13:00¡Á13:25
| ¸òÄÌή¥»¥ë¥ª¡¼¥È¥Þ¥È¥ó¥â¥Ç¥ë¤Ë¤ª¤±¤ë Euler-Lagrange ÊÑ´¹ |
¾¾ÌÚÊ¿ ½ßÂÀ(ζëÂ硦Íý¹©)
À¾À® ³è͵(ζëÂ硦Íý¹©)
|
Rule184 ¤Ê¤É¤Î¸òÄÌή¥»¥ë¥ª¡¼¥È¥Þ¥È¥ó¤Ë¤Ï¡¢Euler Ūɽ¸½¤È Lagrange Ūɽ¸½¤¬Â¸ºß¤¹¤ë¡£Ëֱܹé¤Ç¤Ïξ¼Ô¤ò·ë¤Ö Euler-Lagrange ÊÑ´¹¤Ë¤Ä¤¤¤Æ¡¢µÄÏÀ¤¹¤ë¡£ |
13:25¡Á13:50
| ¿®¹æµ¡ÉÕ¤ Burgers Cellular Automaton |
¶¶µÍ ¿¿Èþ(ÁáÂ硦Íý¹©)
»ÖÅÄ ÆÆɧ(ÁáÂ硦Íý¹©)
¹â¶¶ ÂçÊå(ÁáÂ硦Íý¹©)
|
BCA¤«¤é , Àþ·Á²½²Äǽ¤Ê·Á¤òÊݤä¿¤Þ¤Þ , ¿®¹æµ¡ÉÕ¤¤Î¸òÄÌή¥â¥Ç¥ë¤¬½ÐÍè¤ë¤³¤È¤¬¤ï¤«¤Ã¤¿¡£¤³¤Î¿®¹æµ¡ÉÕ¤BCA¤Ç , µ¬Â§Åª¤Ê¿®¹æµ¡¤ä¥é¥ó¥À¥à¤Ê¿®¹æµ¡¤òÀߤ±¤¿¾ì¹ç¤Î¸òÄÌή¤Î²òÀϤò¹Ô¤¦¡£ |
13:50¡Á14:15
| ¼þ´üÎ¥»¶¸ÍÅÄÊýÄø¼°¤È¼þ´üÈ¢¶Ì·Ï |
·¯Åè̯»Ò(ÅìÂ硦¿ôÍý)
»þ¹°Å¯¼£(ÅìÂ硦¿ôÍý)
|
¼þ´üÎ¥»¶¸ÍÅÄÊýÄø¼°¤Î½é´üÃÍÌäÂê¤Î²òË¡¤È¡¢¤½¤Î¼þ´üÈ¢¶Ì·Ï¤Ø¤Î±þÍѤòÀâÌÀ¤¹¤ë¡£»þ´Ö¤¬µö¤»¤Ð¡¢È¢¤ÎÍÆÎ̤¬£±¡¢¶Ì¤Î¼ïÎब£±¼ïÎà¤Î¾ì¹ç¤Ë´ðËܼþ´ü¤òÍ¿¤¨¤ë¸ø¼°¤È¡¢Ç¤°Õ¤Î½é´üÃ;õÂÖ¤«¤é½ª¾õÂÖ¤ò¸·Ì©¤Ë·èÄê¤Ç¤¤ë¤³¤È¤Î¾ÚÌÀ¡¢²Ä²ò³Ê»ÒÌÏ·¿¤È¤ÎÂбþ¤Ë¤Ä¤¤¤Æ¤âÀâÌÀ¤·¤¿¤¤¡£ |
14:15¡Á14:40
| ·ë¹ç·¿£Ë£Ð³¬Áؤˤª¤±¤ë·ë¹ç¸ÍÅijʻҤȤ½¤Î´ÊÌó |
Ralph Willox(ÅìÂ硦¿ôÍý)
|
·ë¹ç £Ë£Ð ¥Ò¥¨¥é¥ë¥¡¼¤ËÉտ路¤Æ·ë¹ç¸ÍÅijʻҤι½À®¤¬²Äǽ¤Ç¤¢¤ë¤³¤È¤ò¼¨¤·¡¢¤½¤Î·ë¹ç³Ê»Ò¤Î´ÊÌó¤ò¼ÂÎã¤òµó¤²¤ÆÀâÌÀ¤¹¤ë¡£Æäˡ¢·ë¹ç sine-Gordon ·Ï ¤ä·ë¹ç Tzitzeica ·Ï¤È¤³¤ì¤é¤Î Pfaffian ·¿ tau È¡¿ô¤òµÄÏÀ¤¹¤ë¡£»þ´Ö¤Ë¤è¤Ã¤Æ¡¢¾å½Ò¤ÎÊýÄø¼°¤ÎÎ¥»¶²½¤Î¼ÂÎã¤â¸ÀµÚ¤¹¤ë¡£ |
15:00¡Á15:25
| cKPÊýÄø¼°·Ï¤Î¤µ¤Þ¤¶¤Þ¤Ê²ò¤Ë¤Ä¤¤¤Æ |
ã¦Åç ¿(ÅìÂ硦¿ôÍý)
Ralph Willox(ÅìÂ硦¿ôÍý)
»§Ëà ½çµÈ(ÅìÂ硦¿ôÍý)
|
cKPÊýÄø¼°¤Î¥½¥ê¥È¥ó²ò¤Ï¡¢°ìÈ̤ˤ褯ÃΤé¤ì¤Æ¤¤¤ë¾¤Î¥½¥ê¥È¥ó²ò¤ÈÈæ¤Ù¤Æ¡¢Â¿¤¯¤Î¥Ñ¥é¥á¡¼¥¿¤ò»ý¤Ä¡£¤³¤ì¤ËÃíÌܤ·¤Æ¡¢cKPÊýÄø¼°¤ä¤½¤ì¤«¤éreduction¤ÇÆÀ¤é¤ì¤ëÊýÄø¼°¤Î¥½¥ê¥È¥ó²ò¤«¤éresonant²ò¤Ê¤É¤Î¤ª¤â¤·¤í¤¤¿¶¤ëÉñ¤¤¤ò¤¹¤ë²ò¤ò¼Â¸½¤·¡¢²òÀϤ¹¤ë¡£ |
15:25¡Á15:50
| Relativistic Deformation of Integrable Lattice Systems and Discrete Soliton Equations |
´ÝÌî ·ò°ì(¶åÂ硦±þÎϸ¦)
|
