ÈóÀþ·ÁÇÈÆ°¤ÎÍýÏÀ¤È±þÍÑ

ÈóÀþ·ÁÇÈÆ°¤ÎÍýÏÀ¤È±þÍÑ

2001ǯ11·î14Æü¡¼16Æü¶å½£Âç³Ø±þÍÑÎϳظ¦µæ½ê

¾ì½ê¡§Ê¡²¬¸©½ÕÆü»Ô½ÕÆü¸ø±à£¶¡Ý£±¡¡¶å½£Âç³ØÃÞ»çÃ϶趦ÄÌ´ÉÍýÅ³¬Âç²ñµÄ¼¼
JR¼¯»ùÅçËÜÀþ¡ÖÂçÌî¾ë¡×±Ø¤Þ¤¿¤ÏÀ¾Å´Å·¿ÀÂç̶ÅÄÀþ¡ÖÇòÌÚ¸¶¡×±Ø²¼¼Ö
¸¦µæÂåɽ¼Ô¡§¹â¶¶ÂçÊå¡ÊÁá°ðÅÄÂ硦Íý¹©¡Ë

ÆÃÊֱ̹é
¿ÀÉô ÊÙ ¡ÊÎϳطϸ¦µæ½ê¡Ë ¡Ö²ÄÀÑʬ·Ï¤Î´ö²¿³ØŪÍýÏÀ¡×
¸æ¼êÀö ºÚÈþ»Ò ¡Ê¶å½£Âç³ØÂç³Ø±¡Íý³ØÉÜ¡Ë ¡Ö¼ÐÌ̾å¤ÎÊ´ÂÎή¤È¤½¤Î°ÂÄêÀ­¡×
¿¹ÅÄ Á±µ× ¡ÊζëÂç³ØÍý¹©³ØÉô¡Ë ¡Ö¥®¥ó¥Ä¥Ö¥ë¥°¡¦¥é¥ó¥À¥¦ÊýÄø¼°¤È¥Ñ¥¿¡¼¥ó·ÁÀ®¡¦¥À¥¤¥Ê¥ß¥¯¥¹¡×

¥×¥í¥°¥é¥à

11·î14Æü
13:00¡Á13:25 ¸òÄÌή¥»¥ë¥ª¡¼¥È¥Þ¥È¥ó¥â¥Ç¥ë¤Ë¤ª¤±¤ë Euler-Lagrange ÊÑ´¹
¾¾ÌÚÊ¿ ½ßÂÀ(ζëÂ硦Íý¹©) À¾À® ³è͵(ζëÂ硦Íý¹©)
Rule184 ¤Ê¤É¤Î¸òÄÌή¥»¥ë¥ª¡¼¥È¥Þ¥È¥ó¤Ë¤Ï¡¢Euler Ūɽ¸½¤È Lagrange Ūɽ¸½¤¬Â¸ºß¤¹¤ë¡£Ëֱܹé¤Ç¤Ïξ¼Ô¤ò·ë¤Ö Euler-Lagrange ÊÑ´¹¤Ë¤Ä¤¤¤Æ¡¢µÄÏÀ¤¹¤ë¡£
13:25¡Á13:50 ¿®¹æµ¡ÉÕ¤­ Burgers Cellular Automaton
¶¶µÍ ¿¿Èþ(ÁáÂ硦Íý¹©) »ÖÅÄ ÆÆɧ(ÁáÂ硦Íý¹©) ¹â¶¶ ÂçÊå(ÁáÂ硦Íý¹©)
BCA¤«¤é , Àþ·Á²½²Äǽ¤Ê·Á¤òÊݤä¿¤Þ¤Þ , ¿®¹æµ¡ÉÕ¤­¤Î¸òÄÌή¥â¥Ç¥ë¤¬½ÐÍè¤ë¤³¤È¤¬¤ï¤«¤Ã¤¿¡£¤³¤Î¿®¹æµ¡ÉÕ¤­BCA¤Ç , µ¬Â§Åª¤Ê¿®¹æµ¡¤ä¥é¥ó¥À¥à¤Ê¿®¹æµ¡¤òÀߤ±¤¿¾ì¹ç¤Î¸òÄÌή¤Î²òÀϤò¹Ô¤¦¡£
13:50¡Á14:15 ¼þ´üÎ¥»¶¸ÍÅÄÊýÄø¼°¤È¼þ´üÈ¢¶Ì·Ï
·¯Åè̯»Ò(ÅìÂ硦¿ôÍý) »þ¹°Å¯¼£(ÅìÂ硦¿ôÍý)
¼þ´üÎ¥»¶¸ÍÅÄÊýÄø¼°¤Î½é´üÃÍÌäÂê¤Î²òË¡¤È¡¢¤½¤Î¼þ´üÈ¢¶Ì·Ï¤Ø¤Î±þÍѤòÀâÌÀ¤¹¤ë¡£»þ´Ö¤¬µö¤»¤Ð¡¢È¢¤ÎÍÆÎ̤¬£±¡¢¶Ì¤Î¼ïÎब£±¼ïÎà¤Î¾ì¹ç¤Ë´ðËܼþ´ü¤òÍ¿¤¨¤ë¸ø¼°¤È¡¢Ç¤°Õ¤Î½é´üÃ;õÂÖ¤«¤é½ª¾õÂÖ¤ò¸·Ì©¤Ë·èÄê¤Ç¤­¤ë¤³¤È¤Î¾ÚÌÀ¡¢²Ä²ò³Ê»ÒÌÏ·¿¤È¤ÎÂбþ¤Ë¤Ä¤¤¤Æ¤âÀâÌÀ¤·¤¿¤¤¡£
14:15¡Á14:40 ·ë¹ç·¿£Ë£Ð³¬Áؤˤª¤±¤ë·ë¹ç¸ÍÅijʻҤȤ½¤Î´ÊÌó
Ralph Willox(ÅìÂ硦¿ôÍý)
·ë¹ç £Ë£Ð ¥Ò¥¨¥é¥ë¥­¡¼¤ËÉտ路¤Æ·ë¹ç¸ÍÅijʻҤι½À®¤¬²Äǽ¤Ç¤¢¤ë¤³¤È¤ò¼¨¤·¡¢¤½¤Î·ë¹ç³Ê»Ò¤Î´ÊÌó¤ò¼ÂÎã¤òµó¤²¤ÆÀâÌÀ¤¹¤ë¡£Æäˡ¢·ë¹ç sine-Gordon ·Ï ¤ä·ë¹ç Tzitzeica ·Ï¤È¤³¤ì¤é¤Î Pfaffian ·¿ tau È¡¿ô¤òµÄÏÀ¤¹¤ë¡£»þ´Ö¤Ë¤è¤Ã¤Æ¡¢¾å½Ò¤ÎÊýÄø¼°¤ÎÎ¥»¶²½¤Î¼ÂÎã¤â¸ÀµÚ¤¹¤ë¡£
15:00¡Á15:25 cKPÊýÄø¼°·Ï¤Î¤µ¤Þ¤¶¤Þ¤Ê²ò¤Ë¤Ä¤¤¤Æ
ã¦Åç ¿­(ÅìÂ硦¿ôÍý) Ralph Willox(ÅìÂ硦¿ôÍý) »§Ëà ½çµÈ(ÅìÂ硦¿ôÍý)
