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1. Introduction

1.1 Dispersionless Toda hierarchy (in Lax form)

∂L
∂tn

= {Bn,L}, ∂L
∂t̃n

= {B̃n,L},

∂L̃
∂tn

= {Bn, L̃}, ∂L̃
∂t̃n

= {B̃n, L̃},

where

L = P + u1 + u2P
−1 + · · · , L̃−1 = ũ0P

−1 + ũ1 + ũ2P + · · · ,

Bn = (Ln)≥0, B̃n = (L̃−n)<0,(∑
k

akP k

)
≥0

=
∑
k≥0

akP k,

(∑
k

akP k

)
<0

=
∑
k≥0

akP k,

{F,G} = P

(
∂F

∂P

∂G

∂s
− ∂F

∂s

∂G

∂P

)
(P ↔ e∂s , s: lattice coord.)
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1. Introduction

1.2 Problem

Find a class of general solutions of the dispersionless Toda
hierarchy in a geometric perspective.

Cf. General solutions of the KP and Toda hierarchies are described
by a geometric structure:

KP hierarchy — Sato Grassmannian Gr ≅ GL(∞)/P

Toda hierarchy — GL(∞) itself

τ(s, t, t̄) = 〈s|eJ(t)ge−J̃(t̃)|s〉, g ∈ GL(∞) (ferminonic formula)

This geometric description stems from a linear structure behind the
nonlinear systems. It seems hopeless to seek such a structure in
dispersionless integrable hierarchies. An alternative approach is a
nonlinear Riemann-Hilbert problem.
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1. Introduction

1.3 Nonlinear Riemann-Hilbert problem

L̃ = f(L,M), M̃ = g(L,M),

where f = f(z, w) and g = g(z, w) are assumed to satisfy the
equation

z

(
∂f

∂z

∂g

∂w
− ∂f

∂w

∂g

∂z

)
= f,

and M and M̃ are assumed to have such an expansion as

M =
∞∑

n=1

ntnLn + t0 +
∞∑

n=1

vnLn,

M̃ = −
∞∑

n=1

nt−nL̃−n + t0 −
∞∑

n=1

v−nL̃n (t0 = s)
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1. Introduction

1.3 Nonlinear Riemann-Hilbert problem (cont’d)

(i) f and g give a two-dimensional canonical transformation
(symplectic map) (z, w) 7→ (z̃, w̃) = (f(z, w), g(z, w)) with

respect to the symplectic form
dz ∧ dw

z
.

(ii) This Riemann-Hilbert problem (also referred to as generalized
string equations) is a kind of factorization problem in a group
of such symplectic maps (hence a genuinely nonlinear problem).

(iii) M and M̃ are the so called Orlov-Schulman functions.

Ref: T & Takebe, Lett. Math. Phys. 23 (1991), 205–214;
Reviews in Mathematical Physics 7 (1995), 743–808.

Unfortunately, there is no general method for solving this nonlinear
Riemann-Hilbert problem efficiently.
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1. Introduction

1.4 Teo’s idea

L.-P. Teo proposed to consider the symplectic map
(z, w) 7→ (f(z, w), g(z, w)) defined (implicitly) by a generating
function H(z, z̃) as

w = zHz(z, z̃), w̃ = −z̃Hz̃(z, z̃).

The nonlinear Riemann-Hilbert problem thereby turns into a more
tractable form

M = LHz(L, L̃), M̃ = −L̃Hz̃(L, L̃),

where Hz(z, z̃) = ∂H(z, z̃)/∂z, Hz̃(z, z̃) = ∂H(z, z̃)/∂z̃.

Remark: If H(z, z̃) = zz̃−1, then the problem reduces to the string
equations M = LL̃−1 = M̃ of a growth model extensively studied
in the last decade by Krichever, Marshakov, Mineev-Weinstein,
Wiegmann, Zabrodin, ....
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2. Non-degenerate solutions of dispersionless Toda

hierarchy

Ref: L.-P. Teo, Commun. Math. Phys. 297 (2010),
447–474.