¶á¡¢Suris¤Ë¤è¤Ã¤ÆƳ½Ð¤µ¤ì¤¿Relativistic Lotka-Volterra Lattice¤ò¤Ï¤¸¤á¤È¤¹¤ëRelativistic Soliton Lattice¤ò¦ÓÈ¡¿ô¤Î´ÑÅÀ¤«¤éÄ´¤Ù¡¢Discrete Soliton Equation¤È¤Î´Ø·¸¤òÌÀ¤é¤«¤Ë¤·¡¢¦ÓÈ¡¿ô¤òÍѤ¤¤ÆSoliton Equation¤òRelativistic Deformation¤¹¤ëÊýË¡¤Ë¤Ä¤¤¤Æ¡¢¶ñÂÎÎã¤òÍѤ¤¤Æ¹Í»¡¤¹¤ë¡£ |
15:50¡Á16:30
| Supersymmetric soliton equations |
A. Ramani(Ecole Polytechnique)
B. Grammaticos(Universit\'e Paris VII)
A. S. Carstea(Institute of Physics and Nuclear Engineering)
|
Using the bilinear formalism we show how to construct the multi-soliton solutions of the supersymmetric (fermionic) extensions of integrable PDE's. From their similarity reductions we obtain supersymmetric Painleve equations. |
16:50¡Á17:15
| \widetilde{W}(A^{(1)}_1) ¡ß \widetilde{W}(A^{(1)}_3)¤ÎÁÐÍÍýɽ¸½¤ÈÎ¥»¶¥Ñ¥ó¥ë¥ô¥§ÊýÄø¼° |
ÃÝÆì ÃÎÇ·(ÅìÂ硦¿ôÍý)
|
³á¸¶¤é¤Ë¤è¤Ã¤ÆÄ󾧤µ¤ì¤¿³ÈÂçWeyl·²\widetilde{W}(A^{(1)}_{m-1} ¡ß \widetilde{W}(A^{(1)}_{n-1})¤ÎÁÐÍÍýɽ¸½¤Ë¤Ä¤¤¤Æ¡¤ÆäËm=2,n=4¤Î¾ì¹ç¤Ë¡¤½é´üÃͶõ´Ö¤ÈÎ¥»¶Painlev\'eÊýÄø¼°¤È¤Î´Ø·¸¤òÄ´¤Ù¤ë¡¥ |
17:15¡Á17:40
| q-Painlev\'e III ÊýÄø¼°: ÂоÎÀ¡¦Æüì²ò¡¦°ìÈ̲½ |
³á¸¶ ·ò»Ê(¶åÂ硦¿ôÍý)
Ì Àµ½Ó(¿À¸ÍÂ硦¼«Á³)
»³ÅÄ ÂÙɧ(¿À¸ÍÂ硦¼«Á³)
|
$q$-Painlev\'e III ÊýÄø¼°¤È¸Æ¤Ð¤ì¤ëº¹Ê¬ÊýÄø¼°¤ÎÂоÎÀ¤òµÄÏÀ¤·¡¤¤½¤ì¤¬ A_1^{(1)}¡ßA_1^{(1)}·¿¥¢¥Õ¥£¥ó¥ï¥¤¥ë·²¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤³¤È¤ò¼¨¤¹¡¥¤Þ¤¿¡¤Æüì²ò¤È¤·¤Æ¡¤£²¼ïÎà¤Î Riccati ²ò¤È Umemura¿¹à¼°·¿¤Î¿¹à¼°¤ÎÈæ¤Çɽ¤µ¤ì¤ëÍÍý²ò¤ò¹½À®¤¹¤ë¡¥¤µ¤é¤Ë¡¤ÂоÎÀ¤Î´ÑÅÀ¤«¤é¤Î°ìÈ̲½¤È q-KP ³¬ÁؤȤδØÏ¢¤Ë¤Ä¤¤¤Æ¿¨¤ì¤ë¡¥ |
17:40¡Á18:05
| q-Painlev\'e V ÊýÄø¼°¤ÎÍÍý²ò |
ÁýÅÄ Å¯(¿À¸ÍÂ硦¼«Á³)
|
Painlev\'e V ÊýÄø¼°¤ÎÍÍý²ò¤Ï Laguerre ¿¹à¼°¤òÍ×ÁǤȤ¹¤ë¹ÔÎó¼°¤Çɽ¤µ¤ì¡¤¤½¤Î¹ÔÎó¼°É½¼¨¤Ï universal character ¤ÎÆü첽¤È¸«Ðö¤¹¤³¤È¤¬¤Ç¤¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤q-Painlev\'e V ÊýÄø¼°¤ò¹Í»¡¤·¡¤¤½¤ÎÍÍý²ò¤¬ P_{\rm V} ¤ÈƱ¤¸¹½Â¤¤Î¹ÔÎó¼°¤Çɽ¤µ¤ì¤ë¤³¤È¤òÊó¹ð¤¹¤ë¡¥¹ÔÎó¼°¤ÎÍ×ÁÇ¤Ï continuous q-Laguerre ¿¹à¼°¤ÇÍ¿¤¨¤é¤ì¤ë¡¥ |
