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Abstract

The purpose of this note is to provide a proof of the so-called fundamental theorem of matrix
product states, which concerns the gauge degrees of freedom of translationally invariant matrix prod-
uct states. In connection with this, we also follow the proofs of certain facts regarding matrix product
states and the accuracy of approximations.
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Introduction

This note fills in the details between the lines of Refs. [2, 7] concerning the proof of a certain gauge
indeterminacy, called the fundamental theorem of matrix product states (MPS) [2]1.

For general aspects of MPS, the review articles [3, 4] are useful references. For matrix analysis, the
lecture notes [5] are also helpful. It should be noted that many important results concerning MPS were
obtained in Ref. [1]. On the other hand, Ref. [1] is based on a mathematically rigorous framework for
infinite systems, and is technically demanding. Ref. [2] extends Ref. [1] to systems with a finite number
of sites, and this note follows the proofs related to the fundamental theorem of MPS in Ref. [2].

A matrix product state is a type of tensor network representation of a wavefunction, and in particular
in one spatial dimension it is expressed as

ψi1...iN = A
[1]
i1
A

[2]
i2

· · ·A[N ]
iN
, (0.1)

where the wavefunction is written as a product of matrices A
[m]
im

. For a finite N -site system, there always

exists such a set of matrices {{A[m]
im

}im}m that exactly represents a given wavefunction ψi1...iN without
any loss of information. The crucial point, however, is that for certain classes of states, for example
ground states of Hamiltonians consisting of local terms, depending on the physical quantities of interest,

one can efficiently approximate the matrices A
[m]
im

by finite-rank approximations, with computational
cost scaling only polynomially in the system size N and in the inverse of the error. Consequently, one
can investigate the properties of quantum states in one spatial dimension—which are essentially infinite-
dimensional systems—using finite-size matrices. As an example, we will see in the final section that,
owing to the fundamental theorem of MPS, one can define invariants characterizing symmetry-protected
topological (SPT) phases.

1 Approximation of Wavefunctions

1.1 Schmidt Decomposition

We begin with the singular value decomposition.� �
Theorem 1.1 (Singular Value Decomposition). For a matrix A ∈ Matm,n(C), the following decom-
position holds:

A = UΣV †, U ∈ Matm,r(C), V ∈ Matn,r(C), Σ = diag(σ1, . . . , σr), (1.1)

U†U = 1r, V †V = 1r, σ1 ≥ · · · ≥ σr. (1.2)

Here r = rank(A), the set of singular values {σa}ra=1 is uniquely determined, while U and V are
unique up to unitary transformations within degenerate singular values.� �

(Proof) Note that the matrix A†A is Hermitian and positive semidefinite. Diagonalizing A†A, we obtain

A†A =

r∑
a=1

σ2
avav

†
a, σ1 ≥ · · · ≥ σr > 0, v†avb = δab. (1.3)

1The content of this note is based on the intensive lectures “Gauge degrees of freedom of matrix product states and their
applications,” held at the University of Tokyo on July 29 (Mon.) – July 30 (Tue.), 2024. In preparing this note, I am deeply
indebted to Kenji Shimomura, Kan Kitamura, and Akihiro Hokkyo for instructive discussions on numerous questions, as
well as for pointing out errors.
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Let V = (v1, . . . , vr). Defining ua = Ava/σa, a = 1, . . . , r, we have u†aub = v†aA
†Avb/(σaσb) = δab, and

r∑
a=1

σauav
†
a = A

r∑
a=1

vav
†
a = A−A(1n −

r∑
a=1

vav
†
a) = A. (1.4)

Here we used kerA = kerA†A, which follows from Av = 0 ⇒ A†Av = 0 and A†Av = 0 ⇒ ∥Av∥ =
0 ⇒ Av = 0. The uniqueness of {σa}ra=1 is clear from the construction. The non-uniqueness of singular
vectors va arises when singular values are degenerate: for σa1

= · · · = σap
, the ambiguity is given by a

unitary transformation W ∈ U(p),

(va1
, . . . , vap

) 7→ (va1
, . . . , vap

)W, (1.5)

and correspondingly,

(ua1
, . . . , uap

) 7→ (ua1
, . . . , uap

)W. (1.6)

We now move to the Schmidt decomposition. Consider a quantum state |ψ⟩ in a general finite-
dimensional Hilbert space H,

|ψ⟩ =
∑
i

ψi |i⟩ . (1.7)

Here |i⟩ is a basis of the Hilbert space H. Decompose H into two subsystems L and R in an arbitrary
manner:

H = HL ⊗HR. (1.8)

Accordingly, the basis can be written as |i⟩ = |iL, iR⟩ = |iL⟩ ⊗ |iR⟩, and

|ψ⟩ =
∑
iL,iR

ψiL,iR |iL, iR⟩ . (1.9)

Applying the singular value decomposition to the wavefunction ψiL,iR , we obtain the following decompo-
sition.� �

Corollary 1.2 (Schmidt Decomposition). For any state |ψ⟩ ∈ HL⊗HR, there exists a decomposition

|ψ⟩ =
r∑

a=1

λ
1
2
a |La⟩ ⊗ |Ra⟩ . (1.10)

Here {|La⟩}a and {|Ra⟩}a are orthonormal sets satisfying ⟨La|Lb⟩ = δab, ⟨Ra|Rb⟩ = δab, and {λa}ra=1

are positive real numbers with λ1 ≥ · · · ≥ λr > 0. The integer r ∈ N and the set {λa}ra=1 are uniquely
determined. The orthonormal sets {La}ra=1, {Ra}ra=1 are unique up to unitary transformations within
blocks of degenerate Schmidt coefficients λa. That is, for a block with λa1 = · · · = λap , the ambiguity
is given by a unitary U ∈ U(p):

(La1 , . . . , Lap) 7→ (La1 , . . . , Lap)U, (Ra1 , . . . , Rap) 7→ (Ra1 , . . . , Rap)U
∗. (1.11)

Moreover, when |ψ⟩ satisfies the normalization condition ⟨ψ|ψ⟩ = 1, we have
∑r

a=1 λa = 1.� �
• r is called the Schmidt rank.

• The reduced density matrix obtained by tracing out subsystem L is

ρR = tr L |ψ⟩ ⟨ψ| =
r∑

a=1

λa |Ra⟩ ⟨Ra| , (1.12)
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and similarly,

ρL = trR |ψ⟩ ⟨ψ| =
r∑

a=1

λa |La⟩ ⟨La| . (1.13)

• In particular, the entanglement entropy is given by

S(ρR) = −tr ρR log ρR = −
r∑

a=1

λa log λa. (1.14)

• Example. |↑↑⟩ = |↑⟩ ⊗ |↑⟩ has a Schmidt decomposition with r = 1, λ = 1.

