laurent series in 8y, ...,8;_; that allow
negative powers of 8:

(4.1.1) g = {Ea,,a”; (i) Vv, a, € #,
(i) 3m, a, =0if v > m},

where the summation Y ranges over all v € Z x N*~! (ie, o € Z, v, €
N,...,¥;—1 € N}. The notions of addition and multiplication are introduced
under the following rules:

(4.1.2a) Y a8"+) b08":=) (a, +b,)0",
(4.1.2b)

Y a8*-) bo" =) a8 o= > (i) 00" by o

where the summation }- in the definition of ¢, ranges over all k € N* and
a € T x N*~!, which effectively becomes, as in the one-dimensional case, a
finite sum. The formal adjoint

(4.1.3) (X a0") =3 (-0ra

causes an anti-isomorphism of &. The notion of order can be readily ex-
tended to &, and gives rise to a filtration with the #-submodules

(4.1.4) &0:={Y a0 c& a=0fr>i}, ielL

A crucial difference is that there is no natural analogue of (3.1.5) for the
multidimensional case; e.g., Z N&(~1 = 0, but @ + &~V does not span the
whole &. This is a major difficulty that occurs inevitably when one attempts
to extend the theory of the KP hierarchy beyond the barrier of one dimension.

4.2. Splitting condition in multidimensions. Since there is no a priori
way of splitting & in multidimensional cases, our strategy is to introduce a
splitting by hand, a different choice of such a splitting may lead to a distinct
theory of deformations of £’-modules.

In the one-dimensional case, the splitting of & as & = @ @ &) corre-
sponds to the splitting of Z, the index set to the exponents of powers of 8,
into the two pieces N and N°. We then replace @ in & = 2 o &~V by a
left Z-submodule # retaining the splitting as & = .7 @ £(-1), and build up
a deformation theory within the family of such 2-modules. This is a rough
sketch of the program we have pursued.
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To deal with multidimensional cases along the same program we first
choose a splitting of the whole index set. The whole index set in the s-
dimensional case is

(4.2.1) I:i=ZxN"},

which represents all the exponents of powers of 8,...,8;..; occurring in &.
We divide it into two pieces I as:

(4.2.2) I=11ul,

where 1I means a disjoint sum, ie., I = I, Ul., I.NnI. = @. For some
reasons we further require the following condition:

(4.2.3) Yvel, VkeN, v+kel,.

This condition could be relaxed, but we shall not discuss that possibility in
the following.
Such a splitting of the index set induces a splitting of &:

(4.2.9) &=&(,)o&(-) (direct sum of left #-modules),
where
(425)  &(x)={Y0.0"c&; a, =Ounlessvels}.

An immediate consequence of (4.2.3) is that &(/,.) becomes a left Z-module.
In multidimensional cases there are of course an infinite number of choices
for I.

We then proceed to consider left &-submodules {.¥} of & under the
splitting condition

(4.2.6) & =79&-) (direct sum of left #Z-modules).

What one has to do first of all is to make clear the structure of such &-
modaules.

4.3. Structure of @ -module—Symptom of difficulty. It is not hard to see,
with the same argument as employed in the one-dimensional case, that such
a @-module .# has an #-generator system {W,; a € I} of the form

(4.3.1) W,=0°- > wapd?, we,
pei-

with the structure equations

(4.3.2) Wast, =05 Wa— Y,  wegWp=0, 0<o<s,
pel.n(I-+1,)

where 1, denotes the unit vector (0,...,0,1,0,...,0) with 1 at the ath site,

and /_ + 1, the translation of I into the direction of 1,. These structure

equations conversely ensure that all -linear combinations of W, form a left

D -submodule of & with splitting property (4.2.6).
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This result, in fact, indicates a seed of the difficulties that we shall en-
counter in the description of time evolutions. To see this, let us draw atten-
tion to the fact that the intersection I, N (I- + 1,) becomes an infinite set
for some direction. This occurs for any choice of /. as far as s (= space
dimensions) is greater than one. If one rewrites (4.3.2) into the form of
differential equations to the coefficients w,4, this means that each resultant
equation inevitably includes an infinite number of terms. In other words,
the structure equations are by no means a collection of algebraic differential
equations. This never occurs in the one-dimensional case.

