THE GEOMETRIC REPRESENTATION OF U-PROJECTIVE RESOLUTION OF MODULE OVER PATH ALGEBRA OF TYPE A_n AND \tilde{A}_n

Yudi Mahatma¹, Karin Baur², Intan Muchtadi-Alamsyah¹

¹ Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, 40132, Indonesia

² Institut f
ür Mathematik und wissenschaftliches Rechnen, Universit
ät Graz, Heinrichstrasse 36 Graz, A-8010, Austria

 $yudi_mahatma@unj.ac.id,\ karin.baur@uni-graz.at,\ ntan@math.itb.ac.id$

ABSTRACT

Projective resolutions of modules play an important role in homological algebra. In 2002, Davvaz and Shabani-Solt introduced the notions of U-complex, U-homology, etc. to generalize certain concepts in homological algebra. Inspired by this, the first and the third authors introduced the notion of U-projective resolutions and U-extension modules in 2016.

We also found that every short exact sequence of modules and module homomorphisms over hereditary algebra can always be extended into a long exact sequence of U-homologies (the modified homologies) consisting of U-extension modules. This encouraged us to further research on U-extension modules over hereditary algebras. The algebra of our interest is a path algebra generated by a finite acyclic quiver. In this paper we will discuss U-projective resolutions of modules over such algebra of type A_n and \tilde{A}_n .

A sequence $\dots \xrightarrow{d_{k+2}} M_{k+1} \xrightarrow{d_{k+1}} M_k \xrightarrow{d_k} M_{k-1} \xrightarrow{d_{k-1}} \dots$ of modules and module homomorphisms is said to be **exact** if $Imd_{k+1} = \ker d_k$ for every k. Davvaz and Parnian-Garamaleky introduced the notion of U-exact sequence, which is a generalization of an exact sequence. The idea is to replace $\ker d_k$ with $d_k^{-1}(U_{k-1})$, for every k, where U_k is a submodule of M_k for each k. Davvaz and Shabani-Solt then redefined this concept using the so-called U-complex approach which further assumes that Imd_{k+1} must contain U_k for every k. Thus, an U-exact sequence is a sequence $\dots \xrightarrow{d_{k+2}} M_{k+1} \xrightarrow{d_{k+1}} M_k \xrightarrow{d_k} M_{k-1} \xrightarrow{d_{k-1}} \dots$ of modules and module homomorphisms such that $Imd_{k+1} = d_k^{-1}(U_{k-1}) \supseteq U_k$ where U_k is a submodule of M_k , for each integer k.

Mahatma and Muchtadi-Alamsyah extended these result by proposing a way to define U-projective resolutions and U-extension modules. The aim of this paper is to state a formula for U-projective resolutions of kQ-modules where Qis quiver of type A_n and \tilde{A}_n and to give their geometric representations based on result by Baur and Torkildsen in 2016.

Keywords: projective resolution; module; path algebra; quiver; geometric representation

AMS Subject Classification: 16G06, 13D06, 13C10