18:05¡Á18:30
| ¥È¥í¥¤¥À¥ëÂоÎÀ¤Ë´ð¤¯¥½¥ê¥È¥óÊýÄø¼°¤Î(2+1)¼¡¸µ²½ |
äª »°Ïº(Ω¶µÂ硦Íý)
ÃÓÅÄ ³Ù(²¬»³Íý²ÊÂ硦Íý)
¹âºê ¶âµ×(µþÂ硦Áí¹ç¿Í´Ö)
|
KdVÊýÄø¼°Åù¤ÎÂåɽŪ¤Ê¥½¥ê¥È¥óÊýÄø¼°¤Ï(1+1)¼¡¸µ¤Î»þ¶õ¤Ç¤Î¤â¤Î¤Ç¤¢¤ë¡£¤³¤ì¤ò²ÄÀÑʬÀ¤òÊݤÁ¤Ä¤Ä¹â¼¡¸µ¤Ë³ÈÄ¥¤¹¤ë»î¤ß¤Ï¤¤¤¯¤Ä¤«¤¢¤ë¤¬¡¤º£²ó¤Î¹Ö±é¤Ç¤Ï¥È¥í¥¤¥À¥ë¡¦¥ê¡¼Âå¿ô¤ÎÂоÎÀ¤Ë´ð¤¯ÊýË¡¤ò¾Ò²ð¤·¡¤¤³¤ì¤Þ¤Ç¤ËÃΤé¤ì¤Æ¤¤¤ë·Ï¤È¤Î´Ø·¸¤òµÄÏÀ¤¹¤ë¡£ |
9:00¡Á9:15
| Èó°ìÍÍÀ¤ò¤â¤Ä¸÷¥Õ¥¡¥¤¥Ð¡¼Ãæ¤Î¥½¥ê¥È¥óÅÁÇÅ |
µ×ÊÝÅÄ ÍÛÆó(¶åÂ硦Íý)
¾®ÅijÀ ¹§(¶åÂ硦Íý)
|
¸÷¥Õ¥¡¥¤¥Ð¡¼Ãæ¤Î¥½¥ê¥È¥ó¤Î±¿Æ°¤Ï¡¢ÈóÀþ·Á¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼¡ÊNLS¡ËÊýÄø¼°¤Çµ½Ò¤µ¤ì¤ë¡£¥Õ¥¡¥¤¥Ð¡¼¤ÎÈó°ìÍÍÀ¤ò¹Íθ¤ËÆþ¤ì¡¢·¸¿ô¤Ë¶õ´Ö°Í¸À¤ò¤â¤ÄNLSÊýÄø¼°¤ò¿ôÃÍŪ¤Ë»þ´ÖȯŸ¤µ¤»¤¿¡£¤½¤Î·ë²Ì¡¢£±¥½¥ê¥È¥ó¤¬¡¢¹â¼¡¤Î¥½¥ê¥È¥ó¤ËÊѲ½¤¹¤ë¥Ñ¥é¥á¡¼¥¿¡¼Îΰ褬¤¢¤ë¤³¤È¤¬¤ï¤«¤Ã¤¿¡£ |
9:25¡Á9:50
| Î¥»¶ÈóÀþ·Á¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Ë¤ª¤±¤ëÊÑÄ´ÉÔ°ÂÄê²ò¤ÎÁê¶õ´Ö¹½Â¤ |
¸åÆ£ ¿¶°ìϺ(̾Â硦Íý)
Ìîºê °ìÍÎ(̾Â硦Íý)
»³ÅÄ Íµ¹¯(̾Â硦Íý)
|
¹â¼«Í³Å٥ϥߥë¥È¥ó·Ï¤Î´ðËÜŪ¤ÊÁê¶õ´Ö¹½Â¤¤òÍý²ò¤òÌܻؤ¹¤¿¤á¡¢»þ¶õÎ¥»¶ d-NLS Eq.¤ò symplectic map ¤È¤·¤Æ¼è°·¤¤¡¢¤½¤ÎÁê¶õ´Ö¹½Â¤²òÀϤò¹Ô¤¦¡£Ëֱܹé¤Ç¤ÏÆäËÊÑÄ´ÉÔ°ÂÄêÀ¤Ë¤è¤ëÁê¶õ´Ö¤ÎÉÔµ¬Â§²½¤Ë¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡£ |
9:50¡Á10:15
| Èó¶É½êŪÈóÀþ·Á¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Î¿½Å¥½¥ê¥È¥ó²ò¤È¤½¤ÎÀ¼Á |
¾¾Ìî ¹¥²í(»³¸ýÂ硦¹©)
|
͸¿¼¤µ¤ÎÀ®ÁØήÂÎÃæ¤òÅÁÇŤ¹¤ë½àñ¿§ÇȤÎÊÑÄ´¤ÏÈó¶É½êŪ¤ÊÈóÀþ·Á¹à¤ò¤â¤ÄÈóÀþ·Á¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Çµ½Ò¤µ¤ì¤ë¡£Ëܸø±é¤Ç¤Ï¡¢¤³¤ÎÊýÄø¼°¤Î¿½Å¥½¥ê¥È¥ó²ò¤ÎľÀܾÚÌÀ¤ò¹ÔÎ󼰤θø¼°¤òÍѤ¤¤Æ¹Ô¤¦¡£¤µ¤é¤Ë¡¢²ò¤ÎÀ¼Á¤Ë¤Ä¤¤¤ÆµÄÏÀ¤¹¤ë¡£ |
10:15¡Á10:40
| Èùʬ·¿ÈóÀþ·Á¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Î³ÈÄ¥¤Ë¤Ä¤¤¤Æ |
ÅÚÅÄ Î´Ç·(ÅìÂ硦¿ôÍý)
|
Èùʬ·¿ÈóÀþ·Á¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Ë´Ø¤·¤Æ¡¢Â¿À®Ê¬³ÈÄ¥¡¢²ÄÀÑʬÀ¤òÊݤä¿Î¥»¶²½¡¢¹â³¬Èùʬ²½(ÈóÀþ·Á¹à¤ÎÈùʬ¤Î¹â³¬²½)¤Ë¤è¤ë³ÈÄ¥¡¢¤Ê¤É¤ò¹Í»¡¤¹¤ë¡£ |