• Example. The Bell pair

|↑↓⟩ − |↓↑⟩√
2

=
1√
2
|↑⟩ ⊗ |↓⟩+ 1√

2
(− |↓⟩)⊗ |↑⟩ (1.15)

has a Schmidt decomposition with r = 2, λ1 = λ2 = 1/
√
2.

1.2 Low-rank Approximation

The Schmidt decomposition provides the best approximation of a state |ψ⟩ in the following sense.

Given the Schmidt decomposition of the state |ψ⟩,

|ψ⟩ =
r∑

a=1

λ
1
2
a |La⟩ ⊗ |Ra⟩ , (1.16)

we introduce the rank-D approximation

|ψD⟩ :=
D∑

a=1

λ
1
2
a |La⟩ ⊗ |Ra⟩ . (1.17)

Note that ⟨ψD|ψD⟩ ≤ 1.� �
Theorem 1.3. For any state |ϕD⟩ of Schmidt rank D, we have

∥ |ψ⟩ − |ϕD⟩ ∥ ≥ ∥ |ψ⟩ − |ψD⟩ ∥ =

√∑
a>D

λa. (1.18)

Furthermore, when |ϕD⟩ is normalized, the following holds:

| ⟨ψ|ϕD⟩ | ≤ | ⟨ψ|ψD⟩ | =
D∑

a=1

λa. (1.19)

� �
Equation (1.19) follows immediately from (1.18): from ∥ |ψ⟩ − |ϕD⟩ ∥2 ≥ ∥ |ψ⟩ − |ψD⟩ ∥2, we obtain

2− 2ℜ ⟨ψ|ϕD⟩ ≥ 1 + ⟨ψD|ψD⟩ − 2ℜ ⟨ψ|ψD⟩ ≥ 2− 2ℜ ⟨ψ|ψD⟩ , (1.20)

which implies

ℜ ⟨ψ|ϕD⟩ ≤ ℜ ⟨ψ|ψD⟩ =
D∑

a=1

λa. (1.21)
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The phase of |ϕD⟩ is arbitrary. In particular, by choosing the phase such that ⟨ψ|ϕD⟩ ≥ 0, we obtain
(1.18).

The corresponding theorem for the singular value decomposition is known as the Eckart–Young–Mirsky
theorem. We now proceed to prove this. As preparation, we present the min-max theorem and Weyl’s
inequality.� �

Theorem 1.4 (Min-max Theorem). Let A be an n × n Hermitian matrix. Denote its eigenvalues
by

λ1 ≥ · · · ≥ λn. (1.22)

Then,

λk = max
dimV=k

min
v∈V,∥v∥=1

⟨v|A|v⟩ , (1.23)

= min
dimV=n−k+1

max
v∈V,∥v∥=1

⟨v|A|v⟩ . (1.24)� �
Clearly,

λ1 = max
v,∥v∥=1

⟨v|A|v⟩ , (1.25)

λn = min
v,∥v∥=1

⟨v|A|v⟩ , (1.26)

hold. The min-max theorem provides such a variational characterization for the other eigenvalues as well.

(Proof) Let the degeneracy of the eigenvalue λa be da. List the eigenvalues of A without multiplicities as

λ1 > · · · > λp, (1.27)

and denote the eigenspace corresponding to λ = λa by Va (note that
∑p

a=1 dimVa = n). For a subspace
V ⊂ Cn, the following holds:

V ∩ (Va ⊕ · · · ⊕ Vp) ̸= {0} ⇒ min
v∈V,∥v∥=1

⟨v|A|v⟩ ≤ λa, (1.28)

V ⊂ (Va ⊕ · · · ⊕ Vp)
⊥ ⇒ min

v∈V,∥v∥=1
⟨v|A|v⟩ > λa. (1.29)

The latter does not hold if dimV >
∑a−1

b=1 dimVb. Moreover, when
∑a−1

b=1 dimVb < dimV ≤
∑a

b=1 dimVb,
equality in the latter is attained in the case V = V1 ⊕ · · · ⊕ Va−1 ⊕ V ′, where {0} ⊊ V ′ ⊂ Va. This yields
(1.23). Equation (1.24) is obtained by applying (1.23) to −A.

One can also derive a similar variational formula for singular values. List the singular values of a
matrix A ∈ Matn,m(C) in decreasing order as

σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n). (1.30)

The squares of the singular values of A are nothing but the eigenvalues of the Hermitian matrix A†A.
Noting the trivial inequality√

⟨v|A†A|v⟩ ≥
√
⟨v′|A†A|v′⟩ ⇔ ⟨v|A†A|v⟩ ≥ ⟨v′|A†A|v′⟩ , (1.31)

we obtain the expression

σk = max
dimV=k

min
v∈V,∥v∥=1

√
⟨v|A†A|v⟩ = max

dimV=k
min

v∈V,∥v∥=1
∥Av∥. (1.32)
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� �
Corollary 1.5 (Min-max Theorem for Singular Values). Let the singular values of an n×m matrix
A be ordered as

σ1 ≥ · · · ≥ σmin(m,n). (1.33)

Then,

σk = max
dimV=k

min
v∈V,∥v∥=1

∥Av∥ (1.34)

= min
dimV=n−k+1

max
v∈V,∥v∥=1

∥Av∥. (1.35)� �
Since we will use it later, we state the following.� �
Corollary 1.6.

σk(AB) ≤ σ1(A)σk(B). (1.36)� �
(Proof)

σk(AB) = max
dimV=k

min
v∈V,∥v∥=1

∥ABv∥ ≤ ∥A∥ max
dimV=k

min
v∈V,∥v∥=1

∥Bv∥ = σ1(A)σk(B). (1.37)

Next, we prove Weyl’s inequality. Let A be an n× n Hermitian matrix. List the eigenvalues of A in
decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λn. (1.38)

For Hermitian matrices A,B, we want to find inequalities relating the eigenvalue set {λi(A+ B)}i with
{λi(A)}i and {λi(B)}i. For example, what can be said about the maximum eigenvalue? Let vAi denote
the normalized eigenstate of A corresponding to the eigenvalue λ = λi(A). Then,

λ1(A+B) = (vA+B
1 , (A+B)vA+B

1 ) = (vA+B
1 , AvA+B

1 ) + (vA+B
1 , BvA+B

1 ) (1.39)

≤ (vA1 , Av
A
1 ) + (vB1 , Bv

B
1 ) = λ1(A) + λ1(B), (1.40)

which shows a valid relation.

More generally, the following holds.� �
Theorem 1.7 (Weyl’s Inequality).

λi+j−1(A+B) ≤ λi(A) + λj(B) ≤ λi+j−n(A+B). (1.41)� �
(Proof2) By the min-max theorem,

λi+j−1(A+B) = max
V,dimV=i+j−1

min
x∈V,∥x∥=1

(x, (A+B)x), (1.42)

λi(A) = min
V,dimV=n−i+1

max
x∈V,∥x∥=1

(x,Ax), (1.43)

λj(B) = min
V,dimV=n−j+1

max
x∈V,∥x∥=1

(x,Bx). (1.44)

2Wikipedia, Weyl’s inequality, url.