cKPÊýÄø¼°¤Î¥½¥ê¥È¥ó²ò¤Ï¡¢°ìÈ̤ˤ褯ÃΤé¤ì¤Æ¤¤¤ë¾¤Î¥½¥ê¥È¥ó²ò¤ÈÈæ¤Ù¤Æ¡¢Â¿¤¯¤Î¥Ñ¥é¥á¡¼¥¿¤ò»ý¤Ä¡£¤³¤ì¤ËÃíÌܤ·¤Æ¡¢cKPÊýÄø¼°¤ä¤½¤ì¤«¤éreduction¤ÇÆÀ¤é¤ì¤ëÊýÄø¼°¤Î¥½¥ê¥È¥ó²ò¤«¤éresonant²ò¤Ê¤É¤Î¤ª¤â¤·¤í¤¤¿¶¤ëÉñ¤¤¤ò¤¹¤ë²ò¤ò¼Â¸½¤·¡¢²òÀϤ¹¤ë¡£
15:25¡Á15:50 Relativistic Deformation of Integrable Lattice Systems and Discrete Soliton Equations
´ÝÌî ·ò°ì(¶åÂ硦±þÎϸ¦)
¶á¡¢Suris¤Ë¤è¤Ã¤ÆƳ½Ð¤µ¤ì¤¿Relativistic Lotka-Volterra Lattice¤ò¤Ï¤¸¤á¤È¤¹¤ëRelativistic Soliton Lattice¤ò¦ÓÈ¡¿ô¤Î´ÑÅÀ¤«¤éÄ´¤Ù¡¢Discrete Soliton Equation¤È¤Î´Ø·¸¤òÌÀ¤é¤«¤Ë¤·¡¢¦ÓÈ¡¿ô¤òÍѤ¤¤ÆSoliton Equation¤òRelativistic Deformation¤¹¤ëÊýË¡¤Ë¤Ä¤¤¤Æ¡¢¶ñÂÎÎã¤òÍѤ¤¤Æ¹Í»¡¤¹¤ë¡£
15:50¡Á16:30 Supersymmetric soliton equations
A. Ramani(Ecole Polytechnique) B. Grammaticos(Universit\'e Paris VII) A. S. Carstea(Institute of Physics and Nuclear Engineering)
Using the bilinear formalism we show how to construct the multi-soliton solutions of the supersymmetric (fermionic) extensions of integrable PDE's. From their similarity reductions we obtain supersymmetric Painleve equations.
16:50¡Á17:15 \widetilde{W}(A^{(1)}_1) ¡ß \widetilde{W}(A^{(1)}_3)¤ÎÁÐÍ­Íýɽ¸½¤ÈÎ¥»¶¥Ñ¥ó¥ë¥ô¥§ÊýÄø¼°
ÃÝÆì ÃÎÇ·(ÅìÂ硦¿ôÍý)
³á¸¶¤é¤Ë¤è¤Ã¤ÆÄ󾧤µ¤ì¤¿³ÈÂçWeyl·²\widetilde{W}(A^{(1)}_{m-1} ¡ß \widetilde{W}(A^{(1)}_{n-1})¤ÎÁÐÍ­Íýɽ¸½¤Ë¤Ä¤¤¤Æ¡¤ÆäËm=2,n=4¤Î¾ì¹ç¤Ë¡¤½é´üÃͶõ´Ö¤ÈÎ¥»¶Painlev\'eÊýÄø¼°¤È¤Î´Ø·¸¤òÄ´¤Ù¤ë¡¥
17:15¡Á17:40 q-Painlev\'e III ÊýÄø¼°: ÂоÎÀ­¡¦Æüì²ò¡¦°ìÈ̲½
³á¸¶ ·ò»Ê(¶åÂ硦¿ôÍý) Ì Àµ½Ó(¿À¸ÍÂ硦¼«Á³) »³ÅÄ ÂÙɧ(¿À¸ÍÂ硦¼«Á³)
$q$-Painlev\'e III ÊýÄø¼°¤È¸Æ¤Ð¤ì¤ëº¹Ê¬ÊýÄø¼°¤ÎÂоÎÀ­¤òµÄÏÀ¤·¡¤¤½¤ì¤¬ A_1^{(1)}¡ßA_1^{(1)}·¿¥¢¥Õ¥£¥ó¥ï¥¤¥ë·²¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤³¤È¤ò¼¨¤¹¡¥¤Þ¤¿¡¤Æüì²ò¤È¤·¤Æ¡¤£²¼ïÎà¤Î Riccati ²ò¤È Umemura¿¹à¼°·¿¤Î¿¹à¼°¤ÎÈæ¤Çɽ¤µ¤ì¤ëÍ­Íý²ò¤ò¹½À®¤¹¤ë¡¥¤µ¤é¤Ë¡¤ÂоÎÀ­¤Î´ÑÅÀ¤«¤é¤Î°ìÈ̲½¤È q-KP ³¬ÁؤȤδØÏ¢¤Ë¤Ä¤¤¤Æ¿¨¤ì¤ë¡¥
17:40¡Á18:05 q-Painlev\'e V ÊýÄø¼°¤ÎÍ­Íý²ò
ÁýÅÄ Å¯(¿À¸ÍÂ硦¼«Á³)
