ANALYTIC EXPRESSION OF VOROS COEFFICIENTS
AND ITS APPLICATION TO WKB CONNECTION PROBLEM

Kanehisa Takasaki
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1. Introduction

Usually, the WKB method starts from formal solutions (WKB or Liouville-Green so-
lutions) expanded in powers of the Planck constant, and connects these solutions by
asymptotic matching at turning points. Voros [V] proposed a resummation prescription
of these formal calculations, and argued that his results should be deeply related with
Ecalle’s theory of “resurgent functions.” Further progress along that line has been made
by F. Pham and his coworkers [DDP]. We report another approach based upon an idea
of Olver [O].

Olver’s method for the WKB connection problem, unlike the asymptotic matching

at turning points, is based upon analysis at points at infinity. Naturally, one needs semi-
global information on a set of solutions for which to consider the connection problem.
Olver’s idea is very intriguing, because it directly gives an exact connection formula
without using any approximation. His connection formulas, however, contain strange
quantities whose analytic properties were fairly obscure at that moment; Olver gave only
qualitative results on these quantities. From our present standpoint, it it not hard to
notice that these quantities (which should be called the “Olver coefficients” or something
like that) are nothing else than the “Voros coefficients” in the terminology of Ecalle and
Pham. This inspires us with the hope to find some new analytical expressions to the
Voros coeflicients.

Our basic strategy is just to combine Olver’s idea with basic techniques in scattering
theory [AKNS], [ZS]. We first convert the problem, as Olver does, to another linear
problem by the so called Liouville transformation. This is a quite standard technique [H],
and also used in the derivation of Liouville-Green formal solutions. From an analytical
point of view, the transformed equation resembles a linear problem in scattering theory;
the potential now decays at the rate of inverse squared of the distance from the origin.
This fact also lies in the heart of Olver’s method, because the definition of his coeflicients
relies upon that property. Olver’s book stops at this stage, but we attempt to go forward
further. From the point of view of scattering theory, Voros coefficients may be identified
with the “a”-coefficient (inverse transmission coeflicients) that is defined along with the
“b"-coefficients. (The ratio b/a is called the reflection coefficients.) Further, it is well
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known in scattering theory that “a” and “b” are connected with Jost solutions by a
simple integral relation. From these observations, we are naturally led to an iterated
integral series expansion of Voros coefficients.

Under some additional condition, one can further rewrite this iterated integral series
into a Laplace integral; the integrand has again an iterated integral series expansion.
This part is largely inspired by work of Grigis and Gérard [GG]. Since such a Laplace
integral representation is a basic object in the theory of resurgent functions as well ag
in the work of Voros, we expect to deduce from Olver’s connection formulas some new
insight into the Ecalle-Voros theory. We shall show only a few examples anticipating
further progress in that direction.

The last section is devoted to issues beyond the scope of the second order Sturm-
Liouville problem. These are still speculative, but appear to offer various interesting
material.

I'wish to express my sincere gratitude to Professor Toshihiko Nishimoto for drawing
my attention to Olver’s work, and to Professor Nobuyuki Tose for encouragement as
well as his help for collecting material unavailable i Japan. I am also indebted to Pro-
fessors Alain Grigis, Kazuhiko Aomoto, Frederic Pham, Koichi Uchiyama and Masafumi
Yoshino for discussions and useful information. A more detailed report on the results
announced below will be published elsewhere.

2. Second order linear problem and Liouville transformation
We consider the linear equation

Vgq = /\zf(‘l)"/H (1)

in the complex plane, where f (¢) is a complex analytic function with some nice analytical
properties (see below), and ) is a nonzero complex parameter. The subscript “g¢” stands
for the second derivative, heq = d*p/dg?. We mostly assume that ) is a real positive
number; however, we shall see that extending it to complex values becomes crucial later
on.

The above linear problem can be converted into a new equation of the form

(bss = (/\2 + ]l«)({’), (2)
b =TT g, (3)
de
by the transformation of variables
q
b= 5= [ad sy, (4)
qo

The determination of f1/4 and the point go are suitably chosen subject to the situation
in consideration. This transformation is known for years (since, probably, the days of
Liouville). We call it the “Liouville transformation,” and the s-plane the “Liouville
plane.” Actually, this can be slightly generalized to the lincar equation

heg = (\*F(9) + 9(0)) ¥, (1)
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and leads to the same equation as (2) except that h is then given by
h ot 9/f - f~3/4(f~1/4)qq- (8"

Equation {2) may be viewed as a “perturbation” of the equation with A = 0, the
latter being readily solved by the exponential functions e***. This point of view lies
in the heart of the so called “Liouville-Green approximation.” For further analysis, we
assume that

h=0(s]"%) as|s| — 0. (5)

A typical case is the following.
Proposition. Condition (5) is satisfied if f(q) is a polynomial and g(q) = 0.