6

https://en.wikipedia.org/wiki/Weyl%27s_inequality


Thus there exist subspaces VA+B , VA, VB such that

λi+j−1(A+B) = min
x∈VA+B ,∥x∥=1

(x, (A+B)x), dimVA+B = i+ j − 1, (1.45)

λi(A) = max
x∈VA,∥x∥=1

(x,Ax), dimVA = n− i+ 1, (1.46)

λj(B) = max
x∈VB ,∥x∥=1

(x,Bx), dimVB = n− j + 1. (1.47)

In this case,

dim(VA ∩ VB) = dimVA + dimVB − dim(VA ∪ VB) ≥ dimVA + dimVB − n = n− i− j + 2, (1.48)

and

dim(VA+B ∩ (VA ∩ VB)) = dimVA+B + dim(VA ∩ VB)− dim(VA+B ∪ (VA ∩ VB)) (1.49)

≥ (i+ j − 1) + (n− i− j + 2)− n = 1, (1.50)

so one can take a nonzero vector

x0 ∈ VA+B ∩ VA ∩ VB . (1.51)

Then,

λi+j−1(A+B) ≤ (x0, (A+B)x0) = (x0, Ax0) + (x0, Bx0) ≤ λi(A) + λj(B), (1.52)

which gives the left-hand side of the inequality. The right-hand side of the claim is obtained by applying
the left-hand inequality to (−1) times the matrices.

As a corollary, we obtain the following.� �
Corollary 1.8 (Weyl’s Inequality for Singular Values).

σi+j−1(A+B) ≤ σi(A) + σj(B). (1.53)� �
(Proof) The singular values of A are the nonnegative eigenvalues of the Hermitian matrix

Ã =

(
A

A†

)
. (1.54)

Defining

λi = σi i = 1, . . . , n, λn+1 = −σn−i+1 i = 1, . . . , n, (1.55)

Weyl’s inequality

λi+j−1(Ã+ B̃) ≤ λi(Ã) + λj(B̃) ≤ λi+j−2n(Ã+ B̃) (1.56)

holds. Restricting to i+ j − 1 ≤ n gives the desired result.

Next, we prove the Eckart–Young–Mirsky theorem. For an m × n matrix A ∈ Matm,n(C), let its
singular value decomposition be

A = UΣV † =

rank(A)∑
i=1

σiuiv
†
i , σ1 ≥ σ2 ≥ . . . (1.57)

The Frobenius norm (defined via the Hilbert–Schmidt inner product) is given by

∥A∥F :=
√
(A,A)HS =

√
tr [A†A] =

√√√√rank(A)∑
i=1

σ2
i . (1.58)
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The 2-norm (operator norm) is defined as

∥A∥ := sup
x∈Cn,∥x∥=1

∥Ax∥ = σ1(A). (1.59)

Now, define the rank-k approximation of A by

Ak :=

k∑
i=1

σiuiv
†
i . (1.60)

The claim is the following.� �
Theorem 1.9 (Eckart–Young–Mirsky). In both the 2-norm and the Frobenius norm, the best ap-
proximation of A by a rank-k matrix is given by Ak. That is, for any rank-k matrix Bk, we have

∥A−Bk∥F ≥ ∥A−Ak∥F , (1.61)

∥A−Bk∥2 ≥ ∥A−Ak∥2. (1.62)� �
(Proof3) By Weyl’s inequality, for any i, j,

σi+j−1(X + Y ) ≤ σi(X) + σj(Y ). (1.63)

Let the rank of B be k. Then note that σi>k(B) = 0. Taking j = k + 1, X = A−B, Y = B, we obtain

σi+k(A) ≤ σi(A−B) + σk+1(B) = σi(A−B). (1.64)

Therefore,

∥A−B∥2 = σ1(A−B) ≥ σk+1(A) = σ1(A−Ak). (1.65)

∥A−B∥2F =
∑
i

σ2
i (A−B) ≥

∑
i

σ2
i+k(A) = ∥A−Ak∥2F . (1.66)

Note that when the wavefunction ψiL,iR is regarded as a matrix, its Frobenius norm coincides with
the norm of the state |ψ⟩:

∥ψ∥2F = trψ†ψ =
∑
iL,iR

ψ∗
iL,iRψiL,iR =

∑
iL,iR

|ψiL,iR |2 = ∥ |ψ⟩ ∥2. (1.67)

Therefore, the Eckart–Young–Mirsky theorem with respect to the Frobenius norm is nothing but (1.18).

1.3 Error Estimate

How good is the rank-D approximation |ψD⟩ obtained from the Schmidt decomposition? We show that
the error can be upper-bounded in terms of the Rényi entropy [6]. In the following, we assume that
rank(ρ) is sufficiently large.

For a general density matrix ρ, the Rényi entropy is defined by

Sα(ρ) =
1

1− α
log tr ρα, α > 0. (1.68)

3Physics Stack Exchange, Proof of Eckart-Young-Mirsky theorem, url.
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The limit α→ 1 gives the von Neumann entropy:

Sα→1(ρ) = SvN(ρ) = −tr ρ log ρ. (1.69)

With the spectral decomposition

ρ =
∑
a

λa |a⟩ ⟨a| , λ1 ≥ λ2 ≥ · · · ,
∑
a

λa = 1, (1.70)

we have

Sα(ρ) =
1

1− α
log

∑
a

λαa . (1.71)

Note that the function f({λa}a) =
∑

a λ
α
a is concave for 0 < α < 1 and convex for α > 1. Define the

error

ϵ(D) :=
∑
a>D

λa, (1.72)

and estimate ϵ(D). By (1.18), ϵ(D) is nothing but the squared error ∥ |ψ⟩ − |ψD⟩ ∥2 of the rank-D
approximation obtained from the Schmidt decomposition of the state |ψ⟩.� �

Theorem 1.10 (Lemma 2 in [6]).

log
ϵ(D)

α
≤ 1− α

α

(
Sα(ρ)− log

D

1− α

)
, 0 < α < 1. (1.73)� �

Equivalently,

ϵ(D) ≤ α×
(
1− α

D

) 1−α
α

× exp

[
1− α

α
Sα(ρ)

]
, 0 < α < 1, (1.74)

holds4. Note that the Rényi entropy depends only on the density matrix ρ. The error ϵ(D) is thus
bounded from above by a power law in D.