Painlev\'e V ÊýÄø¼°¤ÎÍ­Íý²ò¤Ï Laguerre ¿¹à¼°¤òÍ×ÁǤȤ¹¤ë¹ÔÎó¼°¤Çɽ¤µ¤ì¡¤¤½¤Î¹ÔÎó¼°É½¼¨¤Ï universal character ¤ÎÆü첽¤È¸«Ðö¤¹¤³¤È¤¬¤Ç¤­¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤q-Painlev\'e V ÊýÄø¼°¤ò¹Í»¡¤·¡¤¤½¤ÎÍ­Íý²ò¤¬ P_{\rm V} ¤ÈƱ¤¸¹½Â¤¤Î¹ÔÎó¼°¤Çɽ¤µ¤ì¤ë¤³¤È¤òÊó¹ð¤¹¤ë¡¥¹ÔÎó¼°¤ÎÍ×ÁÇ¤Ï continuous q-Laguerre ¿¹à¼°¤ÇÍ¿¤¨¤é¤ì¤ë¡¥
18:05¡Á18:30 ¥È¥í¥¤¥À¥ëÂоÎÀ­¤Ë´ð¤¯¥½¥ê¥È¥óÊýÄø¼°¤Î(2+1)¼¡¸µ²½
äª »°Ïº(Ω¶µÂ硦Íý) ÃÓÅÄ ³Ù(²¬»³Íý²ÊÂ硦Íý) ¹âºê ¶âµ×(µþÂ硦Áí¹ç¿Í´Ö)
KdVÊýÄø¼°Åù¤ÎÂåɽŪ¤Ê¥½¥ê¥È¥óÊýÄø¼°¤Ï(1+1)¼¡¸µ¤Î»þ¶õ¤Ç¤Î¤â¤Î¤Ç¤¢¤ë¡£¤³¤ì¤ò²ÄÀÑʬÀ­¤òÊݤÁ¤Ä¤Ä¹â¼¡¸µ¤Ë³ÈÄ¥¤¹¤ë»î¤ß¤Ï¤¤¤¯¤Ä¤«¤¢¤ë¤¬¡¤º£²ó¤Î¹Ö±é¤Ç¤Ï¥È¥í¥¤¥À¥ë¡¦¥ê¡¼Âå¿ô¤ÎÂоÎÀ­¤Ë´ð¤¯ÊýË¡¤ò¾Ò²ð¤·¡¤¤³¤ì¤Þ¤Ç¤ËÃΤé¤ì¤Æ¤¤¤ë·Ï¤È¤Î´Ø·¸¤òµÄÏÀ¤¹¤ë¡£

11·î15Æü
9:00¡Á9:15 Èó°ìÍÍÀ­¤ò¤â¤Ä¸÷¥Õ¥¡¥¤¥Ð¡¼Ãæ¤Î¥½¥ê¥È¥óÅÁÇÅ
µ×ÊÝÅÄ ÍÛÆó(¶åÂ硦Íý) ¾®ÅijÀ ¹§(¶åÂ硦Íý)
¸÷¥Õ¥¡¥¤¥Ð¡¼Ãæ¤Î¥½¥ê¥È¥ó¤Î±¿Æ°¤Ï¡¢ÈóÀþ·Á¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼¡ÊNLS¡ËÊýÄø¼°¤Çµ­½Ò¤µ¤ì¤ë¡£¥Õ¥¡¥¤¥Ð¡¼¤ÎÈó°ìÍÍÀ­¤ò¹Íθ¤ËÆþ¤ì¡¢·¸¿ô¤Ë¶õ´Ö°Í¸À­¤ò¤â¤ÄNLSÊýÄø¼°¤ò¿ôÃÍŪ¤Ë»þ´ÖȯŸ¤µ¤»¤¿¡£¤½¤Î·ë²Ì¡¢£±¥½¥ê¥È¥ó¤¬¡¢¹â¼¡¤Î¥½¥ê¥È¥ó¤ËÊѲ½¤¹¤ë¥Ñ¥é¥á¡¼¥¿¡¼Îΰ褬¤¢¤ë¤³¤È¤¬¤ï¤«¤Ã¤¿¡£
9:25¡Á9:50 Î¥»¶ÈóÀþ·Á¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Ë¤ª¤±¤ëÊÑÄ´ÉÔ°ÂÄê²ò¤ÎÁê¶õ´Ö¹½Â¤
¸åÆ£ ¿¶°ìϺ(̾Â硦Íý) Ìîºê °ìÍÎ(̾Â硦Íý) »³ÅÄ Íµ¹¯(̾Â硦Íý)
¹â¼«Í³Å٥ϥߥë¥È¥ó·Ï¤Î´ðËÜŪ¤ÊÁê¶õ´Ö¹½Â¤¤òÍý²ò¤òÌܻؤ¹¤¿¤á¡¢»þ¶õÎ¥»¶ d-NLS Eq.¤ò symplectic map ¤È¤·¤Æ¼è°·¤¤¡¢¤½¤ÎÁê¶õ´Ö¹½Â¤²òÀϤò¹Ô¤¦¡£Ëֱܹé¤Ç¤ÏÆäËÊÑÄ´ÉÔ°ÂÄêÀ­¤Ë¤è¤ëÁê¶õ´Ö¤ÎÉÔµ¬Â§²½¤Ë¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡£
9:50¡Á10:15 Èó¶É½êŪÈóÀþ·Á¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Î¿½Å¥½¥ê¥È¥ó²ò¤È¤½¤ÎÀ­¼Á
¾¾Ìî ¹¥²í(»³¸ýÂ硦¹©)
Í­¸Â¿¼¤µ¤ÎÀ®ÁØήÂÎÃæ¤òÅÁÇŤ¹¤ë½àñ¿§ÇȤÎÊÑÄ´¤ÏÈó¶É½êŪ¤ÊÈóÀþ·Á¹à¤ò¤â¤ÄÈóÀþ·Á¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Çµ­½Ò¤µ¤ì¤ë¡£Ëܸø±é¤Ç¤Ï¡¢¤³¤ÎÊýÄø¼°¤Î¿½Å¥½¥ê¥È¥ó²ò¤ÎľÀܾÚÌÀ¤ò¹ÔÎ󼰤θø¼°¤òÍѤ¤¤Æ¹Ô¤¦¡£¤µ¤é¤Ë¡¢²ò¤ÎÀ­¼Á¤Ë¤Ä¤¤¤ÆµÄÏÀ¤¹¤ë¡£