Roughly, (5) means that the linear problem on the Liouville plane is of “scattering type”
as opposed to the original problem on the g-plane. For our actual analysis of connection
problems, condition (5) may be further relaxed; it is frequently sufficient to require the
decay property only in a subdomain of the Liouville plane or simply along several curves
with both ends at infinity.

Of course, even if (5) is satisfied, the Liouville transformation is a somewhat subtle
thing, because h = h(s) is in general a multi-valued function on the s-plane with branch
point singularities at the image of zero’s of f(g), i.e., at “turning points.” It should be
noted that the multi-valuedness comes only from that of the inverse map ¢ = ¢(s) of
the Liouville transformation s = s(¢). On the g-plane, h in (3) is given by

— 4fqu — 5f<12
h = 1679 s (6)

hence it has poles at the zeros of f(g), but no branch point singularities, It is the
nulti-valuedness of ¢ = ¢(s) that makes h(s) a multi-valued function on the Liouville
plane.

The sheet structure of b = h(s) is, in general, very complicated. The following
general notions are convenient to understand the geometric situation.

Definition.

e Zeros of f(q) are called “turning points.”

o A “Stokes curve” is a curve that starts from a turning point and whose image on the
Liouville plane is a half-line or a segment parallel to the real axis.

e A “Principal (or anti-Stokes) curve” is a curve that starts from a turning point and
whose image on the Liouville plane is a half-line or a segment parallel to the imaginary
axis,

More precisely, these are the definitions for the case of A > 0; if arg A # 0, the part
b k) ¥ I

“parallel to the real (imaginary) axis” in the above definition should be modified as

“rotated from the real (imaginary) axis by an angle of — arg \.”

For illustration, we now consider the case of a harmonic oscillator (see Fig. 1):
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fly=¢~E, E>0 (7)

with A > 0. In this case, there are two turning points at ¢ = +E!/ 2, six Stokes curves
and five principal curves. The four points

GOyl g = ~00
00y 1 ¢ = 4100
003 1 ¢ = —100
004 1 g = 400
at infinity will play an important role in the formulation of our connection problem. We

choose paths for reaching these points as indicated in Fig. 1.

3. Solutions of Liouville-Green form

If one compares the linear problem on the Liouville plane with the situation of potential
scattering theory, it would be natural to seek for solutions of the form

¢t = wyetA, (8)
The amplitude part w4 should be, in some sense, close to the unity. ‘This can achieved
in two different ways.
3.1. Formal solutions

One way is to convert the linear equation by the well known transformation

v = (log ), (9)
to the Riccati equation
vy + 0% = A% + h. (10)
Substitution of a formal expansion
[e o]
va(8,A) = £ + Z Vg (s)AT (11)
n=1

give rise to a set of relations that determine the coefficients recursively as:
ve1 =0, vy =£h/2, vys=h,/4,....
Solving (9) as .
by = exp/ ds'va(s',\), (12)

one obtains a pair of solutions as desired, and this is essentially the same as the so called
Liouville-Green {or WKB) solutions. { The usual construction is done on the g-plane.)
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Fig.1. ¢g-plane and s-plane for f(q) = ¢* — E, E > 0

These solutions are, however, only formal power series of A, and do not converge in
general.
3.2. Analytic solutions

Another way is similar to the usual method in scattering theory. In that approach, one
converts the differential equations

J2 d
(;17 + Z\Eg wy = hwy (13)

for w4 into the integral equations

where
subst

Note
st In
{(just
stage
path «
above
that

o t}
ot}
el

e al
g1
Undex

and o

Prop:

There;



299

3 1 — 2t—8)A )
wi(s,\) =1+ dt e (0.,

st 27
Yo
sg ] — 2(s=0DA
w_(s,\)=1 +/ dt o h(t)w,., (14)

where s§° are some fixed points. These integral equations can be solved by successive
substitution (i.e., Neumann series):

u)+($, /\) =14 Z w-({_n)(s! /\)’

n==]
$=ty, 4y tn ta n . 20—t )N
(n) /l(i1)(1 - 14y
wi (s, A) = 1t {tpyy - It e ,
+(5,)d9f,/33‘ (n/s.:(zl LJ(IE 2\ ?
o0
w.(s,A) =1+ Z w(_")(s, A),
n=1
) 87 8o n 20ty —1)A
(n) ° 0 ° (1—e () .
w (s, \) = / dtI/ (ltg"'/ dt, - . (15)
def s=ty t taey ll_];[ 2\ )

Note that the integral equations implement, as well, some initial condition at the point
soi. In our treatment of global connection problems, we choose s(‘,k to be points at infinity
(just as in the construction of Jost solutions in scattering theory). It is exactly at this
stage that decay property (5) play a crucial role. Further, we have to select a sultable
path of integration so that the exponential functions in (15) have a uniform bound; the

above Neumann series will then converge. In view of these requirements, we now assume
that

e the points s& are put at infinity with Re s¥ = Foo;

e the integrals in (14) and (15) are along such paths I't(s) that starts from sE and
ends at ¢;

e along I'y(s), +Re s is monotonously increasing. (Such a path is said to be “pro-
gressive.”)