2.1 Twisted Riemann-Hilbert problem

Given a holomorphic function H(z, z̃) with the non-degeneracy
condition Hzz̃(z, z̃) ̸= 0, find four functions L = L(P ), M = M(P ),
L̃ = L̃(P ), M̃ = M̃(P ) of a complex variable P (and extra
variables tn, n ∈ Z) with the following properties:

(i) L and M are holomorphic functions in the punctured disk
1 < |P | < ∞, L being univalent therein, and have a Laurent
expansion of the form

L = P +
∞∑

n=1

unP−n+1, M =
∞∑

n=1

ntnLn + t0 +
∞∑

n=1

vnLn.
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2. Non-degenerate solutions of dispersionless Toda hierarchy

2.1 Twisted Riemann-Hilbert problem (cont’d)

(ii) L̃−1 and M̃ are holomorphic functions in the punctured disk
0 < |P | < 1, L̃ being univalent therein, and have a Laurent
expansion of the form

L̃−1 =
∞∑

n=0

ũnPn−1, M̃ = −
∞∑

n=1

nt−nL̃−n + t0 −
∞∑

n=1

v−nL̃n.

(iii) These functions can be analytically continued to a
neighborhood of the unit circle |P | = 1 and satisfy the functional
equations

M = LHz(L, L̃), M̃ = −L̃Hz̃(L, L̃).
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2. Non-degenerate solutions of dispersionless Toda hierarchy

2.2 Solution of Riemann-Hilbert problem

An equivalent expression of the generalized string equations:

ntn =
1

2πi

∮
|P |=1

Hz(L(P ), L̃(P ))L(P )−ndL(P ),

nt−n =
1

2πi

∮
|P |=1

Hz̃(L(P ), L̃(P ))L̃(P )ndL̃(P ),

t0 =
1

2πi

∮
|P |=1

Hz(L(P ), L̃(P ))dL(P ) = − 1
2πi

∮
|P |=1

Hz̃(L(P ), L̃(P ))dL̃(P ),

vn =
1

2πi

∮
|P |=1

Hz(L(P ), L̃(P ))L(P )ndL(P ),

v−n =
1

2πi

∮
|P |=1

Hz̃(L(P ), L̃(P ))L̃(P )−ndL̃(P ), n = 1, 2, · · ·

Remark: If H(z, z̃) = z/z̃, the contour integrals reduce to harmonic
moments of a conformal map.
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2. Non-degenerate solutions of dispersionless Toda hierarchy

2.2 Solution of Riemann-Hilbert problem (cont’d)

Theorem (L.-P. Teo)
(i) tn’s give a system of local coordinates on the space Z of the
pairs (L, L̃) of conformal maps. In other words, the period map
Φ : (L, L̃) 7→ (tn)n∈Z is locally invertible.
(ii) The composition Ψ ◦ Φ−1 of another period map
Ψ : (L, L̃) 7→ (vn)n̸=0 and the inverse period map Φ−1 gives a
solution of the Riemann-Hilbert problem (hence, of the
dispersionless Toda hierarchy).
(iii) The associated free energy (dispersionless tau function) F is
obtained explicitly in terms of contour integrals.

These solutions are called non-degenerate solutions. They form a
class of general solutions of the dispersionless Toda hierarchy.
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3. Universal Whitham hierarchy

Ref: I.M. Krichever, Comm. Pure. Appl. Math. 47 (1994),
437–475.

3.1 Lax functions

The Lax functions zα(p), α = 0, 1, . . . ,M , are functions with
Laurent expansions of the form

z0(p) = p +
∞∑

j=2

u0jp
−j+1,

za(p) =
ra

p − qa
+

∞∑
j=1

uaj(p − qa)j−1 (a = 1, . . . ,M),

in a neighborhood of p = ∞ and p = qa, respectively. The
coefficients uαj (ra = ua0) and the centers qa are dynamical
variables.
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3. Universal Whitham hierarchy

3.2 Lax equations

The hierarchy has 1 + M series of time evolutions with time
variables t0n, n = 1, 2, . . . and tan, a = 1, . . . ,M , n = 0, 1, 2, . . ..
The time evolutions of the Lax functions are defined by the Lax
equations

∂αnzβ(p) = {Ωαn(p), zβ(p)}, ∂αn = ∂/∂tαn,

with respect to the Poisson bracket

{f, g} =
∂f

∂p

∂g

∂t01
− ∂f

∂t01

∂g

∂p
.