(Proof5) Let 0 < α < 1. We fix ϵ(D) and derive a lower bound on Sα(ρ). Since log is monotone increasing,
it suffices to lower-bound

∑
a λ

α
a . The function{
{pa}Na ∈ [0, 1]×N

∣∣ N∑
a=1

pa = 1

}
→

N∑
a=1

pαa (1.76)

is symmetric and concave in its variables for 0 < α < 1, hence Schur-concave. That is, it is bounded from
below by distributions {pa}a that majorize {λa}a6:

{pa}a ≻ {λa}a ⇒
∑
a

pαa ≤
∑
a

λαa . (1.77)

If we consider all possible distributions, then the extremal distribution p1 = 1, pa>1 = 0 majorizes any
distribution, but yields only the trivial bound 1 ≤

∑
a λ

α
a . We therefore fix the tail∑

a>D

pa = ϵ(D) (1.78)

4In [6] it is written as

log ϵ(D) ≤
1− α

α

(
Sα(ρ)− log

D

1− α

)
, 0 < α < 1, (1.75)

which appears to be a typo.
5Based on discussions with Kenji Shimomura regarding the proof in [6].
6Let p↓1 ≥ p↓2 ≥ · · · denote the decreasing rearrangement of {pa}a. We say {pa}a ≻ {qa}a if for all k one has∑k
a=1 p

↓
a ≥

∑k
a=1 q

↓
a.
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and search for a distribution that is as skewed as possible while still majorizing {λa}a.

For a parameter 0 < h ≤ (1− ϵ(D))/D, consider the distribution {qa}a defined by

q1 = 1− ϵ(D)− (D − 1)h, (1.79)

q2 = q3 = · · · = qD = qD+1 = · · · = qD+⌊ϵ(D)/h⌋ = h, (1.80)

qD+⌊ϵ(D)/h⌋+1 = ϵ(D)− ⌊ϵ(D)/h⌋h, (1.81)

qa>D+⌊ϵ(D)/h⌋+1 = 0, (1.82)∑
a>D

qa = ⌊ϵ(D)/h⌋h+ ϵ(D)− ⌊ϵ(D)/h⌋h = ϵ(D). (1.83)

Thus the partial sums ∑
a≤D

qa = 1− ϵ(D),
∑
a>D

qa = ϵ(D) (1.84)

are kept fixed, while the intermediate “height” qD = h is varied.

First, evaluate
∑

a q
α
a :∑

a

qαa = (1− ϵ(D)− (D − 1)h)α + (D − 1 + ⌊ϵ(D)/h⌋)hα +
(
ϵ(D)− ⌊ϵ(D)/h⌋h

)α
. (1.85)

For simplicity, restrict to h = ϵ(D)/r with r ∈ Z>0. Observing that

(1− ϵ(D)− (D − 1)h)α + (D − 1 + ϵ(D)/h)hα −Dhα − ϵ(D)hα−1 (1.86)

= (1− ϵ(D)− (D − 1)h)α − hα (1.87)

= (1− ϵ(D)−Dh) (· · · ) ≥ 0, (1.88)

we obtain ∑
a

qαa = (1− ϵ(D)− (D − 1)h)α + (D − 1 + ϵ(D)/h)hα ≥ Dhα + ϵ(D)hα−1. (1.89)

Since 0 < α < 1, there exists an h-independent lower bound, attained at

h = h∗ =
(1− α)ϵ(D)

αD
. (1.90)

Hence,

Dhα + ϵ(D)hα−1 ≥
(
Dhα + ϵ(D)hα−1

)∣∣∣
h=

(1−α)ϵ(D)
αD

=
D
( ϵ(D)(1−α)

Dα

)α
1− α

=
D1−αϵ(D)α

(1− α)1−ααα
. (1.91)

Therefore, if there exists h with 0 < h ≤ (1 − ϵ(D))/D such that {qa}a ≻ {λa}a, then
∑

a λ
α
a is lower-

bounded by the right-hand side above. We now address the existence of such an h.

For h = λD, one has {qa}a ≻ {λa}a. Indeed, since the area up to a = D is fixed,

D∑
a=1

qa =

D∑
a=1

λa = 1− ϵ(D), (1.92)

the distribution {qa}a that pushes all weight to q1 satisfies

k∑
a=1

qa = 1− ϵ(D)− (D − 1)h+ (k − 1)h =

D∑
a=1

λa − (D − k)λD (1.93)

=

k∑
a=1

λa +

D∑
a=k+1

(λa − λD) ≥
k∑

a=1

λa, k = 1, . . . , D, (1.94)
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as illustrated in Fig. 1. Furthermore, for k > D, because we have fattened the tail of λa, for D < k ≤
D + ⌊ϵ(D)/h⌋,

k∑
a=1

λa = 1− ϵ(D) + (k −D)λD =

D∑
a=1

λa +

k∑
a=D+1

λD ≥
D∑

a=1

λa +

k∑
a=D+1

λa, (1.95)

and for k > D + ⌊ϵ(D)/h⌋,
k∑

a=1

λa = 1 ≥
k∑

a=1

λa. (1.96)

Hence,

{qa}a
∣∣
h=λD

≻ {λa}a. (1.97)

Therefore,

D1−αϵ(D)α

(1− α)1−ααα
≤

∑
a

λαa . (1.98)

Thus we have obtained a lower bound depending only on D and ϵ(D). Taking the Rényi entropy,

1

1− α
log

D1−αϵ(D)α

(1− α)1−ααα
≤ Sα(ρ), (1.99)

that is,

log
D

1− α
+

α

1− α
log

ϵ(D)

α
≤ Sα(ρ), (1.100)

and hence,

log
ϵ(D)

α
≤ 1− α

α

[
Sα(ρ)− log

D

1− α

]
, (1.101)

or equivalently,

ϵ(D) ≤ α exp

(
1− α

α

[
Sα(ρ)− log

D

1− α

])
. (1.102)

In critical systems, the Rényi entropy on an interval [1, L] is known to behave as

Sα(ρL) =
c+ c̄

12

(
1 +

1

α

)
logL. (1.103)

Therefore, even in critical systems, note that
∑N−1

k=1 ϵk(D) can be bounded by a power of N . We will
examine this point in detail in the next section.
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2 OBC-MPS

In this section, we introduce matrix product states (MPS) with open boundary conditions (OBC). An
important remark is that OBC-MPS can always be defined, regardless of whether the state itself satisfies
periodic boundary conditions.

Although using diagrammatic notation improves readability for MPS, we will not employ it in this
note.