Under that situation, one has indeed the uniform bound

rge in
|1~ 82(1;—l.'+1)/\! <2,
and one can prove the following basic result.
*h. one Proposition. w( satisfy the inequality
» *
V:t s)"
w26, 2 v = [ an (16)
(13) 71.!/ de Iy (s)

Therefore the Newmann series converge and obey the inequality

g (s, A) — 1 < exp(Va(s)/|AD) — 1. (17)
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Solutions of the original linear equation on the ¢-plane are now given by

a(g, V) = wa(s(g), \(ds(q)/dg) 2o, (18)

which we call exact solutions of the Liouville-Green form. If sai are the images of points
co4 at infinity of the g-plane, these solution are exponentially small (“recessive” in the
terminology of the WKB method) in a neighborhood of co. Such solutions play a basic
role in our treatment of the connection problem; a more precise situation is presented in
the beginning of the next section. If arg A # 0, all conditions on Re s(:,t and Re s should
be replaced to Re so’t/\ and Re s\, and everything goes in a quite parallel way.

3.3. Asymptotic expansion linking formal and analytic solutions

If the above analytic solutions have asymptotic expansion as A — oo (in a sector, for
example), the asymptotic series should agree, up to a factor independent of ¢, with a
formal solution described in Subsection 3.1 (because asymptotic expansion, if exists,
is unique). The Laplace integral representation discussed later on indeed yields such
asymptotic expansion.

4. Formulation of connection problem
4.1. General setting

In the following, we consider the case of A > 0 alone. This is just for simplicity of
presentation; everything carries over to the case of arg A # 0.

To consider the WKB connection problem, we first fix a cut-sheet of f (¢)'/* and a
determination of s(¢) and (ds(q)/ dg)~ %= f (¢)~"/*), though this is more or less for
convenience of calculations. We then select a set of points ooy (I =1,2,.. .) and attach
to them an exact solution of the Liouville-Green form,

Prla ) = wi(s(), M(ds/da) ™ exp ers(g)h, (19)
where ¢; is a sign factor, taking values in £1, and subject to the condition that
Re €7s(q) = —o0 at ¢ = oor. (20)

For each solution, we take a domain D comprised of points ¢ with a path Cj(g) that
links oo; with ¢ (avoiding turning points, of course) and deforms continuously as ¢
moves. Further, its image I'1(s(q)) =der s(Cr{(q)) on the Liouville plane is assumed to
be progressive with respect to Re ¢7s. The amplitude part wr(s, A) is given, for each
point s of Ay =qer s(Dr), by the Neumann series in the previous section. Such a domain
D; can be chosen farly large, as illustrated below; this fact is crucial in Olver’s method.

4.2.
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4.2. Example: harmonic oscillator

For illustration, we now consider again the case of the harmonic oscillator with £ > 0
and A > 0. To fix a determination of s and (ds/dg)™'/?, we cut the g-plane along two

curves that start, respectively, from the two turning points and tend to infinity in the
second and fourth quadrant of the ¢-plane (see Fig. 2).

cut

cut

Fig. 2. Cut sheet on the ¢-plane for the harmonic oscillator

As a set of reference points at infinity, we take the four points 00y, ..., cos as
mentioned in Section 2, and construct four solutions of the Liouville-Green form:

by
Py

wy(ds/dgq) /2% (I=1,2),
wi(ds/dg)™ e (I =3,4). (21)

I

For each 1y, one can determine a maximal domain D 1 of points g that can be reached

by a progressive path Cr(g¢) from co;. Let us call Py the principal curve between co;
and coy.

