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For the sake of simplicity, we represent a Fuchsian system of the form
dY A A
dx T — 11 x — tp

as A= (Aq,...,Ap).

number of accessory parameters N:

N:=2+4 (p—1)m? - zpj dim Z(Ay) (Ao = — zpj A,,) .
r=0

Z(Ay): centralizer of A,. For example,

A1l
M = Ao, = dim Z(M) = (11)% + (12)? + (I3)?.
A3y,



Example. p =2, m = 2 (Gauss’' hypergeometric equation)
N=24+2-1)x22-%2_(1°+12)=244-6=0

. rigid (< accessory parameter free)

Example. p=3, m =2

N=24+@B-1)x22-y3_,(1°4+1%)=2+8-8=2.



We can regard rigid Fuchsian systems as generalizations of the Gauss
hypergeometric equation.

How do we get all rigid Fuchsian systems?

+—— Katz theory and Yokoyama theory.



Katz theory

Katz introduced the operations, called addition and middle convolu-
tion, and he showed the theorem:

Theorem (Katz) . Every irreducible rigid Fuchsian system is ob-
tained from rank 1 Fuchsian system by a finite iteration of the two
operations.

We explain here the Katz's operations which are reformulated by
Dettweiler and Reiter in terms of linear algebra.
Definition (addition) . For a = (a1,...,ap) € CP, an operation

is called addition.



Fix A € C.

We put a pm X pm matrix G, as follows:

(Om Om )
\Om Om)
Definition (convolution) . The system (Gy,...,Gyp) is called convo-

lution with A of A. We denote this system by ¢, (A).



Let IC, L, be the linear subspaces of CP™:

Ker(Al)
IC = a :
Ker(Ap)
Ly :=Ker(Gy+ -+ Gp).
IC,Ly are Gq,...,Gp-invariant subspaces.

Let G, be an endomorphism of CP™ /(K + L)) induced by Gy.
Definition (middle convolution) . We call the system (G1,...,Gp)
middle convolution with A of A and denote by mc)(A).



Correspondence of solutions

Let Y be a solution of A= (Aq,...,A4p).

addition

convolution

Y(z)
r—1q
Put F(x) := : |. Then
Y(z)
r—tp

/(x — ) F(t)dt: solution of ¢x(A) = (G, ...,Gp).
Y



Yokoyama theory

Yokoyama introduced the operations, called extension and restriction
for Okubo systems, and he showed the theorem:

Theorem (YYokoyama) . Every irreducible rigid semisimple Okubo
system is obtained from rank 1 Okubo system by a finite iteration of
the two operations.

Here Okubo system means a system of linear differential equations of
the form:
dv

(xlp —T)— = AWV.
dz

T is an n X n constant diagonal matrix, A is an n X n constant matrix.
9



Yokoyama theory is a theory for Okubo systems.

On the other hand, Katz's middle convolution is closely related to
transform a given equation into Okubo system. Thus the Okubo
system also plays an important role in Katz theory.

Then, it is natural to focus on the Okubo systems when we want
to generalize the theory by Katz and Yokoyama to deal with non-
Fuchsian systems.

Recently, Oshima gave a concrete relation between Katz’'s middle
convolution and Yokoyama's extension and showed the equivalence of
both algorithms.

In what follows, we mainly consider a generalization of the middle
convolution.
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Generalized Okubo system

A system of linear differential equations of the form
dw

(¢hn = T)—— = AV (1)

is called an Okubo system.

T : n xn constant diagonal matrix, A : n X n constant matrix.

When T is of the form

(1) has regular singularities at x = t1,...,tp and =z = oo.
11



When the matrix T is not semisimple, the system (1) may have irreg-
ular singularities.

In the case when T is a Jordan matrix, non-semisimple, call (1) gen-
eralized Okubo system.

Example. T = (8 é) (1) —

dw
= (zI -T) AV
dx

(1 {0 1 1
= {20 o) 4
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We assume that the matrix A is semisimple and denote its non-zero
eigenvalues by —p1,...,—pm, Namely, we put

A=-GRG™', R=diag(py,...,pm,0,...,0).

We represent the following (generalized) Okubo system

dw
(zI —T)— = —GRG 1w
dx

as (T, R,G).

13



Let Stab(M) be the stabilizer of M € M(n,C), i.e.

Stab(M) = {g € GL(n,C) | gM = Mg).

For a Jordan matrix T' and a diagonal matrix

R = diag(p1,...,pm,0,...,0),
let O(T, R) be the following set of systems:
O(T,R) := {(T,R,G)}/ 5.