10:15¡Á10:40 Èùʬ·¿ÈóÀþ·Á¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Î³ÈÄ¥¤Ë¤Ä¤¤¤Æ
ÅÚÅÄ Î´Ç·(ÅìÂ硦¿ôÍý)
Èùʬ·¿ÈóÀþ·Á¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Ë´Ø¤·¤Æ¡¢Â¿À®Ê¬³ÈÄ¥¡¢²ÄÀÑʬÀ­¤òÊݤä¿Î¥»¶²½¡¢¹â³¬Èùʬ²½(ÈóÀþ·Á¹à¤ÎÈùʬ¤Î¹â³¬²½)¤Ë¤è¤ë³ÈÄ¥¡¢¤Ê¤É¤ò¹Í»¡¤¹¤ë¡£
11:00¡Á11:25 ¹â²¹Ä¶ÅÁƳÂΤǸ«¤é¤ì¤ë¥×¥é¥º¥ÞÈóÀþ·Á¶Éºß¸½¾Ý¡§ÈóÀþ·Á·ë¹ç¿¶Æ°»Ò¤Î¶Éºß¥â¡¼¥É
Ä®ÅÄ ¾»É§(ÆüËܸ¶»ÒÎϸ¦¡¦·×»»²Ê³Øµ»½Ñ¿ä¿Ê¥»¥ó¥¿¡¼) º´¡¹ À®Àµ(ÆüËܸ¶»ÒÎϸ¦¡¦·×»»²Ê³Øµ»½Ñ¿ä¿Ê¥»¥ó¥¿¡¼)
¹â²¹Ä¶ÅÁƳÂΤÎĶÅÁƳ°ÌÁê¤Î¥À¥¤¥Ê¥ß¥¯¥¹¤Ï¿ô³ØŪ¤Ë¤Ï°ì¼¡¸µÈóÀþ·Á·ë¹ç¿¶Æ°»Ò¥â¥Ç¥ë¤Çµ­½Ò¤µ¤ì¤ë¡£Ëֱܹé¤Ç¤Ï¡¢¤³¤Î¥â¥Ç¥ë¤Î¿ôÃÍ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó·ë²Ì¤òÍѤ¤¤ÆÈóÀþ·Á¶Éºß±¿Æ°¤¬¼¨¤¹ÍÍ¡¹¤Ê¦Ì̤ˤĤ¤¤Æ·ÏÅýŪ¤ËÊó¹ð¤·¤¿¤¤¡£¹Ö±é¤Ë¤è¤êÈóÀþ·Á¶Éºß±¿Æ°¤ËÂФ¹¤ëÍý²ò¤ò¿¼¤á¤ëµÄÏÀ¤¬¤Ç¤­¤ì¤Ð¹¬¤¤¤Ç¤¢¤ë¡£
11:25¡Á12:20 ¼ÐÌ̾å¤ÎÊ´ÂÎή¤È¤½¤Î°ÂÄêÀ­
¸æ¼êÀö ºÚÈþ»Ò(¶åÂ硦Íý) ÁáÀî ¾°ÃË(µþÂ硦Áí¹ç¿Í´Ö) ÃæÀ¾ ½¨(¶åÂ硦Íý)
µð»ëŪ¤ÊÂ礭¤µ¤ò»ý¤Äγ»Ò¤Î½¸¤Þ¤ê¤Ç¤¢¤ëÊ´ÂηϤÎήư¤Ï¡¤Ä¹Ç¯¸¦µæ¤µ¤ì¤Æ¤­¤¿¤¬¡¤¤¤¤Þ¤À¤Ë¤½¤ÎµóÆ°¤òµ­½Ò¤¹¤ëÏÈÁȤϳÎΩ¤µ¤ì¤Æ¤¤¤Ê¤¤¡¥Ëֱܹé¤Ç¤Ï¡¤Î³»Ò¤Î²óž¤Î¼«Í³ÅÙ¤ò¤È¤êÆþ¤ì¤¿Î®ÂÎ¥â¥Ç¥ë¤Ç¤¢¤ë¶ËÀ­Î®ÂÎ¥â¥Ç¥ë¤Ë¤è¤ëÊ´ÂÎή¤Îµ­½Ò¤Î»î¤ß¤ò¾Ò²ð¤¹¤ë¡¥
13:20¡Á13:45 ÏѶʶ­³¦Ì̲¼¤Ë¤ª¤±¤ë±²»å¤Î±¿Æ°¤Ë´Ø¤¹¤ë¼Â¸³
½®µ×ÊÝ Íª»Ò(²£É͹ñÂ硦¹©) ÅÏÊÕ ¿µ²ð(²£É͹ñÂ硦¹©)
±²»å¤Î±¿Æ°¤Ë´Ø¤¹¤ë¼Â¸³¤òÊó¹ð¤¹¤ë¡£¤³¤ì¤Þ¤ÇÊ¿¤é¤Ê¸ÇÂζ­³¦Ì̤òÍøÍѤ·¤Æ±²»å¤Î±¿Æ°¤òÀ©¸æ¤·¤Æ¤­¤¿¡£º£²ó¡¢Ê¿ÈĤǤʤ¯¡¢ÏѶʤ·¤¿¶­³¦Ì̤ËÀܤ·¤¿¤È¤­¤Î±²»å¤Î±¿Æ°¤Ë¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡£
13:45¡Á14:10 ²óž¤¹¤ë¥ë¡¼¥×¥½¥ê¥È¥ó
³ÑÈ« ¹À(ÉÙ»³Â硦¹©) º°Ìî ¸øÌÀ(ÆüÂ硦Íý¹©)
³°Éô¼§¾ì¤ÈÁê¸ßºîÍѤ¹¤ëÆâÉôÅÅή¤ò»ý¤Ä¥¹¥È¥ê¥ó¥°¤Ï£³¼¡¸µEuclid¶õ´Ö¾å¤Î¥ë¡¼¥×¥½¥ê¥È¥ó²ò¤ò»ý¤Ä¡£ÁÐÀþ·ÁÊýÄø¼°¤Ë¤è¤ê¡¤²óž¤¹¤ë¥½¥ê¥È¥ó²ò¤òƳ¤­¡¤2¥½¥ê¥È¥ó²ò¤ÎÁê¸ßºîÍѤˤĤ¤¤Æ½Ò¤Ù¤ë¡£
14:10¡Á14:35 ¥½¥ê¥È¥ó¤Î¼Ð¤áÁê¸ßºîÍѤˤĤ¤¤Æ
ÄÔ ±Ñ°ì(¶åÂ硦±þÎϸ¦) µÚÀî Àµ¹Ô(¶åÂ硦±þÎϸ¦)
Benjamin-Ono¥½¥ê¥È¥ó¤äMKdV¥½¥ê¥È¥ó¤ÎOblique Interaction¤Ë¤Ä¤¤¤Æ¿ôÃÍŪ¤ËÄ´¤Ù¤¿·ë²Ì¤òÊó¹ð¤¹¤ë¡¥