2.1 Derivation of MPS

Consider a one-dimensional spin system with N sites. Let d be the dimension of the local Hilbert space;
the total Hilbert space is the tensor product of local Hilbert spaces:

H =

N⊗
x=1

Hx, Hx
∼= Cd. (2.1)

Write a basis of Hx as {|ix⟩}dix=1, and abbreviate

|i1 . . . iN ⟩ = |i1⟩ ⊗ · · · ⊗ |iN ⟩ . (2.2)

A state in H can be written as

|ψ⟩ =
∑

i1,...,iN

ψi1...iN |i1 . . . iN ⟩ , (2.3)

and we assume the normalization

⟨ψ|ψ⟩ = 1. (2.4)

� �
Definition 2.1. We call the following representation of the wavefunction ψi1...iN an OBC-MPS:

ψi1...iN = A
[1]
i1
A

[2]
i2

· · ·A[N−1]
iN−1

A
[N ]
iN
. (2.5)

Here each A
[x]
ix

is a Dx−1 ×Dx matrix with D0 = DN+1 = 1.� �
An OBC-MPS always exists. Including existence, we establish the existence of the following standard

OBC-MPS.
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� �
Theorem 2.2 ([2]. Standard form of OBC-MPS). There exists an OBC-MPS satisfying∑

i

A
[m]
i A

[m]†
i = 1rm−1

, 1 ≤ m ≤ N, (2.6)∑
i

A
[m]†
i Λ[m−1]A

[m]
i = Λ[m], 1 ≤ m ≤ N. (2.7)

Here Λ[m] is a diagonal matrix with positive real entries,

Λ[m] = diag(λ
[m]
1 , . . . , λ[m]

rm ), (2.8)

and satisfies

Λ[0] = Λ[N ] = 1, (2.9)

λ
[m]
1 ≥ · · · ≥ λ[m]

rm > 0, (2.10)

tr Λ[m] =

rm∑
a=1

λ[m]
a = 1. (2.11)

Moreover, rm is the Schmidt rank associated with the bipartition [1 · · ·m] and [m+ 1 · · ·N ].� �
The construction is obtained by repeatedly performing singular value decompositions from the right;

we only sketch the proof.

(Sketch of proof) First apply SVD to ψi1...iN−1,iN to obtain

ψi1...iN−1,iN =
∑
aN−1

(
λ[N−1]
aN−1

) 1
2 ψ′

i1···iN−1aN−1
[A

[N ]
iN

]aN−1
. (2.12)

Next, apply SVD to

ψ̃′
i1···iN−2, iN−1aN−1

=
(
λ[N−1]
aN−1

) 1
2ψ′

i1···iN−1aN−1
, (2.13)

to get

ψ̃′
i1···iN−2, iN−1aN−1

=
∑
aN−2

(
λ[N−2]
aN−2

) 1
2ψ′′

i1···iN−2aN−2
A[N−2]

aN−2aN−1
. (2.14)

Proceed similarly for the remaining steps. Using U†U = 1 and V †V = 1 from the SVD A = UΣV †, one
derives the conditions (2.6) and (2.7).

With the standard OBC-MPS in hand, the reduced density matrix is obtained immediately:

ρ[m+1,N ] = tr [1,m] |ψ⟩ ⟨ψ| =
rm∑

am=1

Λ[m]
am

|Ram
⟩ ⟨Ram

| . (2.15)

Here,

|Ram
⟩ =

∑
im+1···iN

∑
am+1···aN−1

[A
[m+1]
im+1

]amam+1
· · · [A[N ]

iN
]aN−1

|im+1 · · · iN ⟩ . (2.16)

� �
Proposition 2.3. The standard OBC-MPS is unique up to the indeterminacy of singular vectors.� �
This is clear from the construction.

The uniqueness of the standard OBC-MPS plays an important role in the proof of gauge indeterminacy
of PBC-MPS.
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2.2 Transformation to the Standard OBC-MPS

For a quantum state |ψ⟩, consider an OBC-MPS not necessarily in the standard form,

ψi1···iN = B
[1]
i1

· · ·B[N ]
iN
. (2.17)

We describe a procedure to transform it into a standard OBC-MPS.� �
Theorem 2.4 ([2]). For the OBC-MPS (2.17), there exist matrices Ym, Zm such that

A
[m]
i is a standard OBC-MPS, (2.18)

YmZm = 1, 1 < m < N, (2.19)

A
[1]
i = B

[1]
i Z1, A

[N ]
i = YN−1B

[N ]
i , (2.20)

A
[m]
i = Ym−1B

[m]
i Zm, 1 < m < N. (2.21)� �

The derivation is obtained simply by repeatedly applying singular value decompositions from the
right; we only sketch the proof.

(Sketch of proof) First, apply the singular value decomposition to [B
[N ]
iN

]bN−1
:

[B
[N ]
iN

]bN−1
=

∑
aN−1

U
[N−1]
bN−1aN−1

∆[N−1]
aN−1

A
[N ]
iN
. (2.22)

Define

ZN−1 = U [N−1]∆[N−1], YN−1 = (∆[N−1])−1U [N−1]†, (2.23)

so that YN−1B
[N ]
i = A

[N ]
i and YN−1ZN−1 = 1.

Next, apply the singular value decomposition to the matrix∑
bN−1

[B
[N−2]
iN−1

]bN−2bN−1
[ZN−1]bN−1aN−1

, (2.24)

considered as a bipartition between the legs bN−2iN−1 and aN−1:∑
bN−1

[B
[N−2]
iN−1

]bN−2bN−1
[ZN−1]bN−1aN−1

=
∑
aN−2

U
[N−2]
bN−2aN−2

∆[N−2]
aN−2

[A
[N−1]
iN−1

]aN−2aN−1
. (2.25)

Defining

ZN−2 = U [N−2]∆[N−2], YN−2 = (∆[N−2])−1U [N−2]†, (2.26)

we obtain YN−2B
[N−1]
i ZN−1 = A

[N−1]
i and YN−2ZN−2 = 1.

Repeating this process down to m = 1, we arrive at

B
[1]
i1

· · ·B[N ]
iN

= A
[1]
i1

· · ·A[N ]
iN
, (2.27)

where the A
[m]
i satisfy all conditions except the left-canonical one.

To impose the left-canonical condition, start from m = 1 and diagonalize∑
i

A
[1]†
i A

[1]
i = V1Λ

[1]V †
1 . (2.28)
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Then A
′[1]
i = A

[1]
i V1 satisfies the left-canonical condition

∑
iA

′[1]†
i A

′[1]
i = Λ[1], noting that Λ[0] = 1.

Redefine A
′[2]
i = V †

1 A
[2]
i , and diagonalize∑

i

A
′[2]†
i Λ[1]A

′[2]
i = V2Λ

[2]V †
2 . (2.29)

Then ∑
i

(A
′[2]
i V2)

†Λ[1]A
′[2]
i V2 = Λ[2], (2.30)

so A
′′[2]
i = A

′[2]
i V2 satisfies the left-canonical condition.

Collecting these transformations,

A
′[1]
i = A[1]V1 = B[1]Z1V1, (2.31)

A
′′[m]
i = V †

m−1A
[m]
i Vm = V †

m−1Ym−1B
[m]
i ZmVm, m > 1, (2.32)

which corresponds to the redefinitions

Zm 7→ ZmVm, Ym 7→ V †
mYm, (2.33)

while preserving YmZm = 1.