¢ D, is the complement of the union of the interval [— E1/2, + EV/ ?] and the domain
on the right side of Py, U Py,

¢ D, is the whole plane cut along Pj3 and Py,

e D3 is the whole plane cut along Py; and Py,

e Dy is the complement of the union of the interval [~EY?, +EY?] and the domain
on the left side of Py U Py5.
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4.3. Olver’s basic idea

In Olver’s method to the WKB connection problem, connection formulas are given- as
a collection of linear relations

Yr=criby + . (22)

among suitable triples {17, 7, 9} that we call “fundamental triplets.” We say a triplet
is fundamental if each of the three reference points oor,007,00k at infinity can be
reached from the other two through the corresponding two domains in D Dy, Dy, in
other words, if there are three progressive paths

CryCDinNDy, CijxCDyNDy, CgrCDrgnDy

and C links ooy and ooy, ete. In the case of the harmonic oscillator above, fundamental
triplets are {11,%9,¥3} and {12, 13,4 }. Olver gives explicit formulas of the coefficients
of (22) for such an fundamental triplet. In fact, Olver’s consideration in his book is
limited to a generic case, i.e., the case where the triplet is associated with three Stokes
curves that start from a turning point and tend to the three infinite points without
meeting any other turning points. (Note that this also implicitly assume that the turning
point at the center is of order one, i.e., a zero of f{q) of order one.) We shall show later
that Olver’s method can be extended to more general cases.
A key to Olver'’s observation is the following general result.

Proposition. Let ¢; and 15 be two solutions of the Liouville- Green form with e; = 41
and ey = —1, and suppose that the reference points cor and ooy are linked by o curve
C1y whose tmage Iy on the Liouville plane 1s progressive (i.e., Re s(q) is increasing as
q tends from coy to ooy ). Then wy and wy both have finite boundary values limgeco, wy
and limy.co, wy, and these boundary values actually coincide.

The boundary values
ars(A) = lim w;= lim wy (23)
def g-—+ooy g—o0r
are exactly the Voros (or Olver) coefficient in the sense of Section 1. For a generic
fundamental triplet {1, 7,9} (Fig. 3), one has three such quantities

Arg=4ajr, ayg =agj, O4Kj=Aayg. (24)

Olver’s basic idea is to determine the coefficients ¢y and ¢rp by comparing the behavior
of the tree terms in (22) as ¢ tends to 0oy and cog. Note that each term in (22) carries
a factor (Liouville-Green factor, so to speak) of the form (ds/dg)~/2e%**  the other
part being a quantity with a definite boundary value at each reference point at infinity.
The two Liouville-Green factors have opposite behavior, one being exponentially large
(“dominant”) and the other exponentially small (“recessive”). As ¢ tends to 0o or to
oo, one can select a dominant one, divide both hand sides of (22) by that factor, and
consider the limit. This yields two linear equations that determine ¢;; and ¢ in terms
of the boundary values of w’s (i.e., a’s). In this calculation, however, one should also
take into account the multi-valuedness of (d.fs/dq)‘l/2 and e***; to this end, we have

fixed

a cut

where
w is «
calcul
three

* P
*

e t}

4.4 C

In the
follow:



iven as

(22)

.triplet
can be
D, in

mental
ficients
s00k is

Stokes
vithout
burning
w later

r=-1
@ curve
LSIng a3

ooy W

(23)

generic

(24)

ehavior

carries
¢ other
infinity.
ly large
yy or to
or, and
n terms
ild also
: have

303

OOK
Fig.8. A generic fundamental triplet

fixed a cut-sheet on the ¢-plane, and selected a determination of these functions. Across
a cut line, they have discontinuity:

(ds/dg)™"* — ai(ds/dq)~1?,

6:&:3/\ — e:t(—3+2w))\, (25)
where o takes values in {+1, -1} depending on the way to go across the cut line;
w is determined by the turning point to which the cut line is hooked. Doing these

calculations, one can explicitly write the coefficients ¢;; and Ik in terms of the following
three quantities.

e powers of ¢ = /-1,
e exponential functions of the form e™2¢* ¢ C

3
o the a;7(A)’s introduce above.

4.4 Connection formulas for harmonic oscillator

In the case of the harmonic oscillator with B > 0 and A > 0, one can thus obtain the
following connection formulas for the fundamental triplets {1, 102,93} and {14,104, 14 1.

1 o—miEN2
= +Z D3y
et
e—?riE'/\/Z 1
Yo =i .+ b3 26
P4 o) 1o e b3 (26)
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At first sight, a7 y’s other than ags appear to have no contribution, but this is not the
case; they are simply reduced to the unity:

(112()\) = (7,]3(/\) = (1.42(/\) = (143(/\) = 1. (27)

As a progressive path Cyz for aq3, one may take the imaginary axis of the ¢-plane, which
is mapped to the real axis of the Liouville plane (see Fig. 1).

The case of quartic oscillators as Voros considered can be analyzed in much the same
way. A class of equations with nonpolynomial potentials, such as the Mathieu equation,
can also be dealt with along the same line.

5. Iterated integrals and Laplace integrals

Olver’s method thus gives exact connection formulas without any approximation. An
unsatisfactory feature is that analytic structure of the basic quantities aj; is obscure
from the construction. What Olver did is to show some qualitative estimates of ay;’s as
well as conditions under which az;’s become trivial as in (25). As Olver discussed, ays
always behaves as

ary=1+0(A"" (A — o). (28)

The lowest order WKB approximation is simply to replace ay; by the unity. What, for
example, about higher order corrections? This is the place where we now attempt at a
more detailed analysis.