14:55¡Á15:50 ¥®¥ó¥Ä¥Ö¥ë¥°¡¦¥é¥ó¥À¥¦ÊýÄø¼°¤È¥Ñ¥¿¡¼¥ó·ÁÀ®¡¦¥À¥¤¥Ê¥ß¥¯¥¹
¿¹ÅÄ Á±µ×(ζëÂ硦Íý¹©)
¥®¥ó¥Ä¥Ö¥ë¥°¡¦¥é¥ó¥À¥¦ÊýÄø¼°¤ÏĶÅÁƳ¤Î¥Þ¥¯¥í¸½¾Ý¤òµ­½Ò¤¹¤ë¤¿¤á¡¤¥®¥ó¥Ä¥Ö¥ë¥°¤È¥é¥ó¥À¥¦¤Ë¤è¤Ã¤ÆÄó½Ð¤µ¤ì¤¿¥â¥Ç¥ë¤ËͳÍ褷¤Æ¤¤¤ë¡£ÊªÍý¤ÎÊýÌ̤ǤϰÊÁ°¤«¤é¤è¤¯¸¦µæ¤µ¤ì¤Æ¤¤¤¿¤¬¡¤¤³¤³10ǯ;¤ê¤Î´Ö¤Ë¿ô³Ø¦¤«¤é¤â³èȯ¤Ë¸¦µæ¤¬¤ª¤³¤Ê¤ï¤ìÂ礭¤¯¿ÊŸ¤·¤¿¡£¤³¤Î¹Ö±é¤Ç¤Ï¡¤¥Ñ¥¿¡¼¥ó·ÁÀ®¤Î´ÑÅÀ¤«¤é¤³¤ÎÊýÄø¼°¤Î²ò¤Î°ÂÄêÀ­¤ÈÎΰè¤Î°ÌÁê¤ä´ö²¿³ØŪ·Á¾õ¤È¤Î´ØÏ¢¡¤¤ª¤è¤Ó2¼¡¸µÎΰè¤Ç¤Î²ò¤ÎÎíÅÀ¡Ê¥ô¥©¥ë¥Æ¥¯¥¹¤È¸Æ¤Ð¤ì¤ë¡Ë¤Î¥À¥¤¥Ê¥ß¥¯¥¹¤Ë¤Ä¤¤¤Æ¡¤¤³¤ì¤Þ¤Ç¤Î¿ô³ØŪ¤ÊÀ®²Ì¤ò²òÀ⤹¤ë¡£
15:50¡Á16:15 ¶½Ê³À­È¿±þ³È»¶ÊýÄø¼°¤Ë¤ª¤±¤ë¥Ñ¥ë¥¹¤ÎʬÎöÍýÏÀ
ÁáÀ¥ ͧÈþǵ(¶åÂ硦Íý) ÂÀÅÄ Î´É×(¹­Â硦Íý)
¶½Ê³À­¤ò¼¨¤¹È¿±þ³È»¶·Ï¤Ë¤ª¤¤¤Æ¥Ñ¥ë¥¹¤ÎʬÎö¸½¾Ý¤¬¡¤·×»»µ¡¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤Ë¤Æ¿ô¿¤¯Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡¥Ëֱܹé¤Ç¤Ï¡¤Ã±°ÂÄê·Ï¤ÎÈ¿±þ³È»¶ÊýÄø¼°¤ò²òÀϤ·¡¤¥Ñ¥ë¥¹¤ÎʬÎö¤Þ¤Ç¤ò´Þ¤á¤¿³¦ÌÌÊýÄø¼°¤ò¹½À®¤¹¤ë¡¥
16:15¡Á16:40 ¿Ê¹Ô¥Ñ¥¿¡¼¥ó¤ÎÊÑÄ´¤òµ­½Ò¤¹¤ë³È»¶¼åÉÔ°ÂÄê¤Ê°ÌÁêÊýÄø¼°
ÁýÉÚ Í´»Ê(̾Â硦Íý) Ìîºê °ìÍÎ(̾Â硦Íý)
¥Ñ¥¿¡¼¥ó¤ÎÊÑÄ´¤Ï°ÌÁê¾ì¤ÎȯŸÊýÄø¼°(°ÌÁêÊýÄø¼°)¤Çµ­½Ò¤µ¤ì¤ë¡£¤½¤ÎÊýÄø¼°¤¬³È»¶¼åÉÔ°ÂÄê¤Ê¾ì¹ç¡¢¸½ºß¤Þ¤Ç¡¢·Ï¤òÀþ·Á°ÂÄê²½¤µ¤¹¹à¤òÊýÄø¼°¤Ë²Ã¤¨¤ë¤³¤È¤Ë¤è¤Ã¤Æ¤½¤ÎÉÔ°ÂÄêÀ­¤òÍÞ¤¨¤Æ¤­¤¿¡£º£²ó¡¢¤³¤ÎÍͤÊÀþ·Á°ÂÄê¤Ê¹à¤¬¤Ê¤¯¤Æ¤â¤¤¤¯¤Ä¤«¤ÎÈóÀþ·Á¹à¤Ç¤³¤ÎÉÔ°ÂÄêÀ­¤òÍÞ¤¨¤ë¤³¤È¤¬¤Ç¤­¤ë¤³¤È¼¨¤¹¡£
17:00¡Á17:25 Î¥»¶¥ß¥Ã¥¿¡¼¥¯¥ì¥Õ¥é¡¼´Ø¿ô
±Ê°æ ÆØ(ºåÂ硦´ðÁù©)
ήÂÎÃæ¤Îµå·Áγ»Ò¤Î±¿Æ°¤òµ­½Ò¤¹¤ë¥Á¥§¥óÊýÄø¼°¤ÏÈóÀ°¿ô³¬Èùʬ¤ò´Þ¤ß²òÀϺ¤Æñ¤Ç¤¢¤Ã¤¿¤¬¡¤µµ¹â¤Ë¤è¤ê²ò¤¬¥ß¥Ã¥¿¡¼¥¯¥ì¥Õ¥é¡¼´Ø¿ô¤òÍѤ¤¤Æ¹½À®¤µ¤ì¤¿¡¥Ëֱܹé¤Ç¤Ï¥ß¥Ã¥¿¡¼¥¯¥ì¥Õ¥é¡¼´Ø¿ô¤òº¹Ê¬²½¤·¡¤¥Á¥§¥óÊýÄø¼°¤Î¿ôÃÍ·×»»¤Ø¤Î±þÍѤˤĤ¤¤Æ¤â½Ò¤Ù¤ë¡¥
17:25¡Á17:50 ²ÄÀÑʬÆðÛÃÍ·×»»Ë¡¤Î¹â®²½¤È¤½¤Î¿ôÃÍ°ÂÄêÀ­
´äºê ²í»Ë(ºåÂ硦´ðÁù©) Ãæ¼ ²ÂÀµ(µþÂ硦¾ðÊó) ÄÔËÜ Í¡(µþÂ硦¾ðÊó)
²æ¡¹¤ÏÎ¥»¶¥í¥È¥«¡¦¥Ü¥ë¥Æ¥é·Ï¤Ë¤è¤ë²ÄÀÑʬÆðÛÃÍ·×»»Ë¡¤ò´û¤ËÄó°Æ¤·¤¿.Ëֱܹé¤Ç¤Ï, ¤³¤Î¥¢¥ë¥´¥ê¥º¥à¤Ë¸¶ÅÀ°ÜÆ°¤òƳÆþ¤¹¤ë¤³¤È¤Ç¤µ¤é¤Ê¤ë¹â®²½¤ò¹Ô¤¦.¤Þ¤¿, ¿ôÃÍ°ÂÄê¤È¤Ê¤ë¸¶ÅÀ°ÜÆ°Î̤ÎÀßÄêÊýË¡¤Ë¤Ä¤¤¤Æ¤â¼¨¤¹.
