GENERALIZED AKS SCHEME OF INTEGRABILITY VIA VERTEX ALGEBRA

WENDA FANG

ABSTRACT. There is a well-known way to construct integrable systems via Lie algebra called the Adler-Kostant-Symes (AKS) scheme. Let \mathfrak{g} be a Lie algebra with an invariant, non-degenerate bilinear form \langle , \rangle . Let R be a classical R-matrix of \mathfrak{g} , this gives a modified Lie algebra \mathfrak{g}_R . Consider the Kirillov-Kostant Poisson structures on the \mathfrak{g}^* and \mathfrak{g}^*_R and denote Poisson brackets on \mathfrak{g}^* and \mathfrak{g}^*_R by $\{ , \}$ and $\{ , \}_R$, respectively. Then all functions in the Poisson center with respect to $\{ , \}_R$. In this talk, we define the classical R-matrix for the vertex Lie algebra. We will see that a sufficient condition for an operator on a vertex Lie algebra to be a classical R-matrix is the modified Yang-Baxter equation (mYBE) of vertex Lie algebra which is an analog of the mYBE of Lie algebra. By using this R-matrix of vertex Lie algebra, we give a new scheme of integrability.