One might think of introducing some topological linear space with a dif-
ferential ring structure, instead of an abstract differential ring %, so as to put
the infinite sums above under some analytical control. We do not adopt such
an approach because, first, we wish to pursue the present issue on the basis
of the theory of algebraic differential equations, and second, there are several
evidences showing that at least for some choices of /., one can never make
such a theory allowing infinite sums without extending & so as to include
operators of infinite order.

We shall take another approach. Before discussing it, let us examine what
kind of difficulties arise in the formulation of time evolutions.

4.4. Structure of evolution equations. The way of introducing time evo-
lutions is entirely parallel to the one-dimensional case. A time evolution is
caused by a generator F = Y_ f,8°, which is a differential operator with con-
stant coefficients, f, € . The whole theory can be built up within the ring
&a1n) of microdifferential operators with coefficients in Z[[¢]], ¢ being a time
variable. The law of time evolution reads:

(4.4.1) {8P/dt + PF; Pe F(1)} c 7 (1),

where 7 (1) is a left D -submodule of &%y, under splitting condition
(4.2.6) with & etc. replaced by &1 etc. This takes a more explicit form in
terms of the F#[[¢]])-generators W,(¢), a € 1,, as the following set of evolution
equations.

(4.4.2) oWa) Wa(t)F = > bag () Wp(1),

ot B0~ +Supp(F))
where b,4(t) are elements of Z[[¢]] that are unique and determined by the
equations themselves (cf. §2.4), Supp(F) denotes the set {a € I; f, # 0},
and /- + Supp(F) the set of all multi-indices of the form a + 8, a € I_,
B € Supp(F). Further, one can write these evolution equations in a matrix
form as:

(4.4.3) 9¢/8t = F(AY -&{Ar,  8n/0t = Ben—nF(A),

where ¢ := (Waglaer per_r N = (—Wag)ael,.pe1> With w,p extended outside
the original range of multi-indices as:

(4.4.4) Wag =0, fora,pel_; =0, fora,fel,,
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and F(A) is the matrix obtained from F by replacing d, by

Ay = (Ja+l..ﬂ)a.ﬁel for1<o<s.

We now encounter the same difficulty that occurs in §4.3. To see this, let
us rewrite (4.4.2) in terms of their coefficients. Then we obtain the equations

ow,
(4.4.5) T“” + Y Wapafy= 3 baytyp
y€ESupp(F) y€l,.N(I-+Supp(F))

for a € I, B € I, together with the explicit form of b,z

(4.4.6) bop= Y, Wap—yfy @BEL.
YESupp(F)

The trouble is that the right side of (4.4.5) can become an infinite sum in
general.

4.5. Program for constructing reasonable theories. The occurrence of in-
finite terms in the evolution equations is specific to multidimensional cases.
One-dimensional cases, as we have seen in the preceding sections, are free of
this difficulty. We wish to develop, on one hand, a theory within the realm
of algebraic differential equations, but on the other hand, the basic part of
the previous setting should be also retained as far as possible.

A possible remedy, which we illustrate below, is to impose some additional
relations (“constraints”) on w,s besides structure equations (4.3.2) so as to
make the infinite sums in both the structure equations and the evolution
equations effectively finite. As such constraints, we consider only those that
are independent of ¢. Geometrically, this means taking a submanifold of an
infinite-dimensional Grassmann manifold and making a theory of dynamical
motion “constrained on it.” Here are several points that one should take into
account:

(i) The constraints should be consistent with the time evolution, i.e., if
it is satisfied at the initial time ¢ = 0, so is it at any ¢.

(ii) The requirement above may be reinterpreted, rather, as a condition
to the time evolution. In other words, given a set of constraints on w,g, only
those time evolutions are permitted that are consistent with the constraints.

(iii) Besides the time evolutions, deformations caused by a generator F
with variable coefficients (i.e., a general element of &) give rise to transfor-
mations of &-modules {.# }, which correspond to the notion of “transforma-
tions of solutions” in the theory of integrable systems. Under the constraints
such transformations are also limited to those that are consistent with the
constraints. Let us call such deformations admissible ones. Time evolutions
form an abelian subgroup of the group of these admissible transformations.

(iv) Of course the constraints should be such that the infinitesimal ac-
tion of these admissible transformations, which takes just the same form as
(4.4.2), be free of any infinite sum.
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(v) It is desirable that the constraints have as large a group of admissible
transformations (or a Lie algebra of infinitesimal transformations) as possi-
ble. This is a criterion that, in a sense, measures the “integrability” of the
resultant system (cf. §5).