Remark: This Poisson bracket is an analogue of the Poisson
bracket used in the formulation of the dispersionless KP hierarchy.
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3. Universal Whitham hierarchy

3.2 Lax equations (cont’d)

Ω0n(p) and Ωan(p), n = 1, 2, · · · , are polynomials in p and
(p − qa)−1 of the form

Ω0n(p) = pn + nu02p
n−2 + · · · + ∗,

Ωan(p) =
rn
a

(p − qa)n
+ · · · + ∗

p − qa

that give the singular part of z0(p)n and za(p)n, i.e.,

z0(p)n = Ω0n(p) + O(p−1) (p → ∞),

za(p)n = Ωan(p) + O(1) (p → qa)

Ωa0(p)’s are exceptional and defined as

Ωa0(p) = − log(p − qa).
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3. Universal Whitham hierarchy

3.3 Relation to dispersionless Toda hierarchy

The dispersionless Toda hierarchy amounts to the case where
M = 1 (two marked points):

z0(p) = L(P ), z1(p) = L̃(P )−1, p = P + u1,

t0n = tn, t1n = t−n, t10 = t0.
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4. Non-degenerate solutions of universal Whitham

hierarchy

4.1 Twisted Riemann-Hilbert problem

C1 CM

D1
DM

Choose disjoint simple closed curves
C1, · · · , CM in the finite part of the Rie-
mann sphere CP1. Let D1, · · · , DM

denote their inside domains. For
given M functions Ha(z0, za), a =
1, · · · , M , with the non-degeneracy con-
ditions Ha,z0za(z0, za) ̸= 0, find 2 + 2M

functions zα(p), ζα(p), α = 0, 1, · · · ,M

with the following properties (i), (ii),
(iii):
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4. Non-degenerate solutions of universal Whitham hierarchy

4.1 Twisted Riemann-Hilbert problem (cont’d)

C1 CM

D1
DM

(i) z0(p) and ζ0(p) are holomorphic func-
tions on C \ (D1 ∪ . . . ∪ DM ), z0(p) is
univalent therein and, as p → ∞,

z0(p) = p + O(p−1),

ζ0(p) =
∞∑

n=1

nt0nz0(p)n−1 +
t00

z0(p)
+ O(p−2),

where t00 = −t10 − · · · − tM0.
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4. Non-degenerate solutions of universal Whitham hierarchy

4.1 Twisted Riemann-Hilbert problem (cont’d)

C1 CM

q1 qM

(ii) za(p) and ζa(p), a = 1, · · · ,M , are
holomorphic functions on Da punctured
at a point qa ∈ Da, z−1

a (p) is univalent
on Da and, as p → qa,

za(p) =
ra

p − qa
+ O(1),

ζa(p) =
∞∑

n=1

ntanza(p)n−1 +
ta0

za(p)
+ O((p − qa)2).

(iii) For a = 1, . . . ,M , the four functions z0(p), ζ0(p), za(p), ζa(p)
can be analytically continued to a neighborhood of Ca and satisfy
the functional equations

za(p) = Ha,z0(z0(p), ζ0(p)), ζa(p) = −Ha,za(z0(p), ζ0(p)).