2.3 Error Estimate

We now estimate how well the OBC-MPS obtained by uniformly truncating the bond dimension of a
standard OBC-MPS to D approximates the original state. Let

ψi1···iN = A
[1]
i1

· · ·A[N ]
iN

(2.34)

be a standard OBC-MPS. Choose D ∈ N and define the truncated OBC-MPS by discarding indices
a > D:

ψD
i1···iN :=

D∑
a1,...,aN−1=1

[A
[1]
i1
]a1

[A
[2]
i2
]a1a2

· · · [A[N−1]
iN−1

]aN−2aN−1
[A

[N ]
iN

]aN−1
. (2.35)

Equivalently, this can be written using the projection matrix onto the degrees of freedom am ≤ D:

P =

(
1D

O

)
, (2.36)

as

ψD
i1···iN = A

[1]
i1
PA

[2]
i2
P · · ·PA[N−1]

iN−1
PA

[N ]
iN
. (2.37)

Introduce the “error” at the im–im+1 bond by

ϵm(D) =

rm∑
am=1

λ[m]
a . (2.38)

� �
Proposition 2.5 (Lemma 1 in [6]).

∥ |ψ⟩ − |ψD⟩ ∥2 ≤ 2

N−1∑
m=1

ϵm(D). (2.39)

� �
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The proof requires the contractivity of the trace norm under positive maps (Theorem 3.23), whose
proof will be given in the next section.

(Proof) It suffices to evaluate | ⟨ψD|ψ⟩ |. We have

⟨ψD|ψ⟩ = Tr [SN (PSN−1(PSN−2(· · ·PS3(PS2(PΛ
[1])) · · · )))] (2.40)

where Sm is the transfer matrix defined by

Sm(X) :=
∑
i

A
[m]†
i XA

[m]
i , Sm+1(Λ

[m]) = Λ[m+1], (2.41)

which is a positive linear map and trace-preserving: tr [Sm(X)] = tr [X]. Thus, by the contractivity of
the trace norm (Theorem 3.23),

∥Sm(X)∥tr ≤ ∥X∥tr. (2.42)

Introduce the notation

Y [1] = Λ[1], Y [k+1] = Sk+1(PY
[k]) =

∑
i

A
[m]†
i PY [k]A

[m]
i , (2.43)

so that

⟨ψD|ψ⟩ = SN (PSN−1(PSN−2(· · ·PS3(PS2(PΛ
[1])) · · · ))) = Y [N ]. (2.44)

Also note that

Sm(Λ[m−1]) = Λ[m]. (2.45)

Now,

∥ |ψ⟩ − |ψD⟩ ∥2 = 1 + ⟨ψD|ψD⟩ − 2ℜ ⟨ψD|ψ⟩ ≤ 2(1−ℜY [N ]) ≤ 2|1− Y [N ]|. (2.46)

By the contractivity of the trace norm,

|1− Y [N ]| = |Λ[N ] − Y [N ]| = ∥Λ[N ] − Y [N ]∥tr = ∥SN (Λ[N−1] − PY [N−1])∥tr (2.47)

≤ ∥Λ[N−1] − PY [N−1]∥tr = ∥Λ[N−1] − PΛ[N−1] + PΛ[N−1] − PY [N−1]∥tr (2.48)

≤ ∥Λ[N−1] − PΛ[N−1]∥tr + ∥P (Λ[N−1] − Y [N−1])∥tr. (2.49)

Using ∥AB∥tr ≤ ∥A∥∥B∥tr7, we obtain

|1− Y [N ]| ≤ ∥Λ[N−1] − PΛ[N−1]∥tr + ∥Λ[N−1] − Y [N−1]∥tr. (2.50)

Proceeding similarly to evaluate ∥Λ[N−1] − Y [N−1]∥tr, we finally obtain

|1− Y [N ]| ≤
N−1∑
m=1

∥Λ[m] − PΛ[m]∥tr =
N−1∑
m=1

∑
a>D

λ[m]
a . (2.51)

Therefore, the error between the true state |ψ⟩ and the bond-dimension-D approximation |ψD⟩ con-
structed from the standard OBC-MPS can be bounded from above by the sum of the errors at all bonds.
Combining with (1.73), we obtain

∥ |ψ⟩ − |ψD⟩ ∥2 ≤ 2

N−1∑
m=1

ϵm(D) ≤ 2

N−1∑
m=1

α×
(
1− α

D

) 1−α
α

× exp

[
1− α

α
Sα(ρ1,m)

]
. (2.52)

7By Lemma 1.6, ∥AB∥tr =
∑

i σi(AB) ≤
∑

i σ1(A)σi(B) = ∥A∥∥B∥tr.
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Now, when |ψ⟩ is the ground state of a CFT, for 1 ≪ ℓ≪ N we have

Sα(ρ1,ℓ) ∼
c

6

(
1 +

1

α

)
log ℓ. (2.53)

Hence,

∥ |ψ⟩ − |ψD⟩ ∥2 ≤ (const.)×D− 1−α
α N

c
6 (1+

1
α )+1. (2.54)

From this, the N -dependence of the bond dimension DN required to achieve

∥ |ψ⟩ − |ψD⟩ ∥ ≤ ϵ0
N

(2.55)

(as we demand that the error of physical quantities does not grow with N , hence the choice of 1/N) is
determined by

ϵ0
N

≤ (const.)×D− 1−α
α NN

c
6 (1+

1
α ), (2.56)

which leads to

DN ∼
(
N2

ϵ0

) α
1−α

×N
c
6

1+α
1−α . (2.57)

Thus, DN is given as a polynomial function of the system size N .

3 Positive Maps and the Perron–Frobenius Theorem

In this section we summarize the necessary facts about positive maps. A compact and readable reference
is [9]. The Perron–Frobenius type theorem for positive maps in finite dimensions can be found in [7].

3.1 Properties of Positive Maps

� �
Definition 3.1. For X ∈ Matn(C), we say X is positive semidefinite (X ≥ 0) if (v,Xv) ≥ 0 for all
v ∈ Cn. We say X is positive definite (X > 0) if (v,Xv) > 0 for all nonzero v ∈ Cn.� �
In particular, if X is positive semidefinite, then X is Hermitian:� �
Proposition 3.2. For X ∈ Matn(C), if (v,Xv) ∈ R for all v ∈ Cn, then X is Hermitian.� �

(Proof) Note the identity (a type of polarization identity)

(x,Ay) =
1

4

3∑
k=0

i−k(x+ iky,A(x+ iky)). (3.1)

Since (v,Xv) = (X†v, v) and the assumption is that this is real, we have (X†v, v) = (X†v, v)∗ = (v,X†v).
Thus, (v, (X −X†)v) = 0 for all v ∈ Cn. By the above identity, it follows that (x, (X −X†)y) = 0 for all
x, y ∈ Cn.

Hereafter, we always assume maps of the form

T : Matm(C) → Matn(C) (3.2)
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are linear, i.e.