11:00¡Á11:25
| ¹â²¹Ä¶ÅÁƳÂΤǸ«¤é¤ì¤ë¥×¥é¥º¥ÞÈóÀþ·Á¶Éºß¸½¾Ý¡§ÈóÀþ·Á·ë¹ç¿¶Æ°»Ò¤Î¶Éºß¥â¡¼¥É |
Ä®ÅÄ ¾»É§(ÆüËܸ¶»ÒÎϸ¦¡¦·×»»²Ê³Øµ»½Ñ¿ä¿Ê¥»¥ó¥¿¡¼)
º´¡¹ À®Àµ(ÆüËܸ¶»ÒÎϸ¦¡¦·×»»²Ê³Øµ»½Ñ¿ä¿Ê¥»¥ó¥¿¡¼)
|
¹â²¹Ä¶ÅÁƳÂΤÎĶÅÁƳ°ÌÁê¤Î¥À¥¤¥Ê¥ß¥¯¥¹¤Ï¿ô³ØŪ¤Ë¤Ï°ì¼¡¸µÈóÀþ·Á·ë¹ç¿¶Æ°»Ò¥â¥Ç¥ë¤Çµ½Ò¤µ¤ì¤ë¡£Ëֱܹé¤Ç¤Ï¡¢¤³¤Î¥â¥Ç¥ë¤Î¿ôÃÍ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó·ë²Ì¤òÍѤ¤¤ÆÈóÀþ·Á¶Éºß±¿Æ°¤¬¼¨¤¹ÍÍ¡¹¤Ê¦Ì̤ˤĤ¤¤Æ·ÏÅýŪ¤ËÊó¹ð¤·¤¿¤¤¡£¹Ö±é¤Ë¤è¤êÈóÀþ·Á¶Éºß±¿Æ°¤ËÂФ¹¤ëÍý²ò¤ò¿¼¤á¤ëµÄÏÀ¤¬¤Ç¤¤ì¤Ð¹¬¤¤¤Ç¤¢¤ë¡£ |
11:25¡Á12:20
| ¼ÐÌ̾å¤ÎÊ´ÂÎή¤È¤½¤Î°ÂÄêÀ |
¸æ¼êÀö ºÚÈþ»Ò(¶åÂ硦Íý)
ÁáÀî ¾°ÃË(µþÂ硦Áí¹ç¿Í´Ö)
ÃæÀ¾ ½¨(¶åÂ硦Íý)
|
µð»ëŪ¤ÊÂ礤µ¤ò»ý¤Äγ»Ò¤Î½¸¤Þ¤ê¤Ç¤¢¤ëÊ´ÂηϤÎήư¤Ï¡¤Ä¹Ç¯¸¦µæ¤µ¤ì¤Æ¤¤¿¤¬¡¤¤¤¤Þ¤À¤Ë¤½¤ÎµóÆ°¤òµ½Ò¤¹¤ëÏÈÁȤϳÎΩ¤µ¤ì¤Æ¤¤¤Ê¤¤¡¥Ëֱܹé¤Ç¤Ï¡¤Î³»Ò¤Î²óž¤Î¼«Í³ÅÙ¤ò¤È¤êÆþ¤ì¤¿Î®ÂÎ¥â¥Ç¥ë¤Ç¤¢¤ë¶ËÀήÂÎ¥â¥Ç¥ë¤Ë¤è¤ëÊ´ÂÎή¤Îµ½Ò¤Î»î¤ß¤ò¾Ò²ð¤¹¤ë¡¥ |
13:20¡Á13:45
| ÏѶʶ³¦Ì̲¼¤Ë¤ª¤±¤ë±²»å¤Î±¿Æ°¤Ë´Ø¤¹¤ë¼Â¸³ |
½®µ×ÊÝ Íª»Ò(²£É͹ñÂ硦¹©)
ÅÏÊÕ ¿µ²ð(²£É͹ñÂ硦¹©)
|
±²»å¤Î±¿Æ°¤Ë´Ø¤¹¤ë¼Â¸³¤òÊó¹ð¤¹¤ë¡£¤³¤ì¤Þ¤ÇÊ¿¤é¤Ê¸ÇÂ泦Ì̤òÍøÍѤ·¤Æ±²»å¤Î±¿Æ°¤òÀ©¸æ¤·¤Æ¤¤¿¡£º£²ó¡¢Ê¿ÈĤǤʤ¯¡¢ÏѶʤ·¤¿¶³¦Ì̤ËÀܤ·¤¿¤È¤¤Î±²»å¤Î±¿Æ°¤Ë¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡£ |
13:45¡Á14:10
| ²óž¤¹¤ë¥ë¡¼¥×¥½¥ê¥È¥ó |
³ÑÈ« ¹À(ÉÙ»³Â硦¹©)
º°Ìî ¸øÌÀ(ÆüÂ硦Íý¹©)
|
³°Éô¼§¾ì¤ÈÁê¸ßºîÍѤ¹¤ëÆâÉôÅÅή¤ò»ý¤Ä¥¹¥È¥ê¥ó¥°¤Ï£³¼¡¸µEuclid¶õ´Ö¾å¤Î¥ë¡¼¥×¥½¥ê¥È¥ó²ò¤ò»ý¤Ä¡£ÁÐÀþ·ÁÊýÄø¼°¤Ë¤è¤ê¡¤²óž¤¹¤ë¥½¥ê¥È¥ó²ò¤òƳ¤¡¤2¥½¥ê¥È¥ó²ò¤ÎÁê¸ßºîÍѤˤĤ¤¤Æ½Ò¤Ù¤ë¡£ |
14:10¡Á14:35
| ¥½¥ê¥È¥ó¤Î¼Ð¤áÁê¸ßºîÍѤˤĤ¤¤Æ |
ÄÔ ±Ñ°ì(¶åÂ硦±þÎϸ¦)
µÚÀî Àµ¹Ô(¶åÂ硦±þÎϸ¦)
|
Benjamin-Ono¥½¥ê¥È¥ó¤äMKdV¥½¥ê¥È¥ó¤ÎOblique Interaction¤Ë¤Ä¤¤¤Æ¿ôÃÍŪ¤ËÄ´¤Ù¤¿·ë²Ì¤òÊó¹ð¤¹¤ë¡¥ |
14:55¡Á15:50
| ¥®¥ó¥Ä¥Ö¥ë¥°¡¦¥é¥ó¥À¥¦ÊýÄø¼°¤È¥Ñ¥¿¡¼¥ó·ÁÀ®¡¦¥À¥¤¥Ê¥ß¥¯¥¹ |
¿¹ÅÄ Á±µ×(ζëÂ硦Íý¹©)
|