We shall also deal with non-generic cases. If Stokes curves and turning points are
in some “degenerate” configuration, Olver’s method outlined above should be applied
very carefully or, in extremely degenerate case, suitably modified.

5.1. General results

Let us recall the fact that the potential k on the Liouville plane decays at infinity as
shown in (5). This means that the new linear problem is of “scattering type.”

In scattering theory, two basic quantities, usually written “a” and “b,” are introduced
as connection coefficients of Jost solutions. A remarkable fact is that these coefficients
also have an integral representation in terms of Jost solutions. From the definition of
ayy (as well as Olver’s proof of the existence of boundary values), one can see that ayy is
essentially the same as the a-coefficient, whereas w; and wy play the role of Jost solutions
in scattering theory. With this analogy, one can derive an integral representation of ay ;.

Proposition. a;;(\) have two integral expressions es:

arg(A)y =1+ (2))7! / dsh(sywr(s, \)

=14 (2,\)“] / dsh{(s)w (s, M), (29)

where the setting 1s the same as in the previous seclion.
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Remark. In fact, the analogy with scattering theory is somewhat subtle. In the usual
situation of scattering theory, the term A* is rather —A2, and Jost solutions are thereby
oscillatory at infinity. In our setting, we are viewing the region where ¢;’s behave expo-
nentially small or large; the situation of scattering theory takes place on a line parallel to
the imaginary axis of the Liouville plane. Nevertheless, the analogy with the a-coefficient
turns out to be valid in the present situation.

From this integral representation, we can derive remarkable conclusions:

e First, substituting the iterated integral series for wy and wy, one can obtain the
following expression of ay .

Proposition. a;;()) has the iterated integral ezpansion

1
ary(A) —1+9/\ . ds h(s)
=~ 17
201 B (1 = ePtiti )’\)h(t)
+Z_:12/\/ dto -+ dth( t").I_—[l o
($): toye-stn €17, to = ... Sty (30)

where <X means that the points are ordered in that way clong I'ry from s(ooy) to s(coy).

e Further, if I'7; can be chosen to be a straight line on the Liouville plane, one can
rewrite the above iterated integral into a Laplace integral:
i0

aU(A)=1+(2A)—1/ dsh(s)+(2/\)“1/e " dte0 4, (1), (31)
0

I'ry

where 8 is the angle between I't; and the real axis of the Liouville plane. This is due
to the obvious identity

1 — e2(tic1—t)A i o
— :/ ds; Xm0, (32)
= tioy

Changing the integration variables from (s;,;) to (z;,y;) as
T =i —tiey, Y =t Sy,
one can indeed derive from (28) an expression like {31).

Proposition. A;;(t) has the iterated integral expansion

Apg(t) = Z/ day - day dyy - - dyn H h(s + Z(z +y;))

n=1 i=1

(F%) 0 @y, T Y1y, Yn € [O,eifo), Zy]- =t (33)
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A somewhat careful consideration shows that A7;(t) gives a holomorphic function in a

neighborhood of the path of integration above.

» One can show, in the same way, that w;’s themselves have a similar Laplace integral
representation. The above Laplace integral representation is, in fact, derived from such
a Laplace integral of wy’s and basic relation (29).

These (iterated) integral representations provide detailed information on the analytic
structure of ayy as well as i;’s themselves. An immediate consequence of the Laplace
integral representation is that ay (A} has an asymptotic expansion

ar s\~ 1+ Y apsa /(A" (A= o0, arg A + 0] < 7/2). (34)

=]

The coefficients can be read out from the Taylor coefficients of Ay y(2) at ¢ = 0. As
Voros observed (in a different formulation), the coeflicients ayj, can also be evaluated,
independently, by the WKB formal solutions mentioned in Section 3. The above result
implies that such a formal series expansion is Borel summable in the sector arising in
(34).

For the harmonic oscillator discussed above, only a,3 is non-trivial. For ay3, one can
se Iy to be the real axis of the Liouville plane. In that case, 8 = 0. In fact, one
can further move Ihs as far as it does not meet the images of turning points. This, in
particular, shows that the path of the Laplace integral can be rotated within the range
|8] < /2. A similar analysis can be done in more general cases.

cho

5.2. A degenerate configuration of Stokes curves

Let us now consider the case that allows Stokes curves linking two turning points. This
is a kind of “denereracy,” which can be resolved by slightly changing the potential or
the phase arg A. Voros indeed relies upon the latter trick in actual calculations. Olver,
in his book, also avoids to deal with such degeneracy directly; however, Olver’s method
can be extended to degenerate cases, and this reveals an interesting phenomena. Let us
consider a simple case where two turning points, say ¢; and ¢, are connected by a finite
Stokes curve (see Fig. 4). This type of configuration frequently occurs in applications.
For example, the previous harmonic oscillator with arg A = £ /2 has such has such
Stokes curves.