17:50¡Á18:15 Î¥»¶»þ´Ö¥½¥ê¥È¥óÊýÄø¼°¤Î¤¢¤ëÀ­¼Á¤Ë¤Ä¤¤¤Æ
»³ËÜ ½ã°ì(ÅÔΩÂ硦Íý) ã·Æ£ ¶Ç(ÅÔΩÂ硦Íý) ã·Æ£³×»Ò(²£É͹ñÂ硦¹©) µÈÅÄ ¾¡É§(ËÌΤÂ硦°ìÈ̶µ°é)
Í­Íý´Ø¿ô·¿¼ÌÁü¤òƳ¤¯Î¥»¶»þ´Ö¥½¥ê¥È¥óÊýÄø¼°¤Ë¤Ä¤¤¤Æ¡¢¤½¤ì¤é¤¬»ý¤ÄÀ­¼Á¤Ë¤Ä¤¤¤ÆµÄÏÀ¤¹¤ë¡¥
18:15¡Á18:40 Î¥»¶¼ÌÁü¤Ëȼ¤¦ Hamiltonian flow ¤Ë¤Ä¤¤¤Æ
µÈÅÄ ¾¡É§(ËÌΤÂ硦°ìÈ̶µ°é) »³ËÜ ½ã°ì(ÅÔΩÂ硦Íý) ¼óÆ£ ·¼(ÅÔΩÂ硦Íý) ã·Æ£ ¶Ç(ÅÔΩÂ硦Íý)
ÆÃÄê¤ÎÎ¥»¶¼ÌÁü¤Î·«¤êÊÖ¤·¤ò¹Í¤¨¤¿»þ¡¤¤½¤Î¼ÌÁü¤Î½é´üÃͤ¬»þ´Ö¤ÎÌò³ä¤ò²Ì¤¿¤¹¤è¤¦¤Ê Hamiltonian flow ¤¬Â¸ºß¤¹¤ë¤³¤È¤ò¼¨¤¹¡¥Îã¤È¤·¤Æ¡¤²ÄÀÑʬ¤Ê¼ÌÁü¤Ç¤¢¤ëÎ¥»¶ KdV ¼ÌÁü¤ÈÈó²ÄÀÑʬ¤Ê¼ÌÁü¤Ç¤¢¤ë¥¨¥Î¥ó¼ÌÁü¤Ë¤Ä¤¤¤Æ¤½¤ì¤¾¤ì¼¨¤·¡¤¤µ¤é¤Ë¡¤qº¹Ê¬¥Ñ¥ó¥ë¥ÙIV¼ÌÁü¤Ë¤Ä¤¤¤Æ¤â¹Í»¡¤¹¤ë¡¥

11·î16Æü
9:00¡Á9:25 Lie symmetry¤Ë¤è¤ë¶­³¦ÃÍÌäÂê¤Î¸·Ì©²ò¤Î¹½À®
¼ÅÄ ½¡°ì(̾Â硦Íý) Ìîºê°ìÍÎ(̾Â硦Íý)
D.V.Shirkov¤é¤Î¡¢functinal self-similarity¤ò»È¤¨¤ÐÍ¿¤¨¤é¤ì¤¿¶­³¦¾ò·ï¤Î¤ß¤¿¤¹¡¢²ò¤ò¹½À®¤Ç¤­¡¢Lie symmetry¤«¤é¶­³¦ÃÍÌäÂê¤ò²ò¤¯¤³¤È¤¬¤Ç¤­¤ë¡£¤³¤³¤Ç¤Ï¡¢wave beam ¤Îself-focusing¤ÎÌäÂê¤Ë¤Ä¤¤¤Æ¡¢¤½¤ÎÎã¤ò¤¢¤²¤ë¡£
9:25¡Á9:50 ɸ½à·ÁÍýÏÀ¤Ë¤è¤ëÀÝÆ°KdVÊýÄø¼°¤Î²òÀÏ
Ê¿²¬ ͵¾Ï(ºåÂ硦´ðÁù©) »ù¶Ì ͵¼£(¥ª¥Ï¥¤¥ª½£Î©Â硦¿ô)
ɸ½à·ÁÍýÏÀ¤ÏÄþ¸ºÀÝÆ°Ë¡¤Ê¤É¤Ë¤è¤Ã¤ÆÆÀ¤é¤ì¤ë²ÄÀÑʬÊýÄø¼°¤ËÀÝÆ°¹à¤¬²Ã¤ï¤Ã¤¿·Ï¤ò²òÀϤ¹¤ë°Ù¤ËƳÆþ¤µ¤ì¤¿¡¥¹Ö±é¤Ç¤ÏÎã¤òÍѤ¤¤Æɸ½à·ÁÍýÏÀ¤ò²òÀ⤹¤ë¡¥¤Þ¤¿¡¤º´Æ£ÍýÏÀ¤òÍѤ¤¤Æ¥ê¡¼ÊÑ´¹¤È¥¬¡¼¥É¥Ê¡¼ÊÑ´¹¤Î´Ø·¸¤òÌÀ¤é¤«¤Ë¤·¥ê¡¼ÊÑ´¹¤ÎÀ­¼Á¤ò¹Í»¡¤¹¤ë¡¥
9:50¡Á10:15 Localized excitations as one of the sources of finite lattice thermal conductivity
ÉðÌî Àµ»°(Âçºå¹©Â硦¾ðÊó²Ê³Ø)
1¼¡¸µ³Ê»Ò¤Ë¤ª¤±¤ëlattice thermal conductivity¤ÎÌäÂê¤Ï¤½¤Î¾ì¹ç Fourier law ¤¬À®¤êΩ¤Ä¤«Èݤ«¡¢Ç®ÅÁƳÅÙ¤ÏÍ­¸Â¤«Èݤ«Åù¤ÎÌäÂêÅù¤Ë´ØÏ¢¤·¤Æ³Ê»ÒÎϳؤΤߤʤ餺¡¢Åý·×ʪÍý³Ø¤Î¤Ê¤«¤Ç¤â´°Á´¤Ë²ò·è¤µ¤ì¤Æ¤¤¤Ê¤¤ºÇ¤â´ðÁÃŪ¤ÊÌäÂê¤Î°ì¤Ä¤Ç¤¢¤ë¡£³Ê»Ò·Ï¤ÎÈó²ÄÀÑʬÀ­¤ÏÍ­¸Â¤ÎÇ®ÅÁƳ¤òɬ¤º¤·¤âÍ¿¤¨¤Ê¤¤¡£Ëֱܹé¤Ë¤ª¤¤¤Æ¤Ï¡¢ÈóÀþ·Á³Ê»Ò¤Ë¤ª¤±¤ë¶Éºß¥â¡¼¥É¡¢ÆäËÈóÀþ·Á²óž¥â¡¼¥É¤¬Í­¸Â¤ÎÇ®ÅÁƳ¤òÍ¿¤¨¤ë¤È¤¤¤¦¤³¤È¤ò¼¨¤¹¡Ê¿ôÃÍ·×»»¤Î·ë²Ì¡Ë