¥®¥ó¥Ä¥Ö¥ë¥°¡¦¥é¥ó¥À¥¦ÊýÄø¼°¤ÏĶÅÁƳ¤Î¥Þ¥¯¥í¸½¾Ý¤òµ½Ò¤¹¤ë¤¿¤á¡¤¥®¥ó¥Ä¥Ö¥ë¥°¤È¥é¥ó¥À¥¦¤Ë¤è¤Ã¤ÆÄó½Ð¤µ¤ì¤¿¥â¥Ç¥ë¤ËͳÍ褷¤Æ¤¤¤ë¡£ÊªÍý¤ÎÊýÌ̤ǤϰÊÁ°¤«¤é¤è¤¯¸¦µæ¤µ¤ì¤Æ¤¤¤¿¤¬¡¤¤³¤³10ǯ;¤ê¤Î´Ö¤Ë¿ô³Ø¦¤«¤é¤â³èȯ¤Ë¸¦µæ¤¬¤ª¤³¤Ê¤ï¤ìÂ礤¯¿ÊŸ¤·¤¿¡£¤³¤Î¹Ö±é¤Ç¤Ï¡¤¥Ñ¥¿¡¼¥ó·ÁÀ®¤Î´ÑÅÀ¤«¤é¤³¤ÎÊýÄø¼°¤Î²ò¤Î°ÂÄêÀ¤ÈÎΰè¤Î°ÌÁê¤ä´ö²¿³ØŪ·Á¾õ¤È¤Î´ØÏ¢¡¤¤ª¤è¤Ó2¼¡¸µÎΰè¤Ç¤Î²ò¤ÎÎíÅÀ¡Ê¥ô¥©¥ë¥Æ¥¯¥¹¤È¸Æ¤Ð¤ì¤ë¡Ë¤Î¥À¥¤¥Ê¥ß¥¯¥¹¤Ë¤Ä¤¤¤Æ¡¤¤³¤ì¤Þ¤Ç¤Î¿ô³ØŪ¤ÊÀ®²Ì¤ò²òÀ⤹¤ë¡£ |
15:50¡Á16:15
| ¶½Ê³ÀÈ¿±þ³È»¶ÊýÄø¼°¤Ë¤ª¤±¤ë¥Ñ¥ë¥¹¤ÎʬÎöÍýÏÀ |
ÁáÀ¥ ͧÈþǵ(¶åÂ硦Íý)
ÂÀÅÄ Î´É×(¹Â硦Íý)
|
¶½Ê³À¤ò¼¨¤¹È¿±þ³È»¶·Ï¤Ë¤ª¤¤¤Æ¥Ñ¥ë¥¹¤ÎʬÎö¸½¾Ý¤¬¡¤·×»»µ¡¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤Ë¤Æ¿ô¿¤¯Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤Ã±°ÂÄê·Ï¤ÎÈ¿±þ³È»¶ÊýÄø¼°¤ò²òÀϤ·¡¤¥Ñ¥ë¥¹¤ÎʬÎö¤Þ¤Ç¤ò´Þ¤á¤¿³¦ÌÌÊýÄø¼°¤ò¹½À®¤¹¤ë¡¥ |
16:15¡Á16:40
| ¿Ê¹Ô¥Ñ¥¿¡¼¥ó¤ÎÊÑÄ´¤òµ½Ò¤¹¤ë³È»¶¼åÉÔ°ÂÄê¤Ê°ÌÁêÊýÄø¼° |
ÁýÉÚ Í´»Ê(̾Â硦Íý)
Ìîºê °ìÍÎ(̾Â硦Íý)
|
¥Ñ¥¿¡¼¥ó¤ÎÊÑÄ´¤Ï°ÌÁê¾ì¤ÎȯŸÊýÄø¼°(°ÌÁêÊýÄø¼°)¤Çµ½Ò¤µ¤ì¤ë¡£¤½¤ÎÊýÄø¼°¤¬³È»¶¼åÉÔ°ÂÄê¤Ê¾ì¹ç¡¢¸½ºß¤Þ¤Ç¡¢·Ï¤òÀþ·Á°ÂÄê²½¤µ¤¹¹à¤òÊýÄø¼°¤Ë²Ã¤¨¤ë¤³¤È¤Ë¤è¤Ã¤Æ¤½¤ÎÉÔ°ÂÄêÀ¤òÍÞ¤¨¤Æ¤¤¿¡£º£²ó¡¢¤³¤ÎÍͤÊÀþ·Á°ÂÄê¤Ê¹à¤¬¤Ê¤¯¤Æ¤â¤¤¤¯¤Ä¤«¤ÎÈóÀþ·Á¹à¤Ç¤³¤ÎÉÔ°ÂÄêÀ¤òÍÞ¤¨¤ë¤³¤È¤¬¤Ç¤¤ë¤³¤È¼¨¤¹¡£ |
17:00¡Á17:25
| Î¥»¶¥ß¥Ã¥¿¡¼¥¯¥ì¥Õ¥é¡¼´Ø¿ô |
±Ê°æ ÆØ(ºåÂ硦´ðÁù©)
|
ήÂÎÃæ¤Îµå·Áγ»Ò¤Î±¿Æ°¤òµ½Ò¤¹¤ë¥Á¥§¥óÊýÄø¼°¤ÏÈóÀ°¿ô³¬Èùʬ¤ò´Þ¤ß²òÀϺ¤Æñ¤Ç¤¢¤Ã¤¿¤¬¡¤µµ¹â¤Ë¤è¤ê²ò¤¬¥ß¥Ã¥¿¡¼¥¯¥ì¥Õ¥é¡¼´Ø¿ô¤òÍѤ¤¤Æ¹½À®¤µ¤ì¤¿¡¥Ëֱܹé¤Ç¤Ï¥ß¥Ã¥¿¡¼¥¯¥ì¥Õ¥é¡¼´Ø¿ô¤òº¹Ê¬²½¤·¡¤¥Á¥§¥óÊýÄø¼°¤Î¿ôÃÍ·×»»¤Ø¤Î±þÍѤˤĤ¤¤Æ¤â½Ò¤Ù¤ë¡¥ |
17:25¡Á17:50
| ²ÄÀÑʬÆðÛÃÍ·×»»Ë¡¤Î¹â®²½¤È¤½¤Î¿ôÃÍ°ÂÄêÀ |
´äºê ²í»Ë(ºåÂ硦´ðÁù©)
Ãæ¼ ²ÂÀµ(µþÂ硦¾ðÊó)
ÄÔËÜ Í¡(µþÂ硦¾ðÊó)
|
²æ¡¹¤ÏÎ¥»¶¥í¥È¥«¡¦¥Ü¥ë¥Æ¥é·Ï¤Ë¤è¤ë²ÄÀÑʬÆðÛÃÍ·×»»Ë¡¤ò´û¤ËÄó°Æ¤·¤¿.Ëֱܹé¤Ç¤Ï, ¤³¤Î¥¢¥ë¥´¥ê¥º¥à¤Ë¸¶ÅÀ°ÜÆ°¤òƳÆþ¤¹¤ë¤³¤È¤Ç¤µ¤é¤Ê¤ë¹â®²½¤ò¹Ô¤¦.¤Þ¤¿, ¿ôÃÍ°ÂÄê¤È¤Ê¤ë¸¶ÅÀ°ÜÆ°Î̤ÎÀßÄêÊýË¡¤Ë¤Ä¤¤¤Æ¤â¼¨¤¹. |
17:50¡Á18:15