Here the equivalent relation 5 is defined by

G 5 hGg (h € Stab(T), g € Stab(R)).

14

(2)



We write the set of all generalized Okubo systems as

GO := |] O(T, R),
T.R

where T' runs over all Jordan matrix, including diagonal matrices, and
R runs over all diagonal matrices of the form (2).

Similarly, we denote the set of all Okubo systems, a subset of GO, by
O := [] O(T,R)
T.R

where T' runs over all diagonal matrices.

15



Let X, be the following set:
Xp = {(tl,...,tp) c CP | t; # t; (1 %= 7))}
We put I, ,y and I‘”(km’p) as
r(m,p) = Xp X (ZZO)p X (CX)m’

* —_ X\m

(m.p) = Xp X (C7)™.
We regard the set I‘*(‘mm) as a subset of I'(,, .,y through the inclusion
mapping

?m,p) = T (m,p)

p
—l—

(tla'“atp)pl)"')pm) = (t17°°°7tp707'"7O>p17"'7pm)'

16



For every element

Y = (t].?"'?tpafr‘l)'°°7rp7p17"'7pm) € r(m,p)7

we denote by R~ the m x m diagonal matrix

diag(p1, ..., pm).

17



Then we define & by

p Aﬁ""’)
&y = {A(x) — Z Z (z — t,)k+1

v=1 k=0

e,

b
ATR € M(m,C), AT™ #0, =) AP = RV} / ~ .

vr=1

Here equivalent relation g’ is defined by
Y

A(z) ~ gA(z)g~* (g € Stab(Ry)).

y
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We identify an element A(x) of £ with the system

d¥’ = A(2)Y.

dx

We put

= ]l I &,

m,pEL>1 YEL (1 p)

I I &

7 *
m,p&lix>1 'Yer(m’p)

F

namely £ is the set of systems of linear differential equations on Pl
which have regular singularity at infinity, and F is the set of Fuchsian
systems on P!,
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Definition of = : GO — &

Let [T, R,G] be an arbitrary element of GO, that is, a system of the
form

dw
(z] — T)a = —GRG 1w, (3)

Here T is an n x n Jordan matrix (not necessarily diagonal).

We put R = diag(p1,...,0m,0,...,0).

20



By changing the unknown function of (3) as W = GW, we have

dw -
- = G (@I —-T)"1GRV.
X

The coefficient of the right-hand side is rewritten into the following
form:

~G Yl -T)"1GR = ij ij By .
=1 =0 (# — )1
Here
B{™M .= —a=1iiMar.

J$7F) denotes the coefficient matrix of 1/(z — )5+ in (« — T)~1.

21



Since the last n —m columns of R are zero, the matrix B,g_k) is of the

form
a0 _ (A Omnm
v T R ’
XI/ On—m,n—m

A,(,_k) being some m x m matrix and X,S_k) some (n —m) X m matrix.
Starting from [T, R, G], we obtain

p Ty Az(/_k)
2 2 oty ©F

v=1 k=0

22



The definition of m : GO — £ is summarized as follows:

For [T, R,G] € GO,

(T, R,G) := the principal m x m part of(—=G (I — T)"'GR).

This is well-defined.
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Relation to the middle convolution

We investigate the relation between the map «|p : O — F and the
middle convolution.

p Az(/o)

2.

r=1

rankA,(,O) — [,,. Then A,(,O) is factorized into

Let F' =

. ] be an element of F whose matrix size is m. Put
L — ly

AT(/O) — BVCV7
where By is m x [, matrix, C, is [, X m matrix, and
rankBy, = rank(Cy = [,.

We put n =101+ ---+Ip.
24



We define the n x n matrices Tmin, Amin as follows:

tllll
Tmin = e )
tply,
C1
Amin = : (Bl Bp)
Cp

Proposition 1. The minimal size Okubo system in =~ 1(F) uniquely
exists up to conjugate action of Stab(Tmwin) and is given as follows:

dw
(33[ — Tmin>d— — Aminw-
x

In particular, w|p : O — F is surjective.
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Example. m =2, p=3
: (0) __
Eigenvalues of A,/ are 0,0, (v =1,2,3).