10:15¡Á10:40 ¥Ï¥ß¥ë¥È¥ó·Ï¤ÎÁ´ÊݸÎ̤òÊݤĺ¹Ê¬²½
Ê÷ºê À¬Î´(ºåÂ硦´ðÁù©)
¥Ï¥ß¥ë¥È¥ó·Ï¤ËŬÍѤµ¤ì¤ëº¹Ê¬Ë¡¤È¤·¤Æ¡¢¥·¥ó¥×¥ì¥¯¥Æ¥£¥Ã¥¯¿ôÃÍ·×»»Ë¡¡¢GHI ¥¹¥­¡¼¥à ( ¥¨¥Í¥ë¥®¡¼¤òÊݸ¤¹¤ë¥¹¥­¡¼¥à )¡¢ÊÑʬ¸¶Íý¤ò¸µ¤Ë¤·¤¿º¹Ê¬²½Åù¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¤·¤«¤·¡¢¤³¤ì¤é¤Î·×»»Ë¡¤Ç¤Ï°ìÈ̤ËÁ´¤Æ¤Î·Ï¤ÎÊݸÎ̤òÊݤ¿¤Ê¤¤¡£ËÜȯɽ¤Ç¤Ï Kepler ÊýÄø¼°¤ÎÁ´¤Æ¤ÎÊݸÎ̤òÊݤĺ¹Ê¬Ë¡¤ò¹½À®¤·¡¢¤³¤Îº¹Ê¬Ë¡¤ÎÀ­¼Á¤ò½Ò¤Ù¤ë¡£¤µ¤é¤Ë¡¢¤³¤Îº¹Ê¬Ë¡¤Î¹½À®Ë¡¤Ë¤Ä¤¤¤Æ¤â´Êñ¤Ë½Ò¤Ù¤ë¡£
11:00¡Á11:25 ·Á¼°Åª¤Ë´°Á´²ÄÀÑʬ¤Ê£´³¬Ï¢Î©È¯Å¸ÊýÄø¼°¤Î¿ô¤¨¾å¤²
ÅÏî´ Ë§±Ñ(Ʊ»Ö¼ÒÂ硦¹©) °ËÆ£ ²íÌÀ(¹­Â硦¹©)
£´³¬¤ÎϢΩȯŸÊýÄø¼°¤Ç¤¢¤Ã¤Æ Sokolov-Shabat ¤Î°ÕÌ£¤Ç·Á¼°Åª¤Ë´°Á´²ÄÀÑʬ¤Ê¤â¤Î¤ò¿ô¼°½èÍý¥·¥¹¥Æ¥à REDUCE ¤òÍѤ¤¤Æ¿ô¤¨¾å¤²¤ë¡¥¤½¤Î·×»»¤ÎÁ´ÂΤϤ«¤Ê¤êËÄÂç¤Ê¤â¤Î¤Ë¤Ê¤ê̤´°À®¤Ç¤¢¤ë¡¥º£²ó¤ÏÆÃÊ̤ʥ¯¥é¥¹¤Ë¸Â¤Ã¤Æ¡¤·×»»¤ÎÅÓÃæ·Ð²á¤ò¤ªÏä·¤¿¤¤¡¥
11:25¡Á11:50 Darboux-Lam\'eÊýÄø¼°¤È¥â¥Î¥É¥í¥ß¡¼ÊݸÊÑ·Á
ÂçµÜ ¿¿µÝ(Ʊ»Ö¼ÒÂ硦¹©) ±ºµ×ÊÝ ÀµÈþ(Âçºå»º¶ÈÂ硦¶µÍÜ)
n¼¡Lam\'eÊýÄø¼°¤¬¡¢¤¢¤ë¼ï¤ÎÂಽ¾ò·ï¤òËþ¤¿¤¹¤È¤­¡¢DarbouxÊÑ´¹¤òÍѤ¤¤Æ¹½À®¤µ¤ì¤ëÂå¿ô´ö²¿ÅªÂʱߥݥƥ󥷥ã¥ë¤ò·¸¿ô¤Ë»ý¤Ä¥È¡¼¥é¥¹¾å¤ÎÀþ·Á¾ïÈùʬÊýÄø¼°¤Î£±¥Ñ¥é¥á¡¼¥¿Â²¤¬¡¢n=2¤Î¾ì¹ç¤Ï¡¢Å¬Åö¤ÊÊÑ¿ôÊÑ´¹¤Ë¤è¤êĶ´ö²¿ÊýÄø¼°¤Î¥â¥Î¥É¥í¥ß¡¼Æ±·¿Â²¤Ë¤Ê¤ë¤³¤È¤òÊó¹ð¤¹¤ë¡£
11:50¡Á12:15 ¸ÅŵÈùʬ´ö²¿¤Ë¤ª¤±¤ë²ÄÀÑʬ·Ï(ÈóÀþ·¿¥À¥é¥ó¥Ù¡¼¥ë¸ø¼°¤Î´ÑÅÀ¤«¤é)
°æ¥Î¸ý ½ç°ì(Ê¡²¬Â硦Íý)
¥µ¥¤¥ó¡¦¥´¥ë¥É¥óÊýÄø¼°¤ÏÉéÄê¶ÊΨ¶ÊÌ̤ι½Â¤ÊýÄø¼°(Gauss-Codazzi)¤Ç¤¢¤ê¸µÁĥ٥寥ë¥ó¥ÉÊÑ´¹¤ÏÉéÄê¶ÊΨ¶ÊÌ̤ÎÊÑ´¹ÍýÏÀ¤Ç¤¢¤ë¡£¤³¤³£±£µÇ¯¤Î´Ö¤Ë¸µÁĥ٥寥ë¥ó¥ÉÊÑ´¹¤Ï´ö²¿³Ø¼Ô¤Î´Ø¿´¤ò¼æ¤­¡Ö¸ÅŵÈùʬ´ö²¿³Ø¡×¤¬¸½Âå¤Î²ÄÀÑʬ·ÏÍýÏÀ¤Ë¤è¤êºÆ¤Ó¸¦µæ¤µ¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¡£¸½ºß¤Ç¤Ï¥µ¥¤¥ó¡¦¥´¥ë¥É¥óÊýÄø¼°¤Ê¤ß¤Ê¤é¤º¸ÍÅÄÊýÄø¼°¡¦¥Ñ¥ó¥ë¥ô¥§ÊýÄø¼°¤ò¹½Â¤ÊýÄø¼°¤Ë¤â¤Ä¶ÊÌ̤θ¦µæ¤¬À¹¤ó¤Ë¹Ô¤ï¤ì¤Æ¤¤¤ë¡£¤³¤Î¹Ö±é¤Ç¤Ï¸½ÂåÈùʬ´ö²¿¤Î´ÑÅÀ¤«¤é¥µ¥¤¥ó¡¦¥´¥ë¥É¥óÊýÄø¼°¤ËÂФ¹¤ë̵¸Â¼¡¸µ¥ê¡¼·²¤Ë¤è¤ë²òË¡ÍýÏÀ¤òƳÆþ¤·¤½¤ì¤¬ÈóÀþ·¿ÈǤΥÀ¥é¥ó¥Ù¡¼¥ë¸ø¼°¤ÈÍý²ò¤Ç¤­¤ë¤³¤È¤òÀâÌÀ¤¹¤ë¡£
13:15¡Á14:10 ²ÄÀÑʬ·Ï¤Î´ö²¿³ØŪÍýÏÀ