17



4. Non-degenerate solutions of universal Whitham hierarchy

4.2 Solution by inversion of period map

Period map Φ : (zα)α=0,··· ,M 7→ (t0n, tan, ta0)n=1,2,··· , a=1,··· ,M on
the space Z of (1 + M)-tuples of conformal maps defined by

nt0n =
M∑

a=1

1
2πi

∮
Ca

Ha,z0(z0(p), za(p))z0(p)−ndz0(p),

ntan =
1

2πi

∮
Ca

Ha,za
(z0(p), za(p))za(p)−ndza(p),

ta0 =
1

2πi

∮
Ca

Ha,za(z0(p), za(p))dza(p),
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4. Non-degenerate solutions of universal Whitham hierarchy

4.2 Solution by inversion of period map (cont’d)

Another period map Ψ : (zα)α=0,··· ,M 7→ (vαn)n=1,2,··· , α=0,··· ,M

defined by

v0n =
M∑

a=1

1
2πi

∮
Ca

Ha,z0(z0(p), za(p))z0(p)ndz0(p),

van =
1

2πi

∮
Ca

Ha,za(z0(p), za(p))za(p)ndza(p).

Theorem (T, Takabe & Teo) (i) tαn’s give a system of local
coordinates on Z, and Φ is locally invertible.
(ii) Ψ ◦ Φ−1 gives a solution of the Riemann-Hilbert problem
(hence, of the universal Whitham hierarchy).
(iii) The free energy F can be obtained explicitly in terms of
contour integrals.
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5. Dispersive analogue of non-degenerate solutions

5.1 M = 1

A dispersive analogue of the non-degenerate solutions in the case of
M = 1 can be found in Adler and van Moerbeke’s work on a
system of bi-orthogonal polynomials and their relation to the Toda
hierarchy (on a semi-infinite lattice Z≥0).

Ref: M. Adler and P. van Moerbeke, Comm. Pure. Appl.
Math. 50 (1997), 241–290.
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5. Dispersive analogue of non-degenerate solutions

5.1 M = 1 (cont’d)

(i) (Adler & van Moerbeke) The system of bi-orthogonal
polynomials Ps(z) = zs + · · · , Qs(z̃) = csz̃

s + · · · , s = 0, 1, · · · ,∫
C

∫
C̃

dzdz̃Pi(z)Qj(z̃)eU(z,z̃) = 0 for i ̸= j,

gives a solution of the Toda hierarchy if U(z, z̃) is deformed as

U(z, z̃) → U(z, z̃) +
∞∑

k=1

tkzk −
∞∑

k=1

t̃kz̃k.

(ii) (T, Takebe & Teo, unpublished) In the large-s limit, this
solution turns into the non-degenerate solution of the dispersionless
Toda hierarchy with the generating function

H(z, z̃) = −U(z, z̃−1).
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5. Dispersive analogue of non-degenerate solutions

5.2 General M

(i) The system of multiple bi-orthogonal polynomials
Pν(z0) = zν0

0 + · · · , Qa,ν(za) = ca,νzνs−1
a + · · · (a = 1, · · · ,M ,

ν = (ν1, · · · , νM ) ∈ ZM
≥0, ν0 = ν1 + · · · + νM ),∫

C0

∫
Ca

dz0dzaPν(z0)zj
aeUa(z0,za) = 0 for j < νa,∫

C0

∫
Ca

dz0dzazi
0Qa,ν(z0)eUa(z0,za) = δi,ν0 for i ≤ ν0,

Ref. M. Adler, P. Vanhaecke & P. van Moerbeke,
Commun. Math. Phys. 286 (2008), 1–38.

gives a solution of the 1 + M -component charged KP hierarchy (if
Ua’s are suitably deformed by time variables).
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5. Dispersive analogue of non-degenerate solutions

5.2 General M (cont’d)

(ii) Conjecture: In the large-ν limit, this solution turns into the
non-degenerate solution of the universal Whitham hierarchy with
the generating functions

Ha(z0, za) = −Ua(z0, za), a = 1, · · · ,M.
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6. Conclusion

• The notion of non-degenerate solutions of the dispersionless
Toda hierarchy is based on a non-standard (twisted)
Riemann-Hilbert problem.

• The existence of these solutions is formulated in a geometric
language.

• This result can be generalized to the universal Whitham
hierarchy.

• Bi-orthogonal polynomials give a dispersive analogue of these
solutions in the Toda case. Presumably, multiple bi-orthogonal
polynomials will give a generaization to the Whitham case.

24