For calculations, we put two cut lines, one between the Stokes curves S; and S3 and
the other between S, and S4. We also assume that

Re s(¢) = —o0 at ¢ = 00y, 003,
Re s5(q) = 400  at ¢ = co0g,004, (35)

so that the associated exact solutions of the Liouville-Green form are written

11.71((13/(1(1)—]/263’\ for I = 1,3,
wi(ds/dg) ™ 2e™** for I = 2,4. (36)
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Fig. 4. A degenerate configuration of Stokes curves

This configuration may be part of a larger set of Stokes curves; other part does not
affect the treatment of fundamental triplets in 1, ..., 4. Any triplet of the four ;s
is “fundamental,” and one can derive a set of connection formulas Just as in the non-
degenerate case discussed above (with slightest modification due to the difference of
the configuration of Stokes curves). Changing triplets and their combinations in (22),
one obtains seemingly different formulas for the same triplet. Since such two formulas
must have the same contents, the coefficients should satisfy some algebraic relations
(consistency conditions). In the present situation, one can thus obtain the relation

@143 = ayzazq + ¢ aygaqy, (37)
where
w = s(q2) = s(q). (38)
def

In fact, this kind of relations are not specific to “degenerate” configurations. They do
exist even in “nondegenerate” configurations, but are simply hidden.

5.3. Algebraic relation of a;;’s and resurgence

From the geometric situation on the Liouville plane, one can see that linear paths I'ry

for the definition of A7;(t) can be selected as indicated in Fig. 5. Accordingly, each of
ars(A) has the following Laplace integral representation.
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Fig. 5. Linear paths on the Liouville plane

i¢

1 1 > 2tA
— di e* 7 A14(t) (6o <0 <bp), (39)
0

as{A) =1+ 5 . ds h(s) + 2

i0
1 1 e e p
(123(/\) =] + 5/1: ds h(S) + 5‘)-\‘ /0 dt elt/\AZS(t) (—‘90 < b < 90) (40)

i

1 ' 1 e
(1.]4()\) =14+ ‘—)—X - ds h(S) -+ 5/0 dt 621/\A14(t) (0 <8< 60), (41)
= 14
ie
1 1 [
(1.23(/\) =1+ ;X ds h(s) + ;X/ dt €2t)\A23(t) (*90 <f< 0) (42)
AR T ~ 0

(6o is a positive constant to be determined by the configuration of Stokes curves and
turning points.) In (41) and (42), one will not be able to put § = 0; A;4 and Ay, are
expected to have singularities on the positive real axis.
Remarkably, (37) carries precise information on these singularities, To see this, we
first rewrite (37) as:
2120434 e 2w <113(1-24.

ayy = —— +
a3 @23

All the ingredients of the right hand side, except the exponential function, have a Laplace
integral representation along the half line [0,e¥c0) with —8y < < 0. On the other
hand, @14 has a Laplace integral representation as in (41) along the half line [0, ¢*c0) for
0 < 6 < 6. What will occur if one rotates the path in (41) downward across the positive
real axis? That should result in a Laplace integral along [0, cigoo) with 8y < 8 < 0 (the
main part) plus some contributions from paths running around singularities of Ar4(t)
(see Fig. 6). The right hand side of (37') takes exactly such a form; the first term is the
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main part to be obtained as an analytic continuation of A;4(%) through a neighborhood
of t = 0, whereas the second term is a contribution from a singularity at ¢t = w. A similar
interpretation can be found for ag; if one writes (37) as:

a P ar
a120a34 4 o200 13024 (37"

az3 =
a4 a4

o

Fig. 6. Interpretation of (37) by deformations of the path

Of particular importance is the fact that the discontinuity along a path on the
Liouville plane (now issuing from w) is again written in a closed form in terms of a;;’s.
This is obviously the same phenomena as originally called “resurgence” by Ecalle, and
rediscovered by Voros in the context of the WKB connection problem. The Liouville
plane now plays the role of the “Borel plane” in the Ecalle theory. Note, further, that w
is a “half-period” of f(¢)"/?; this is a general phenomena, as already observed by Voros,
Ecalle and Pham.