| Î¥»¶»þ´Ö¥½¥ê¥È¥óÊýÄø¼°¤Î¤¢¤ëÀ¼Á¤Ë¤Ä¤¤¤Æ |
»³ËÜ ½ã°ì(ÅÔΩÂ硦Íý)
ã·Æ£ ¶Ç(ÅÔΩÂ硦Íý)
ã·Æ£³×»Ò(²£É͹ñÂ硦¹©)
µÈÅÄ ¾¡É§(ËÌΤÂ硦°ìÈ̶µ°é)
|
ÍÍý´Ø¿ô·¿¼ÌÁü¤òƳ¤¯Î¥»¶»þ´Ö¥½¥ê¥È¥óÊýÄø¼°¤Ë¤Ä¤¤¤Æ¡¢¤½¤ì¤é¤¬»ý¤ÄÀ¼Á¤Ë¤Ä¤¤¤ÆµÄÏÀ¤¹¤ë¡¥ |
18:15¡Á18:40
| Î¥»¶¼ÌÁü¤Ëȼ¤¦ Hamiltonian flow ¤Ë¤Ä¤¤¤Æ |
µÈÅÄ ¾¡É§(ËÌΤÂ硦°ìÈ̶µ°é)
»³ËÜ ½ã°ì(ÅÔΩÂ硦Íý)
¼óÆ£ ·¼(ÅÔΩÂ硦Íý)
ã·Æ£ ¶Ç(ÅÔΩÂ硦Íý)
|
ÆÃÄê¤ÎÎ¥»¶¼ÌÁü¤Î·«¤êÊÖ¤·¤ò¹Í¤¨¤¿»þ¡¤¤½¤Î¼ÌÁü¤Î½é´üÃͤ¬»þ´Ö¤ÎÌò³ä¤ò²Ì¤¿¤¹¤è¤¦¤Ê Hamiltonian flow ¤¬Â¸ºß¤¹¤ë¤³¤È¤ò¼¨¤¹¡¥Îã¤È¤·¤Æ¡¤²ÄÀÑʬ¤Ê¼ÌÁü¤Ç¤¢¤ëÎ¥»¶ KdV ¼ÌÁü¤ÈÈó²ÄÀÑʬ¤Ê¼ÌÁü¤Ç¤¢¤ë¥¨¥Î¥ó¼ÌÁü¤Ë¤Ä¤¤¤Æ¤½¤ì¤¾¤ì¼¨¤·¡¤¤µ¤é¤Ë¡¤qº¹Ê¬¥Ñ¥ó¥ë¥ÙIV¼ÌÁü¤Ë¤Ä¤¤¤Æ¤â¹Í»¡¤¹¤ë¡¥ |
9:00¡Á9:25
| Lie symmetry¤Ë¤è¤ë¶³¦ÃÍÌäÂê¤Î¸·Ì©²ò¤Î¹½À® |
¼ÅÄ ½¡°ì(̾Â硦Íý)
Ìîºê°ìÍÎ(̾Â硦Íý)
|
D.V.Shirkov¤é¤Î¡¢functinal self-similarity¤ò»È¤¨¤ÐÍ¿¤¨¤é¤ì¤¿¶³¦¾ò·ï¤Î¤ß¤¿¤¹¡¢²ò¤ò¹½À®¤Ç¤¡¢Lie symmetry¤«¤é¶³¦ÃÍÌäÂê¤ò²ò¤¯¤³¤È¤¬¤Ç¤¤ë¡£¤³¤³¤Ç¤Ï¡¢wave beam ¤Îself-focusing¤ÎÌäÂê¤Ë¤Ä¤¤¤Æ¡¢¤½¤ÎÎã¤ò¤¢¤²¤ë¡£ |
9:25¡Á9:50
| ɸ½à·ÁÍýÏÀ¤Ë¤è¤ëÀÝÆ°KdVÊýÄø¼°¤Î²òÀÏ |
Ê¿²¬ ͵¾Ï(ºåÂ硦´ðÁù©)
»ù¶Ì ͵¼£(¥ª¥Ï¥¤¥ª½£Î©Â硦¿ô)
|
ɸ½à·ÁÍýÏÀ¤ÏÄþ¸ºÀÝÆ°Ë¡¤Ê¤É¤Ë¤è¤Ã¤ÆÆÀ¤é¤ì¤ë²ÄÀÑʬÊýÄø¼°¤ËÀÝÆ°¹à¤¬²Ã¤ï¤Ã¤¿·Ï¤ò²òÀϤ¹¤ë°Ù¤ËƳÆþ¤µ¤ì¤¿¡¥¹Ö±é¤Ç¤ÏÎã¤òÍѤ¤¤Æɸ½à·ÁÍýÏÀ¤ò²òÀ⤹¤ë¡¥¤Þ¤¿¡¤º´Æ£ÍýÏÀ¤òÍѤ¤¤Æ¥ê¡¼ÊÑ´¹¤È¥¬¡¼¥É¥Ê¡¼ÊÑ´¹¤Î´Ø·¸¤òÌÀ¤é¤«¤Ë¤·¥ê¡¼ÊÑ´¹¤ÎÀ¼Á¤ò¹Í»¡¤¹¤ë¡¥ |
9:50¡Á10:15
| Localized excitations as one of the sources of finite lattice thermal conductivity |
ÉðÌî Àµ»°(Âçºå¹©Â硦¾ðÊó²Ê³Ø)
|
1¼¡¸µ³Ê»Ò¤Ë¤ª¤±¤ëlattice thermal conductivity¤ÎÌäÂê¤Ï¤½¤Î¾ì¹ç Fourier law ¤¬À®¤êΩ¤Ä¤«Èݤ«¡¢Ç®ÅÁƳÅÙ¤Ï͸¤«Èݤ«Åù¤ÎÌäÂêÅù¤Ë´ØÏ¢¤·¤Æ³Ê»ÒÎϳؤΤߤʤ餺¡¢Åý·×ʪÍý³Ø¤Î¤Ê¤«¤Ç¤â´°Á´¤Ë²ò·è¤µ¤ì¤Æ¤¤¤Ê¤¤ºÇ¤â´ðÁÃŪ¤ÊÌäÂê¤Î°ì¤Ä¤Ç¤¢¤ë¡£³Ê»Ò·Ï¤ÎÈó²ÄÀÑʬÀ¤Ï͸¤ÎÇ®ÅÁƳ¤òɬ¤º¤·¤âÍ¿¤¨¤Ê¤¤¡£Ëֱܹé¤Ë¤ª¤¤¤Æ¤Ï¡¢ÈóÀþ·Á³Ê»Ò¤Ë¤ª¤±¤ë¶Éºß¥â¡¼¥É¡¢ÆäËÈóÀþ·Á²óž¥â¡¼¥É¤¬Í¸Â¤ÎÇ®ÅÁƳ¤òÍ¿¤¨¤ë¤È¤¤¤¦¤³¤È¤ò¼¨¤¹¡Ê¿ôÃÍ·×»»¤Î·ë²Ì¡Ë |
10:15¡Á10:40
| ¥Ï¥ß¥ë¥È¥ó·Ï¤ÎÁ´ÊݸÎ̤òÊݤĺ¹Ê¬²½ |