Up to now only three cases of examples are known that appear to fit into
this program. One of them is concerned with theta functions, and arises
through moduli of algebraic varieties and line bundles over them. A brief
account of it was mentioned in Sato’s lectures at the summer institute. Re-
search along this line is now in progress by Sato and his group; we omit the
details here. We present the other two cases below, which are related to gauge
and gravitational fields.

4.6. Examples—Integrable gauge fields. Typical examples of this class
are self-dual gauge fields in four dimensions and their extensions to higher
dimensions (cf. [Ward], for example). We now formulate such integrable
gauge fields within our differential-algebraic language.

Let %' be a differential ring with s — 1 derivations 8,, | < ¢ < s, which
are mutually commutative. We also assume, as in the preceding sections,
that the ring of constants & includes all rational numbers. For example, one
may set &' = &([xy,...,X;—1]], 8, = 3/8x,, where & is a commutative field
of characteristic zero. On the other hand, let r be an integer greater than
one and gi(r, #’) the set of all square matrices of size r. gl(r,#') naturally
becomes a differential ring with the same derivations 8,. This is our basic
setting for considering GL(r) gauge fields.

A fundamental ingredient of our abstract treatment is an element W of
ol(r, Z'[[A~"])) of the form

(4.6.1) W=1+wd ' +wd" 24, w,egl(r®),

where A is a formal variable (“spectral parameter”). We interpret an inte-
grable system of gauge fields equations as a set of simultaneous time evolu-
tions W — W(¢) with time variables ¢ = (1),13,...), W(¢) taking the same
form as W in (4.6.1) with &' replaced by Z#’[[1]].

The time evolutions are defined by the evolution equations

(4.6.2) AW (1)/8t; = (F{A,8') + Ai(LAYW(), i=1,2,...,

where Fj(4,8’), the generators of the time evolutions, are derivations of
the form Fi(4,8') = f,;'l Jia(A)Bs, fis(R) € F[A), and A;(¢,1) elements of
sl(r, Z'[[])[A]), which are uniquely determined by the equations themselves.
In the traditional interpretation the equations in (4.2.2) are nothing other
than the linear system, the coefficients of A4;(¢,4) in A playing the role of
gauge potentials.

This is the basic setting adopted in [Tak1], in which the author presented
an attempt to extend the work of [Sat-Sat] to the case of self-dual gauge fields,
using essentially the same Grassmann manifold. From the point of view of
Z-modules the solution space should be embedded into a larger Grassmann
manifold in the sense mentioned in §4.5.
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We now show an interpretation in the context of £-modules. We intro-
duce a dummy variable x, to enlarge gi(r, #Z') into

(4.6.3) Z = gl(r, Z'[[x0]]),

with a new derivation 8 := 8/8x besides the preassigned ones a,,...,8-.
In fact xq itself plays no substantial role; what we really need is 8, which we
identify with 1. To be more specific, we define a microdifferential operator
(of order zero) W () from W = W(A) as

(4.6.4) W(8):=1+wd; +wdy?+--

and consider the £-module

(4.6.5) S =Yg W (d).

This 2-module satisfies the splitting condition with the choice of index sets:
(4.6.6) I, :i=NxN-} =N xN~L

Evidently these &-modules not only satisfy the splitting condition but also
have a very special structure. We understand this as a consequence of “con-
straints” in the sense of §4.5 that are implicit in the construction above.

The generators of time evolutions are F;(8, 8'), which are now differential
operators in s dimensions with constant coefficients. It is not hard to check
that the evolution equations as &-modules do reproduce (4.6.2). Therefore,
in particular, one does not encounter the difficulty of infinite sums.

The consideration on transformation groups presented in [Tak1] can be
as well translated into the language of & -modules above, as “admissible de-
formations” of #’s in the sense of §2.5. A probably maximal Lie algebra of
the generators (which are microdifferential operators like F;(8,8')) of such
admissible deformations would be:

s—1
(4.6.10) 8 = ol(r, '[185 " 11[86]) + ) F'[60)00.

o=1
The first part on the right-hand side represents the so-called Riemann-Hilbert
transformations [Uen-Nak], which, roughly speaking, act transitively on the
solution space of the gauge field equations [Tak1].