One can interpret our connection formulas in the same way; now wy’s as well as
arg’s join the game. The connection formulas, too, thus turn out to be a concise rep-
resentation of the “resurgence structure” of w;’s on the Borel plane. This also agrees
with observations of Voros, Ecalle and Pham. It should be noted that in our treatment
based upon Olver’s idea, connection formulas are derived without any analysis on sin-
gularities on the Borel(=Liouville) plane. Singularity structures can be read out from
the connection formulas as a consequence. In this respect, our approach is opposite, or
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complementary, to the method of Voros; Voros rather starts from a hypothesis on such
singularities, and derives his connection formulas from that postulate.

5.4. More degenerate case

A further degenerate case takes place if the two turning points in the above example
coalesce to a turning point of second order. In that case, the calculation of connection
coeficients cannot be reduced to that of triplets. One should therefore consider the four
solutions altogether and seek for a 2 x 2-connection relation of the form

ciatz + 1474,

(123?/)3 -+ Co4 ?/)4 .

I

Py

P2

From the boundary behavior of each term as ¢ — ooy, ..., co4, one can derive four
linear relations. These relations, however, are not independent and cannot determine
the four coeflicients. Olver's method thus breaks down in this case.

6. Beyond second order Sturm-Liouville linear problem
6.1. Dirac equations

There are obviously a number of possible directions that deserve further studies. An
immediate idea is to develop a similar approach to “Dirac equations” of the form

b= (0 M) e (9, (19)

where potentials ¢(s) and r(s) are assumed to have some analytic properties parallel
to the potential h(s) in the “Schrodinger equation” on the Liouville plane. In this
case, we directly start from the s-plane rather than seeking for an analogue of the ¢-
plane. Actually, even in the study of the second order Sturm-Liouville problem, Dirac
equations have been rather a standard framework; Ecalle and Grigis deal with this
problem by converting the original second order equation into a first order Dirac-type
system. Further, scattering theory has been also developed for the Dirac equations (for
example, by Zakharov and Shabat [Z8], and Ablowitz et al. [AXNS] with applications
to soliton theory); our iterated integral series and Laplace integral representation can
be naturally extended to that direction.

From our point of view, the analysis on the s-plane is more fundamental than the
¢-plane, and has enough contents in itself as well as further extensions. One may even
forget of the origin of (s) (the g-plane, the Liouville transformation, etc.); the only
thing that plays a crucial role seems to be the “resurgence” of the potential h(s) (here s
is identified with the Borel variable). Ecalle indeed reports intriguing results along that
line for a more general class of linear systems [E, vol. III].
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6.2. String equations

Nonlinear equations should be the next, and even more important subject. Of course,
Ecalle has made, in that direction as well, a number of suggestive observations, dealing
with quite general situations. Let us rather seek for more concrete examples; a special
equation should have its own interesting properties.

In that respect, recent progress in theoretical physics seems to offer a family of very
interesting nonlinear differential equations, the “string equations,” which are expected
to describe the physics of low dimensional string and gravity theory [BK], [DS], [GM].
In the simplest case, the string equation becomes the first Painlevé equation:

Uy = u* —, u=u(z). (44)
From a physical reason, it is better to put a small parameter G on the left hand side as:
Guzr =u* — 2, w=u(z), (44"

but for the moment, let us discuss the case of G = 1. Physicists seek for solutions with
the boundary condition
uw~al’? asz — 4oo, (45)

and further ask, for example, if there is any natural condition that determines a remain-
ing arbitrary constant. Several candidates for such a condition have been discussed: -
some requirements on the location of possible poles on the real axis (as conjectured by
the classical theory of Boutroux [B]), a boundary condition as @ — —oco (as suggested
by F. David [D}]), etc. Along with the first Painlevé equation, physicists have introduced
an infinite sequence of higher string equations that describe different physical contents:

P2k+l[u] =z (4: 72a"')a (46)

where Pyi4y[u] is the generator (the variational derivative of a Hamiltonian Hoppr[u])
of the higher (k-th) Korteweg-de Vries (I{dV) equation,

Utypgr = P'Zk-fl[u]l" (47)

It is well known in soliton theory [GD] that Pagyi{u]’s can be recursively determined
as coeflicients of a formal solution of the Riccati equation associated with the linear
equation

brz +ug = N¢. (48)

(Recall the construction of formal WKB solutions in Section 3!) For example,

Pylu] = (3u? — Uz, )/16,
s(u] = —(10u® — 10wty — 5(u)? + Upprr)/64,
tc... (49)

I

o

After suitable rescaling of u and z, equation (47) with k = 1 reproduce the first Riccati
equation. In general, Pyiy1fu] is a differential polynomial of u including at most 2k
order derivatives of u, the highest order term being linear in w. For the higher string
equations, physicists require the boundary condition
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u ~ const.z /) a5 1 oo (50)

"The constant on the right hand side is to be determined by the equation itself. As in the
k = 1 case, this boundary condition is still too weak to fix a physical solution. According
to physicists, a candidate for additional conditions is to require that w is real-valued,
has no singularity on the real axis and, further, satisfies the boundary condition

1/(k+1)

u ~ const.x as T — —00 (51)

for the same constant as in (50). It is conjectured, by numerical analysis, that such a
solution exists if and only if k is even [BMP]; in particular, the first Painlevé equation
fails to have such a solution. Mathematically, this issue is obviously related to a global
connection problem of the above nonlinear equations.