Ê÷ºê À¬Î´(ºåÂ硦´ðÁù©)
|
¥Ï¥ß¥ë¥È¥ó·Ï¤ËŬÍѤµ¤ì¤ëº¹Ê¬Ë¡¤È¤·¤Æ¡¢¥·¥ó¥×¥ì¥¯¥Æ¥£¥Ã¥¯¿ôÃÍ·×»»Ë¡¡¢GHI ¥¹¥¡¼¥à ( ¥¨¥Í¥ë¥®¡¼¤òÊݸ¤¹¤ë¥¹¥¡¼¥à )¡¢ÊÑʬ¸¶Íý¤ò¸µ¤Ë¤·¤¿º¹Ê¬²½Åù¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¤·¤«¤·¡¢¤³¤ì¤é¤Î·×»»Ë¡¤Ç¤Ï°ìÈ̤ËÁ´¤Æ¤Î·Ï¤ÎÊݸÎ̤òÊݤ¿¤Ê¤¤¡£ËÜȯɽ¤Ç¤Ï Kepler ÊýÄø¼°¤ÎÁ´¤Æ¤ÎÊݸÎ̤òÊݤĺ¹Ê¬Ë¡¤ò¹½À®¤·¡¢¤³¤Îº¹Ê¬Ë¡¤ÎÀ¼Á¤ò½Ò¤Ù¤ë¡£¤µ¤é¤Ë¡¢¤³¤Îº¹Ê¬Ë¡¤Î¹½À®Ë¡¤Ë¤Ä¤¤¤Æ¤â´Êñ¤Ë½Ò¤Ù¤ë¡£ |
11:00¡Á11:25
| ·Á¼°Åª¤Ë´°Á´²ÄÀÑʬ¤Ê£´³¬Ï¢Î©È¯Å¸ÊýÄø¼°¤Î¿ô¤¨¾å¤² |
ÅÏî´ Ë§±Ñ(Ʊ»Ö¼ÒÂ硦¹©)
°ËÆ£ ²íÌÀ(¹Â硦¹©)
|
£´³¬¤ÎϢΩȯŸÊýÄø¼°¤Ç¤¢¤Ã¤Æ Sokolov-Shabat ¤Î°ÕÌ£¤Ç·Á¼°Åª¤Ë´°Á´²ÄÀÑʬ¤Ê¤â¤Î¤ò¿ô¼°½èÍý¥·¥¹¥Æ¥à REDUCE ¤òÍѤ¤¤Æ¿ô¤¨¾å¤²¤ë¡¥¤½¤Î·×»»¤ÎÁ´ÂΤϤ«¤Ê¤êËÄÂç¤Ê¤â¤Î¤Ë¤Ê¤ê̤´°À®¤Ç¤¢¤ë¡¥º£²ó¤ÏÆÃÊ̤ʥ¯¥é¥¹¤Ë¸Â¤Ã¤Æ¡¤·×»»¤ÎÅÓÃæ·Ð²á¤ò¤ªÏä·¤¿¤¤¡¥ |
11:25¡Á11:50
| Darboux-Lam\'eÊýÄø¼°¤È¥â¥Î¥É¥í¥ß¡¼ÊݸÊÑ·Á |
ÂçµÜ ¿¿µÝ(Ʊ»Ö¼ÒÂ硦¹©)
±ºµ×ÊÝ ÀµÈþ(Âçºå»º¶ÈÂ硦¶µÍÜ)
|
n¼¡Lam\'eÊýÄø¼°¤¬¡¢¤¢¤ë¼ï¤ÎÂಽ¾ò·ï¤òËþ¤¿¤¹¤È¤¡¢DarbouxÊÑ´¹¤òÍѤ¤¤Æ¹½À®¤µ¤ì¤ëÂå¿ô´ö²¿ÅªÂʱߥݥƥ󥷥ã¥ë¤ò·¸¿ô¤Ë»ý¤Ä¥È¡¼¥é¥¹¾å¤ÎÀþ·Á¾ïÈùʬÊýÄø¼°¤Î£±¥Ñ¥é¥á¡¼¥¿Â²¤¬¡¢n=2¤Î¾ì¹ç¤Ï¡¢Å¬Åö¤ÊÊÑ¿ôÊÑ´¹¤Ë¤è¤êĶ´ö²¿ÊýÄø¼°¤Î¥â¥Î¥É¥í¥ß¡¼Æ±·¿Â²¤Ë¤Ê¤ë¤³¤È¤òÊó¹ð¤¹¤ë¡£ |
11:50¡Á12:15
| ¸ÅŵÈùʬ´ö²¿¤Ë¤ª¤±¤ë²ÄÀÑʬ·Ï(ÈóÀþ·¿¥À¥é¥ó¥Ù¡¼¥ë¸ø¼°¤Î´ÑÅÀ¤«¤é) |
°æ¥Î¸ý ½ç°ì(Ê¡²¬Â硦Íý)
|
¥µ¥¤¥ó¡¦¥´¥ë¥É¥óÊýÄø¼°¤ÏÉéÄê¶ÊΨ¶ÊÌ̤ι½Â¤ÊýÄø¼°(Gauss-Codazzi)¤Ç¤¢¤ê¸µÁĥ٥寥ë¥ó¥ÉÊÑ´¹¤ÏÉéÄê¶ÊΨ¶ÊÌ̤ÎÊÑ´¹ÍýÏÀ¤Ç¤¢¤ë¡£¤³¤³£±£µÇ¯¤Î´Ö¤Ë¸µÁĥ٥寥ë¥ó¥ÉÊÑ´¹¤Ï´ö²¿³Ø¼Ô¤Î´Ø¿´¤ò¼æ¤¡Ö¸ÅŵÈùʬ´ö²¿³Ø¡×¤¬¸½Âå¤Î²ÄÀÑʬ·ÏÍýÏÀ¤Ë¤è¤êºÆ¤Ó¸¦µæ¤µ¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¡£¸½ºß¤Ç¤Ï¥µ¥¤¥ó¡¦¥´¥ë¥É¥óÊýÄø¼°¤Ê¤ß¤Ê¤é¤º¸ÍÅÄÊýÄø¼°¡¦¥Ñ¥ó¥ë¥ô¥§ÊýÄø¼°¤ò¹½Â¤ÊýÄø¼°¤Ë¤â¤Ä¶ÊÌ̤θ¦µæ¤¬À¹¤ó¤Ë¹Ô¤ï¤ì¤Æ¤¤¤ë¡£¤³¤Î¹Ö±é¤Ç¤Ï¸½ÂåÈùʬ´ö²¿¤Î´ÑÅÀ¤«¤é¥µ¥¤¥ó¡¦¥´¥ë¥É¥óÊýÄø¼°¤ËÂФ¹¤ë̵¸Â¼¡¸µ¥ê¡¼·²¤Ë¤è¤ë²òË¡ÍýÏÀ¤òƳÆþ¤·¤½¤ì¤¬ÈóÀþ·¿ÈǤΥÀ¥é¥ó¥Ù¡¼¥ë¸ø¼°¤ÈÍý²ò¤Ç¤¤ë¤³¤È¤òÀâÌÀ¤¹¤ë¡£ |
13:15¡Á14:10