4.7. Examples—Integrable gravitational fields. Self-dual (in four dimen-
sions) and hyper-Kiihler (in 4n dimensions) metrics are typical examples of
this case (cf. [H-K-L-R] for their mathematical properties and physical rel-
evance). We take, also here, an abstract formulation on the basis of the
differential ring &' = F[[x1,...,X5~1]), 05 := 8/8xs for 1 < 0 <5, ¥
being a commutative field of characteristic zero. In place of W let us now
consider an s-tuple @ = (¢)(x",4),...,@s—1(x",4)), X' = (X1,...,%5-1), Of
formal Laurent series of the following form:

(4.7.1) 00X, A) = Xo + 0a1A™ + 902d™2 4+ -, Pan €F'.
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One may understand this as an abstract setting for considering a group of
“local diffeomorphisms™ (with a parameter 1): X’ = (x5) — ¢ = (ps(x’, 1))
in the x’-space.

We omit the details of how to introduce time evolutions and to derive the
field equations of, e.g., self-dual and hyper-K#hler metrics; cf. [Tak2] for the
case of self-dual metrics.

Z-modules relevant to the present case can be singled out as follows. We
again use a dummy variable xp, extend #' into #Z = #'[8), and identify 4
with 8y := 8/8x9. From ¢(1) we construct the formal differential operator
(of infinite order)

? —
(4.7.2) w0 = 3 LELA XN g
LT V,_|_>_0 v:
and the microdifferential operator (of order zero)
(4.7.3) Wo(8o,8") := W5(2,0")1—an,»

where we use the multi-index notations as: ¢! := vy!- -y}, X' 1= (x)) -+
(xs=1)%-1, 8" 1= (8))" -+ - (8;—-1)"~'. A fundamental property of these oper-
ators is that the composition of “diffeomorphisms™ corresponds to the mul-
tiplication of operators in the reversed order:

(4.7.4) Wyop = Wy - Wy, (W op)(x,4) = y(p(x,4),4).
The left Z»-submodule
(4.7.5) I 1= D W,(60,8")

of &, then satisfies the splitting property for the same index sets /. as in
(4.6.6). These are the Z-modules with which a deformation theory is to
be constructed. “Constraints” in the sense of §4.5 are again implicit in the
structure of &-modules as above.

A Lie algebra of admissible deformations (transformations), which appears
to be maximal, is given by

s=1
(4.7.6) g:=>_ #1595 '11[6o)b,.

o=1
Elements of f,;', % (60]0, generate time evolutions that agree with the evo-
lution equations to ¢, mentioned above. In the case of self-dual metrics,
this reproduces the group of “nonlinear superposition” found by Boyer and
Plebanski [Boy-Ple).

The author wishes to take this occasion to correct some errors in [Tak2).
The contents of §§5.5-5.7 of [Tak2] are erroneous. This is concerned exactly
with the issue pointed out in §§4.3-4.5 of this article. To correct these errors,
one has only to throw away the picture of dynamical flows on the Grassmann
manifold used therein, and to reconstruct the whole theory on a submanifold
made up of points that originate in the ¢’s above. This corresponds to picking
out only those &-modules that take a form as in (4.7.5). The contents of
§§5.2-5.4 of [Tak2] are unaffected and remain true.
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5. Conclusion. The notion of deformations of Z-modules appears to pro-
vide very suggestive material to the theory of multidimensional integrable
systems. As we have seen, a naive extension to multidimensions leads to
undesirable results, and some more refined setting is required in general. It
seems likely that Grassmann manifolds themselves, in contrast to the one-
dimensional case, can no longer play the role of “phase space,” and we are
forced to develop a theory on a suitably chosen submanifold of the naive
Grassmann manifold or, equivalently, under the presence of some “con-
straints” to the Z-modules to be deformed. The field equations of integrable
gauge and gravitational theory may be understood as examples advocating
such a point of view.

Since the general situation in multidimensions becomes thus somewhat
involved, we should rather restart by making clear the meaning of the term
“integrability.” It would be a fascinating idea to redefine the notion of in-
tegrability, in an entirely general context of algebraic differential equations,
as the “transitivity” of the action of a transformation group that the system
in question admits. We are thus naturally led to the problem of classifying
all such Lie algebras (groups) and its homogeneous spaces. The deformation
theory of @-modules offers a laboratory to develop such an idea.
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