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. Standard Model
o Cosmological constant

o Strong CP

1 Gauge/Flavor Hierarchy

1 (Inflation)
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local rigid symmetry genericity



Effective Theory Descriptions

QCD Gravity

strong CP cosmological constant

changing to variable

chiral anomaly spacetime inflation

selection by dynamics

axion quintessence
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Color x Hypercolor: SU(3)~ x SU(3) g
Yr(3,3%),  vYgr(3,3%)
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. Supersymmetry

. Gravity
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rotation (11) or (9) is a local quantity like the anomaly itself. Thanks to the gauge
covariance, the evaluation of the last expression in plane wave basis is again simple

as is shown in Appendix B. We have
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In spite of the asymmetric appearances of 1 and 2 in this expression, one can
confirm by using the reality constraint (A.2) that this is actually odd under the
exchange 1 < 2. From Eq. (14), we can read off the left hand side of Eq. (10):
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which satisfies Eq. (10) in conjunction with Eq. (8); this fact provides the con-
sistency check of Eq. (14). Finally, from Egs. (7), (8) and (14), we obtain the

consistent gauge anomaly
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Here, as indicated, the quantities inside the round bracket are defined by sub-
stituting the gauge superfield V' involved by ¢gV. On the other hand, the gauge
variation d, V' is given by Eq. (5) as it stands without setting V' — ¢V It is obvious

that our consistent anomaly is proportional to the anomaly d®¢, as expected.
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tant action is characterized solely by this cubic polynomial N (M), and we find the vector

multiplet action
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where N7 = ON JOM!, N1y = 0> N /OM'OM | etc., and Lc-g is the Chern-Simons term:
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We have checked the supersymmetry invariance of this action for general non-Abelian
cases as follows. When the gauge coupling g is set equal to zero, the action reduces to one
with the same form as that for the Abelian case, and thus the invariance is guaranteed by
the above derivation. When g is switched on, the covariant derivative D, comes to include
the G-covariantization term —gd(W),), and the field strength F),, (W) comes to include the
non-Abelian term —g[W,, W,]. We, however, can use the variables D,¢ (¢ = M’, ') and
F,, (W) as they stand in the action and in the supersymmetry transformation laws, keep-
ing these g-dependent terms implicit inside of them. Then, we have only to keep track of
explicitly g-dependent terms and make sure that these terms vanish in the supersymme-
try transformation of the action. The explicitly g-dependent terms in the action are only
the term —igN;[f2, ]!, aside from those in the Chern-Simons term. The Chern-Simons
term is special because it contains the gauge field WJ explicitly, and its supersymmetry
transformation as a whole yields no explicit g-dependent terms, as we show below. In the

supersymmetry transformations d¢, explicitly g-dependent terms do not appear for ¢ = MY,

' Gl (W) or F,(W), but appear only in 6Y'7, 6(D,M") and §(D,f2"). (For the latter
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Orbifolding
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SU(5)y dynamics
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String/M Theory Realizations?

QCD Gravity

strong CP cosmological constant

background configurations

intersecting branes flux vacua

objects inside

chiral fermions anti-D branes