6.3. Possible link with Ecalle theory

Is such a global connection problem feasible from the point of view of the Ecalle theory
or anything along that line? A final answer is far beyond our present scope, but let us
show two observations suggesting a possible link with the Ecalle theory. For simplicity,
we consider the first Painlevé equation alone.
One observation is due to physicists [DS], [GM]: Suppose that u is given as a linear
combination of the form
u=2z'? 4. (52)

the second term v being, of course, expected to describe subleading contributions on
the right hand side of (45). In terms v, the first Painlevé equation can be rewritten into
a kind of nonlinear Sturm-Liouville eqation,

: 1
Ve = 20 Po = 0?4 S0 (53)
with an inhomogencous term and a nonlinear term on the right hand side. Physicists

infer from this fact that there should be “instanton effects” (i.e., subdominant effects
like quantum tunneling) governed by the WKB solutions

V32
vE g T1/8 exp(:t—g~m°/4) (54)

of the linearized and homogenized equation. Mathematically, this simply means that
(53) has an irregular singularity of the Poincaré rank one with respect the new variable

32 & .
s=— @3/t (55)

As far as only a neighborhood of s = co is concerned (i.e., within a local theory), this
already takes a “prepared form” for the Ecalle theory. The boundary problem with two
boundary condition at @ = oo is obviously related a the connection problem around
s = 00, hence with some nonlinear Stokes phenomena. Ecalle seems to suggest a general
framework for studying such issues within his “alien calculus.”
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Another observation is due to Pham in the “Epilogue” of his forthcoming book
[CNP]. As a typical example, Pham considers therein the Riccati equation
uy = u — . (56)
Obviously, this equation allows basically the same treatment as we have mentioned for
the first Painlevé equation. By the substitution

w=a? 4o, (57)
one indeed obtains the equation

p . 1 ,
vy — 22 /%y =% — gwl/‘z, (58)
which has a prepared form of the Ecalle theory.
Of course, the Riccati equation is far simpler than the first Painlevé equation. For
example, the Riccati equation can be converted to the Alry equation

pe —ap =0 (59)

by the well known transformation

U= ~p,/p. (60)

This is never the case for the Painlevé equation; even a stronger property (“irreducibil-
ity”) is known [N], [U], which implies its highly transcendental nature. Nevertheless, the
Riccati equation may be viewed as a nice example to get some insight into the issues
on the Painlevé equation mentioned above.

Let us show a result of numerical computation to the Riccati equation (Fig. 7). This
is, actually, just a redrawing of a figure quoted in the book of Pham. [The caption therein
says that it is reproduced from: Artigue and Gautheron, Systémes différentiels, étude
graphique (Cedic, Paris 1983).] The curves other than the axis in the figure are graphs,
in the (z,u)-plane, of solutions of the Riccati equation with various initial conditions.
On the right half plane, one will be able to see a parabola, which is exactly the curve
u? — 2 = 0. The upper half of this parabola is “repulsive” in the sense that every point
close to this part soon get far away as @ increases; the lower half is “attractive” in the
opposite sense. (A rigorous analysis of this phenomena can be found in Hille’s book [H])
Note that drawing this kind of figure in the Painlevé case requires a fine tuning of two
arbitrary constants in a general solutions; one has to find a nice one-parameter family
of solutions, which is, even numerically, a hard problem.

6.4. New resurgence from 7 function?

It seems thus very plausible that the Ecalle theory will be a useful tool for the study
of the string equations at infinity. There is, however, another issue related to possible
poles of solutions. At least for the case of the Painlevé equation, it is known that poles
are all of second order, and come from zeros of the so called “r function,” and the 7
function is proven to be an entire function. Actually, the notion of the “r function” is
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Fig. 7. Graphs of solutions to uy, = u? — z

also introduced in the KdV and higher KdV equations. For the study of poles of u, the
7 function should play a key role. Its relation to the Ecalle theory is now far from our
understanding; this might lead to a new aspect of resurgence. At this stage, we already
have two variables, s in (55) and A in (48), which will be responsible for two distinct
resurgence phenomena (“equational” and “quantum” in the terminology of Ecalle). The
small parameter G, if incorporated as in (44'), might yield a third resurgence that will
be specific to the 7 function.
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