A,(,O) IS parametrized as

1 a/yby _I_ 91/ —a
Az(/o) — = 2 95
2 b,/ 32 —apby ‘|‘ eu
. ( baVH ) (aubu+91/ _@
AL 2ay 2

26



Amin IS given by

Amin = (
1
-2

where

a1b1+61
2a
a2624ﬁ92

a3b3iﬁ93
2a3

201 c12 c13
cp1 202 c23

NG NS IS

(

c31 €32 203

a; a
Cij = ajbi — aibj -I- Qza—‘z —|— 0]—

aj an a3
a1b1—6’1 a2b2—02 a3b3—93
ai an a3

Y

|
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The relation to the middle convolution is as follows.
Proposition 2. For any X € C, the middle convolution of

p A;(/O)

with X\ coincides with the image of the following system under «:
dw

(33[ — Tmin)d— — (Amin + AI)\U-
T

28



Hence, the middle convolution is obtained by the following procedure:
1. Lift a system in F to O of the minimal size.

2. Shift the right-hand side with scalar matrix:
(T,R,G)=(T,R+ \,Q).

3. Take an image of this in F by .

o oo
T|o T|o
F—s F

mc)

29



Shift of the right-hand side of Okubo systems by a scalar matrix is
realized by the Euler transformation:

() — /\IJ(t)(a: — $)Adt.

Therefore we can say that the middle convolution is “Transform F
into Okubo system -+ Euler transform”.

30



By taking the above consideration into account, we can define an
analogue of the middle convolution for non-Fuchsian systems by the
same procedure.

co 2 go

Wl lﬁ

E — €&
mc)

It is necessary to show the surjectivity of # so that this procedure
may Work.

31



Surjectivity of «

p Ty Ag—k)
Let ) > (o —,)FF1

v=1 k=0

We put 7, (= m(ry, + 1),

be a size m element of £.
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Let A, be the following 7, x n matrix:

A = Om’ry,n
vmaly AP A
We put the matrices A, T, and P as follows:
Aq
A= : |,
Ap

T .= Jr1+1(t1)®m DD er—l—l(tp)@m

P= P +1) @ © Fnrpt1)-

)

33



Here Ji(a) (e € C, k € Z>1) is the k x k Jordan block with eigenvalue
a, and P(Z-,j) IS a permutation matrix

P(z',j) — (Ii®€1,fz®€2,...,lz'®ej),

where ej,...,e; are unit vectors of C/.
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We consider the generalized Okubo system

(z1p — T)(jj—w = (PAP 1 4+ 2\I)W. (4)
9

Definition 1. We call the generalized Okubo system (4) convolution
of E with A and denote it by c)\(F).

Theorem 3. For any element E € &, ¢g(E) € n~Y(E). Therefore the
map 7. GO — £ is surjection.
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Remark 1. The assumption that E has at least one regular singular
point is not essential since, by a gauge transformation ¥ — (z —a)®Y,
we can add the term m%@ to E.

Remark 2. When the corank of leading terms A,(/_r”) (v=1,...,p)
of E are all zero, the system cg(F) is the minimal size generalized
Okubo system in 7~ 1(E).
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Examples of m.c. for non-Fuchsian systems

We give three examples of the middle convolution for non-Fuchsian
systems.
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Example. The system satisfied by 3Fy:

x_

where u = A1Ap — p1p2 — p2p3 — P3P1 —

0 1 0\ gu
00 0|2 =
o0 o)) 9

P1P2P3
Al Aot

t 0
U 0]

P1pP2P3
AQ )

The Riemann scheme of this system is

p

N\

0O 0 m
0 A>  po
A1 p3

t

\

.
r=0 =0

A2

38



ACD 40

MCpy —5— T+ (rank 2 system) where

A T < Ao+ p1 Ao =+ po )
1 - 9

P1 — P2 —(A2+p1) —(A2+p2)
— 0
A(O) — _ [P1L—P3 .
1 ( 0O  p2—p3
The Riemann scheme is

4 )
r=20 Tr = o0

\\
~”
.

O Ao+4+p3 p1—p3
|t A1+ 2p3 p2—p3

/

39



add_(x,+p3)

\

r=20 Tr = o0

7\

0
t

~

0 p1 + A2
A1 — A2+ p3 p2+ A

mc,, +x, ANk 1 system.

)

Ve
.

/
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Example. Fifth Painlevé equation

We consider the system of linear differential equations Ly, given by
the following Riemann scheme:
(

=20 r=1 Tr = 00

7\

~

i 0 0 0 a0 .
a3 t ap—apg apg+ a3 —1

\ /

41



Then the system Ly, is written as follows:

dz \(z—1)2 =z-1 X ’

(1) _ 21+t  —vzp (0) _ 400 [ao 0
A1 ((zl—l—t)/v —zl>’ A3 Ao (O ao+a1—1>’

400 — ( 20 + as —uZo>
(z0 +a3)/u —zq )’

(5)

42



X200 — 1)2,2
+ {ag(A=1) —ap —t}H{(A = Dp+ ag}A
+ {apA (A — 1) = t}Au + az(ag — 1),
(1—a1)z; = A(A—1)3p?
+ {2a0)* — (209 — a3z + )X — a3}
x {(A = 1p+ ap}

—ag (A — 1) + (ap + a1 — 1)t,
A—1zg
u

(1 —a1)zo

v = :
Az

The parameter X\ is a position of the apparent singular point. The
holonomic deformation of (5) is governed by the fifth Painlevé equa-
tion R,.