T (αX + βY ) = αT (X) + βT (Y ). (3.3)

� �
Proposition 3.3. If X ≥ 0, then for any matrix A, A†XA ≥ 0.� �

(Proof)

⟨v|A†XA|v⟩ = (Av,XAv) ≥ 0. (3.4)

� �
Definition 3.4. A map T : Matm(C) → Matn(C) is called positive if it preserves positive semidefi-
niteness:

X ≥ 0 ⇒ T (X) ≥ 0. (3.5)� �
For example, given a family of matrices {Ai}di=1 with Ai ∈ Matm,n(C),

T (X) =

d∑
i=1

A†
iXAi (3.6)

is positive.� �
Definition 3.5. For T : Matm(C) → Matn(C), the dual map T ∗ : Matn(C) → Matm(C) is defined
by

tr (Y T (X)) = tr (T ∗(Y )X), X ∈ Matm(C), Y ∈ Matn(C). (3.7)� �
Note that the dual map T ∗ is not the Hermitian adjoint T † with respect to the Hilbert–Schmidt inner

product (X,Y )HS = tr [X†Y ]. When X,Y are restricted to Hermitian matrices, however, T ∗ and T †

agree.� �
Proposition 3.6.

T is positive ⇔ T ∗ is positive.� �
(Proof) Assume T is positive. For the spectral decomposition X =

∑
i λi |i⟩ ⟨i|,

⟨v|T ∗(X)|v⟩ = tr [T ∗(X) |v⟩ ⟨v|] = tr [X T (|v⟩ ⟨v|)] (3.8)

=
∑
i

λi ⟨i|T (|v⟩ ⟨v|)|i⟩ ≥ 0, (3.9)

hence T ∗ is positive. The converse is similar.� �
Definition 3.7. We say T : Matm(C) → Matn(C) is trace-preserving if

tr [T (X)] = tr [X], (3.10)

and unital if

T (1) = 1. (3.11)� �
18



� �
Proposition 3.8.

T is trace-preserving ⇔ T ∗ is unital.� �
(Proof) This follows from tr [T ∗(1)X] = tr [T (X)].

Any Hermitian matrix X can be written as the difference of two positive semidefinite matrices:� �
Definition 3.9. For a Hermitian matrix X ∈ Matn(C), X† = X, with spectral decomposition
X =

∑
i λi |i⟩ ⟨i|, define

X+ :=
∑

i,λi>0

λi |i⟩ ⟨i| , X− :=
∑

i,λi<0

(−λi) |i⟩ ⟨i| . (3.12)

� �
In particular,

X = X+ −X−, |X| =
√
X†X = X+ +X−. (3.13)

� �
Proposition 3.10. Any matrix A ∈ Matn(C) can be expressed as a linear combination of positive
semidefinite matrices.� �

(Proof) Writing A = (A+A†)/2 + i(A−A†)/(2i) = X + iY , we obtain

A = X+ −X− + iY+ − iY−. (3.14)

� �
Proposition 3.11. Let T : Matn(C) → Matn(C) preserve Hermiticity, i.e.

X† = X ⇒ T (X)† = T (X). (3.15)

Then:

(i) For A ∈ Matn(C), we have T (A)† = T (A†).

(ii) The eigenvalues of T are either real or occur in complex conjugate pairs (λ, λ∗).

(iii) For real eigenvalues, the eigenvectors of T can be chosen Hermitian.� �
(Proof) (i) Decompose A = X + iY with X† = X, Y † = Y . Then

T (A)† = T (X)† − iT (Y )† = T (X)− iT (Y ) = T (A†). (3.16)

(ii) If T (A) = λA, then T (A†) = T (A)† = λ∗A†. (iii) From T (A+A†) = λ(A+A†).� �
Proposition 3.12. If T : Matn(C) → Matn(C) is positive, then T preserves Hermiticity.� �

(Proof) Write X = X+ −X− as the difference of positive semidefinite matrices. Then T (X) = T (X+)−
T (X−), but T (X+), T (X−) are positive semidefinite and hence Hermitian.

Therefore, the eigenvalues of a positive map T are either real or appear as complex conjugate pairs.

Next, we introduce matrix and operator norms.
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� �
Definition 3.13. For v ∈ Cn, A ∈ Matn(C), and T : Matm(C) → Matn(C), define

∥v∥ :=

√√√√ n∑
i=1

|vi|2, (3.17)

∥A∥ := sup
v∈Cn,∥v∥=1

∥Av∥, (3.18)

∥T∥ := sup
A∈Matm(C),∥A∥=1

∥T (A)∥. (3.19)

� �� �
Proposition 3.14. The norm of a matrix A is given by its largest singular value:

∥A∥ = σmax(A). (3.20)� �
(Proof) From the singular value decomposition A = UΣV †, we have ∥Av∥ = ∥Σv′∥ with v′ = V †v.� �

Proposition 3.15.

∥Av∥ ≤ ∥A∥∥v∥, (3.21)

∥T (A)∥ ≤ ∥T∥∥A∥. (3.22)� �
(Proof)

∥A∥ = sup
v∈Cn,v ̸=0

∥Av∥
∥v∥

≥ ∥Av∥
∥v∥

, (3.23)

and similarly for ∥T∥.� �
Proposition 3.16.

∥AB∥ ≤ ∥A∥∥B∥, (3.24)

∥T1T2∥ ≤ ∥T1∥∥T2∥. (3.25)� �
(Proof) For any v ∈ Cn,

∥ABv∥ ≤ ∥A∥∥Bv∥ ≤ ∥A∥∥B∥∥v∥, (3.26)

and similarly for ∥T1T2∥.� �
Lemma 3.17.

∥A∥ ≤ 1 ⇔
(

1 A
A† 1

)
≥ 0. (3.27)� �

(Proof) Let A = UΣV † be the singular value decomposition with σ1 ≥ · · · ≥ σn. Then(
1 A
A† 1

)
=

(
U

V

)⊕
i

(
1 σi
σi 1

)(
U†

V †

)
. (3.28)
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Hence the eigenvalues are {1 + σi, 1− σi}i. Therefore,(
1 A
A† 1

)
≥ 0 ⇔ σ1 ≤ 1 ⇔ ∥A∥ ≤ 1. (3.29)

� �
Theorem 3.18 (Russo–Dye). Let T : Matn(C) → Matn(C) be positive and unital. Then

∥T∥ = 1. (3.30)� �
(Proof) For a general unitary matrix U ∈ U(n), take its spectral decomposition

U =
∑
i

eiϕiPi, P †
i = Pi, P 2

i = Pi. (3.31)

Then (
1 T (U)

T (U)† 1

)
=

∑
i

(
T (Pi) eiϕiT (Pi)

e−iϕiT (Pi) T (Pi)

)
=

∑
i

(
1 eiϕi

e−iϕi 1

)
⊗ T (Pi). (3.32)

Each term in the last expression is positive semidefinite8. Thus(
1 T (U)

T (U)† 1

)
≥ 0. (3.33)

By the preceding lemma, this implies ∥T (U)∥ ≤ 1.