| ²ÄÀÑʬ·Ï¤Î´ö²¿³ØŪÍýÏÀ |
¿ÀÉô ÊÙ»á(Îϳطϸ¦¸¦µæ½ê)
|
²ÄÀÑʬ·Ï¤Î´ö²¿³ØŪÍýÏÀ¤ò´ÊÌÀ¤Ë²òÀ⤹¤ë¤³¤È¤ò»î¤ß¤ë¡¥½¾Í衤Soliton Surface ¤ÎÍýÏÀ¤¬´ö²¿³ØŪÍýÏÀ¤È¤·¤Æ¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¡¥¤Þ¤º¤½¤ì¤ò review ¤·¤Æ¤«¤é¡¤ÊÑ´¹·²¡Ê¥ê¡¼·²¡ËÍýÏÀ¤Ë¤â¤È¤Å¤¯ÎϳطϤδö²¿³ØŪÍýÏÀ¤òÄ󼨤¹¤ë¡¥¤³¤ì¤Ï¥²¡¼¥¸ÍýÏÀ¤ò°ìÈ̤ÎÎϳطϤ˱þÍѤ·¤¿¤â¤Î¤È¹Í¤¨¤ë¤³¤È¤¬¤Ç¤¤ë¡¥Æäˡ¤KdV ÊýÄø¼°¤È±²Àþ¤Î Fukumoto-Miyazaki ÊýÄø¼°¤¬¡¤¤É¤Î¤è¤¦¤ÊÎà»÷¤Î¿ô³ØŪ¹½Â¤¤ÎÇطʤò¤â¤Ä¤«¤ò¼¨¤¹¡¥ÍýÏÀ¤Î¹ü³Ê¤ò¤Ê¤¹¤Î¤Ï¡¤·²¾å¤ÎÀܳ¡¤Â¬ÃÏÀþÊýÄø¼°¡¤Jacobi ÊýÄø¼°¡¤Gauss-Codazzi ÊýÄø¼°Åù¤Ç¡¤²ò¤Î¥Õ¥¡¥ß¥ê¡¼¤Î»þ´ÖȯŸ¤Ï¥ê¡¼¥Þ¥ó¶ÊΨ¡Ê̵¸Â¸Ä¡Ë¤ÇÆÃħ¤Å¤±¤é¤ì¤ë¡¥¡Ê¤³¤ÎÍýÏÀ¤ò¥«¥ª¥¹¤äÎ׳¦¸½¾Ý¤Ë±þÍѤ¹¤ë¸¦µæ¤â¤¢¤ë¡¥¡Ë |
14:10¡Á14:35
| ºÆµ¢ÊýÄø¼°¤È¤Ï |
»ÖÅÄ ÆÆɧ(ÁáÂ硦Íý¹©)
´äÈø ¾»±û(ÁáÂ硦Íý¹©)
¹â¶¶ ÂçÊå(ÁáÂ硦Íý¹©)
¹ÅÄ Îɸã(ÁáÂ硦Íý¹©)
|
Ǥ°Õ¤Î½é´üÃͤËÂФ·°ìÄê¼þ´ü¤ò»ý¤ÄÊýÄø¼°¤òºÆµ¢ÊýÄø¼°¤È¸Æ¤Ö¡¥ºÆµ¢ÅªÄ¶Î¥»¶ÊýÄø¼°¤ÈºÆµ¢Åªº¹Ê¬ÊýÄø¼°¤Î¼ÂÎã¤ò¾Ò²ð¤·¡¤¤½¤ì¤é¤ÎºÆµ¢À¤Î¸¡¾Ú¤äĶΥ»¶²½¤Ë¤è¤ë·ë¤Ó¤Ä¤¤Ê¤É¤Ë¤Ä¤¤¤Æ¾Ü¤·¤¯µÄÏÀ¤¹¤ë¡¥ |
14:55¡Á15:20
| ĶΥ»¶²½²Äǽ¤ÊºÆµ¢ÊýÄø¼°·Ï |
´äÈø ¾»±û(ÁáÂ硦Íý¹©)
¹ÅÄ Îɸã(ÁáÂ硦Íý¹©)
|
ºÇ¶áÎ¥»¶²ÄÀÑʬ·Ï¤È¤·¤Æǧ¼±¤µ¤ì¤Ä¤Ä¤¢¤ë¡ÖºÆµ¢Åªº¹Ê¬ÊýÄø¼°¡×¤Î¸¦µæ¤Ë´Ø¤·>¤ÆÊó¹ð¤¹¤ë¡£ËÜÊó¹ð¤Ç¤Ï¡¢ÁÐÀþ·Á·Á¼°¤ËÂФ·¤ÆĶΥ»¶²½²Äǽ¤Ç¤¢¤ë¤¿¤á¤Î¾ò·ï¤ò²¾ÄꤷºÆµ¢Åªº¹Ê¬ÊýÄø¼°¤ò¹½À®¤¹¤ëȯ¸«Åª¼êË¡¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡£ |
15:20¡Á15:45
| ºÆµ¢Åªº¹Ê¬ÊýÄø¼°,µ |
Ìðºî ½¨Ç·(ÁáÂ硦Íý¹©)
¹ÅÄ Îɸã(ÁáÂ硦Íý¹©)
|
²ÄÀÑʬÀ¤òȽÄꤹ¤ë¥Æ¥¹¥È¤È¤·¤ÆViallet¤é¤Ë¤è¤Ã¤ÆÄó½Ð¤µ¤ì¤Æ¤¤¤ë"algebraic entropy"¤òÍøÍѤ·¤¿ºÆµ¢Åªº¹Ê¬ÊýÄø¼°¡ÊǤ°Õ¤Î½é´üÃͤËÂФ·¤ÆÄê¼þ´üŪ¸½¾Ý¤¬È¯À¸¤¹¤ëº¹Ê¬ÊýÄø¼°¡Ë¤Î¹½À®Ë¡¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥ |
15:45¡Á16:10
| ºÆµ¢Åªº¹Ê¬ÊýÄø¼°,II |
¹ÅÄ Îɸã(ÁáÂ硦Íý¹©)
Ìðºî ½¨Ç·(ÁáÂ硦Íý¹©)
|
ºÆµ¢Åªº¹Ê¬ÊýÄø¼°¤Ï½½Ê¬¤Ê¿ô¤ÎÊݸÎ̤ò»ý¤Ã¤Æ¤¤¤ë¤Î¤Ç²ÄÀÑʬ·Ï¤Ç¤¢¤ë¡£ÊݸÎ̤ÎÀ¸À®Ë¡¤ÈºÆµ¢À¤¬¤É¤Î¤è¤¦¤Ê¥á¥«¥Ë¥º¥à¤ÇÀ¸À®¤µ¤ì¤ë¤«¤½¤Î¹½Â¤¤òÀâÌÀ¤¹¤ë¡¥ |