43



Proposition 4. The minimal size generalized Okubo system in n—1(Ly/)
is uniquely given as follows:

dw
(zl3 —T\)—— = CyWVW
dx

where

0]
ao — Qg —% det Ag ) (Cv)13
CV — { 0 (C\/)23 3
(Cv)3r (Cv)32 a3z

44



(Cv)2z = (A= 1Dp+ ag) A+ as,
(Cv)z1=t—{(A—1)pu+ ag}(A—1),
t(Cv)32 = (a1 — 1)z

+ (o + a1 — 1) = (A= Du+ag)(A—1)),
1

{0 - Dut+agtr— 1)
{(a1 — 1)z — (A= 1)p+ ag) A+ a3)(Cy) 30
—az(ag + az)}.

(Cv)13 =

45



The middle convolution of (5) with ag is

o _ (A A0 A0,
dz \(z—=-1)2  =z-1 X ’
_ zo0 + a3 + ag —UZQ

0 (z0 + @z +ag)/u -z )’

A(—l) — Z]_ ‘|‘ (4 —’172]_
1 (z1+t)/v —Zz1 )’

7(0) _ _ 7(0) —QQ 0
A1 = —4g _<O 041—1)’

46
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a1 — 1 _ a1 — 1
205 1 — <1,
ag+ a1 —1 ag+ a1 —1
A+ ag/p— 1ZO”L_L
At ag/p 21

20 —

v =

By comparing (5) and (6), we obtain the transformation

ag — —ag, Q1+ a1 +ag, a2 ay a3+ a3+ g,

(8%
bt A A4+ —2 pep
U
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Example. Fourth Painlevé equation

Next we consider the system of linear differential equations Ly, given
by the following Riemann scheme:

4 )
r=20 Tr = o0

~

t ap—apg agt+a;—1

NI O)

/

48



Ly is written as follows:

( PICIREICIIING

N N

+ 05—+

T

z4+1/2 —uz
(z+1/2)/u —z )’
aili CL12>
a1 a22

(O ao—l—a1—1>

)y,

49
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2(1 —ay)z = 2X3u+ 2a07\° — 2tA — 1) (0 + ap)

+ag + a1 — 1,
Aaj1 = — (24 1/2) + 230+ ag)?,
a1p = uz/A,
A
ao; = —{a11(t —a11) — (a1 — 1)z
uz

— (g + a1 — 1)/2},
azp = t—azy.
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Proposition 5. The minimal size generalized Okubo system in m=1(Lp,)
is uniquely given as follows:

dw
(zl3 — Tlv)d— = CvV. (8)
T
O 1 O
Iiv=10 0 1],
O 0O
2(a1 — 1)z —ag (Crv)12 (Crv)13
Crv = 0 —2(a; —1)z4+an (Crv)oz |,

1
. t 0
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(Cnv)13 = 4(a; — DA2A(Ap + ag)? — )z,

(Crv)oz = —4(a1 — DAAp 4+ )z,
_ ((—2(a1 — 1)z + a2)(C1v)13
(Crv)io =
(Crv)23

+ 2t(2(a1 — 1)z — ).
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Remark 3. By means of Laplace transform

V() = /e_mcb(z)dz,

(8) transforms into

dz
This system is essentially the linear equation associated with the
Noumi-Yamada system of type Agl).

dd I
_:<TIV_CIv+ >CI>.

53



The middle convolution of (7) with ag is

ay _ (A5, aFY AP
dr x3 x2 T ’

A<—2)=< Z41/2 —az>
0 zZ+1/2)/u -z )’

(-1 _ (@11 a12
0 - \ = - )
a1 a2

7(0) _  [—ao 0
40 __< O oz1—1>’

54
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___apta
z = z,

ao

1 uz
a11 = — {(ap + an)ai; — apt}, ajo = ,
11 OQ{ 0 ot} N ag/n
_ A+ oo/ (— _ _, ap T ap
an] = az/ {&11(t—&11)+042z+ 5 },

app =t —ay1.

By comparing (7) and (9), we have

apg — —ap, a1 a1 +taoag, o+ a,

(8%
trst, A A+ -9 ues o
I
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