¿ÀÉô ÊÙ»á(Îϳطϸ¦¸¦µæ½ê)
²ÄÀÑʬ·Ï¤Î´ö²¿³ØŪÍýÏÀ¤ò´ÊÌÀ¤Ë²òÀ⤹¤ë¤³¤È¤ò»î¤ß¤ë¡¥½¾Í衤Soliton Surface ¤ÎÍýÏÀ¤¬´ö²¿³ØŪÍýÏÀ¤È¤·¤Æ¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¡¥¤Þ¤º¤½¤ì¤ò review ¤·¤Æ¤«¤é¡¤ÊÑ´¹·²¡Ê¥ê¡¼·²¡ËÍýÏÀ¤Ë¤â¤È¤Å¤¯ÎϳطϤδö²¿³ØŪÍýÏÀ¤òÄ󼨤¹¤ë¡¥¤³¤ì¤Ï¥²¡¼¥¸ÍýÏÀ¤ò°ìÈ̤ÎÎϳطϤ˱þÍѤ·¤¿¤â¤Î¤È¹Í¤¨¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥Æäˡ¤KdV ÊýÄø¼°¤È±²Àþ¤Î Fukumoto-Miyazaki ÊýÄø¼°¤¬¡¤¤É¤Î¤è¤¦¤ÊÎà»÷¤Î¿ô³ØŪ¹½Â¤¤ÎÇطʤò¤â¤Ä¤«¤ò¼¨¤¹¡¥ÍýÏÀ¤Î¹ü³Ê¤ò¤Ê¤¹¤Î¤Ï¡¤·²¾å¤ÎÀܳ¡¤Â¬ÃÏÀþÊýÄø¼°¡¤Jacobi ÊýÄø¼°¡¤Gauss-Codazzi ÊýÄø¼°Åù¤Ç¡¤²ò¤Î¥Õ¥¡¥ß¥ê¡¼¤Î»þ´ÖȯŸ¤Ï¥ê¡¼¥Þ¥ó¶ÊΨ¡Ê̵¸Â¸Ä¡Ë¤ÇÆÃħ¤Å¤±¤é¤ì¤ë¡¥¡Ê¤³¤ÎÍýÏÀ¤ò¥«¥ª¥¹¤äÎ׳¦¸½¾Ý¤Ë±þÍѤ¹¤ë¸¦µæ¤â¤¢¤ë¡¥¡Ë
14:10¡Á14:35 ºÆµ¢ÊýÄø¼°¤È¤Ï
»ÖÅÄ ÆÆɧ(ÁáÂ硦Íý¹©) ´äÈø ¾»±û(ÁáÂ硦Íý¹©) ¹â¶¶ ÂçÊå(ÁáÂ硦Íý¹©) ¹­ÅÄ Îɸã(ÁáÂ硦Íý¹©)
Ǥ°Õ¤Î½é´üÃͤËÂФ·°ìÄê¼þ´ü¤ò»ý¤ÄÊýÄø¼°¤òºÆµ¢ÊýÄø¼°¤È¸Æ¤Ö¡¥ºÆµ¢ÅªÄ¶Î¥»¶ÊýÄø¼°¤ÈºÆµ¢Åªº¹Ê¬ÊýÄø¼°¤Î¼ÂÎã¤ò¾Ò²ð¤·¡¤¤½¤ì¤é¤ÎºÆµ¢À­¤Î¸¡¾Ú¤äĶΥ»¶²½¤Ë¤è¤ë·ë¤Ó¤Ä¤­¤Ê¤É¤Ë¤Ä¤¤¤Æ¾Ü¤·¤¯µÄÏÀ¤¹¤ë¡¥
14:55¡Á15:20 ĶΥ»¶²½²Äǽ¤ÊºÆµ¢ÊýÄø¼°·Ï
´äÈø ¾»±û(ÁáÂ硦Íý¹©) ¹­ÅÄ Îɸã(ÁáÂ硦Íý¹©)
ºÇ¶áÎ¥»¶²ÄÀÑʬ·Ï¤È¤·¤Æǧ¼±¤µ¤ì¤Ä¤Ä¤¢¤ë¡ÖºÆµ¢Åªº¹Ê¬ÊýÄø¼°¡×¤Î¸¦µæ¤Ë´Ø¤·>¤ÆÊó¹ð¤¹¤ë¡£ËÜÊó¹ð¤Ç¤Ï¡¢ÁÐÀþ·Á·Á¼°¤ËÂФ·¤ÆĶΥ»¶²½²Äǽ¤Ç¤¢¤ë¤¿¤á¤Î¾ò·ï¤ò²¾ÄꤷºÆµ¢Åªº¹Ê¬ÊýÄø¼°¤ò¹½À®¤¹¤ëȯ¸«Åª¼êË¡¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡£
15:20¡Á15:45 ºÆµ¢Åªº¹Ê¬ÊýÄø¼°,­µ
Ìðºî ½¨Ç·(ÁáÂ硦Íý¹©) ¹­ÅÄ Îɸã(ÁáÂ硦Íý¹©)
²ÄÀÑʬÀ­¤òȽÄꤹ¤ë¥Æ¥¹¥È¤È¤·¤ÆViallet¤é¤Ë¤è¤Ã¤ÆÄó½Ð¤µ¤ì¤Æ¤¤¤ë"algebraic entropy"¤òÍøÍѤ·¤¿ºÆµ¢Åªº¹Ê¬ÊýÄø¼°¡ÊǤ°Õ¤Î½é´üÃͤËÂФ·¤ÆÄê¼þ´üŪ¸½¾Ý¤¬È¯À¸¤¹¤ëº¹Ê¬ÊýÄø¼°¡Ë¤Î¹½À®Ë¡¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥
15:45¡Á16:10 ºÆµ¢Åªº¹Ê¬ÊýÄø¼°,II
¹­ÅÄ Îɸã(ÁáÂ硦Íý¹©) Ìðºî ½¨Ç·(ÁáÂ硦Íý¹©)
ºÆµ¢Åªº¹Ê¬ÊýÄø¼°¤Ï½½Ê¬¤Ê¿ô¤ÎÊݸÎ̤ò»ý¤Ã¤Æ¤¤¤ë¤Î¤Ç²ÄÀÑʬ·Ï¤Ç¤¢¤ë¡£ÊݸÎ̤ÎÀ¸À®Ë¡¤ÈºÆµ¢À­¤¬¤É¤Î¤è¤¦¤Ê¥á¥«¥Ë¥º¥à¤ÇÀ¸À®¤µ¤ì¤ë¤«¤½¤Î¹½Â¤¤òÀâÌÀ¤¹¤ë¡¥