Now, for a general A ∈ Matn(C) with ∥A∥ = 1, take its singular value decomposition A = UΣV † with
1 = σ1 ≥ σ2 ≥ · · · . Since

σi = cos θi =
eiθi + e−iθi

2
, (3.34)

we can write

A =
1

2
U diag(eiθ1 , . . . , eiθn)V † +

1

2
U diag(e−iθ1 , . . . , e−iθn)V † =:

1

2
U1 +

1

2
U2, (3.35)

as a convex combination of two unitary matrices. Therefore

∥T (A)∥ ≤ 1
2 (∥T (U1)∥+ ∥T (U2)∥) ≤ 1. (3.36)

On the other hand,

∥T∥ ≥ ∥T (1)∥ = ∥1∥ = 1. (3.37)

Hence ∥T∥ = 1.� �
Corollary 3.19 (Russo–Dye). For a positive map T : Matn(C) → Matn(C),

∥T∥ = ∥T (1)∥. (3.38)� �
(Proof) Let P := T (1) ≥ 0. If P > 0, then the map T ′(A) = P−1/2T (A)P−1/2 is unital with T ′(1) = 1.
Thus,

∥T (A)∥ = ∥P 1/2T ′(A)P 1/2∥ ≤ ∥P∥∥T ′(A)∥ ≤ ∥P∥∥T ′∥∥A∥ = ∥P∥∥A∥. (3.39)

8If A,B ≥ 0, then the eigenvalues of A⊗B are λi(A)λj(B) ≥ 0, hence A⊗B ≥ 0.
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Hence ∥T∥ ≤ ∥P∥. On the other hand, ∥T (1)∥ = ∥P∥, so ∥T∥ = ∥P∥ = ∥T (1)∥.

If P has zero eigenvalues, then for small ϵ > 0, define Tϵ(A) = T (A) + ϵ1. Then Tϵ(1) = P + ϵ1 > 0.
Thus ∥Tϵ∥ = ∥Tϵ(1)∥. Taking ϵ→ 0, we obtain the desired result.� �

Definition 3.20 (Trace Norm). For A ∈ Matn(C), the trace norm is defined by

∥A∥tr = tr |A|. (3.40)� �
If {σa}a are the singular values of A, then

∥A∥tr =
n∑

a=1

σa. (3.41)

Note also that for any U, V ∈ U(n),

∥UAV †∥tr = ∥A∥tr. (3.42)

Next, we prove the contractivity of the trace norm under positive maps. As preparation, we first
prove the following lemma.� �

Lemma 3.21. For A,B ∈ Matn(C),

|tr (AB)| ≤ ∥A∥tr∥B∥. (3.43)

Equality holds when A = U |A| is the polar decomposition and B = U†.� �
(Proof) Take the polar decomposition A = U |A|9. Define the linear map

ϕ|A| : Matn(C) → Matn(C), ϕ|A|(B) := tr (|A|B) · 1n = tr (
√
|A|B

√
|A|) · 1n. (3.44)

This map is positive, so by Russo–Dye, for any B ∈ Matn(C),

|tr (|A|B)| = ∥ϕ|A|(B)∥ ≤ ∥ϕ|A|∥ · ∥B∥ ≤ ∥ϕ|A|(1)∥ · ∥B∥ = tr |A| · ∥B∥ = ∥A∥tr · ∥B∥. (3.45)

Therefore,

|tr (AB)| = |tr (|A|BU)| ≤ ∥A∥tr · ∥BU∥ = ∥A∥tr · ∥B∥. (3.46)

Equality holds when BU = 1n.

From this, we obtain the variational expression for the trace norm:� �
Corollary 3.22.

∥A∥tr = sup
B,∥B∥=1

|tr (AB)|. (3.47)

� �
Now we can state the following.

9If A = UΣV † is the singular value decomposition, then A = (UV †)V ΣV † gives the polar decomposition.
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� �
Theorem 3.23 (Contractivity of the Trace Norm). Let T : Matm(C) → Matn(C) be positive. Then
for any A ∈ Matm(C),

∥T (A)∥tr ≤ ∥T ∗(1)∥ · ∥A∥tr. (3.48)

In particular, if T is trace-preserving,

∥T (A)∥tr ≤ ∥A∥tr. (3.49)� �
(Proof)

∥T (A)∥tr = sup
B,∥B∥=1

|tr (T (A)B)| = sup
B,∥B∥=1

|tr (AT ∗(B))|. (3.50)

Here,

|tr (AT ∗(B))| ≤ ∥A∥tr · ∥T ∗(B)∥ ≤ ∥A∥tr · ∥T ∗∥ · ∥B∥ (3.51)

= ∥A∥tr · ∥T ∗(1)∥ · ∥B∥. (3.52)

Thus

∥T (A)∥tr ≤ ∥A∥tr · ∥T ∗(1)∥. (3.53)

3.2 Perron–Frobenius Theorem

We prove the Perron–Frobenius theorem for finite-dimensional positive linear maps, following [7]. This
is the finite-dimensional version of the Krein–Rutman theorem, an extension of the Perron–Frobenius
theorem to Banach spaces.� �

Definition 3.24. For T : Matn(C) → Matn(C), define

• Sp(T ) := {λ ∈ C | λ− T is not invertible}, the spectrum of T .

• ρT = maxλ∈Sp(T ) |λ|, the spectral radius of T .� �
The statements we wish to prove are as follows. For a positive linear map T : Matn(C) → Matn(C):

• ρT ∈ Sp(T ).

• There exists ∃X ≥ 0 such that T (X) = ρTX.

That is, for a positive map the spectral radius is an eigenvalue, and moreover an eigenvector can be
chosen to be positive.

Because the proof is somewhat long, we first outline the steps:

• When T satisfies the good condition of being “irreducible,” we prove a stronger statement.

• We introduce the notion of hereditary.

• If T is irreducible, then (1 + T )n−1 > 0.

• If T is irreducible, there exists a unique (up to scale) eigenpair T (X) = ρTX with X > 0.
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• A general positive map is obtained as a limit of irreducible positive maps.

In this section, unless a specific n must be indicated, we abbreviate M = Matn(C), and linear maps
T :M →M are assumed positive. We also denote by

M+ := {X ∈M | X ≥ 0} (3.54)

the cone of positive semidefinite matrices.� �
Definition 3.25. A subalgebra M ′ ⊂M is called hereditary if it has the following property:

0 ≤ X ≤ Y and Y ∈M ′ ⇒ X ∈M ′. (3.55)� �� �
Proposition 3.26. Let p ∈M be an orthogonal projection. Then the subalgebra pMp is hereditary.� �
Before the proof, let us look at an example. LetM = Mat2(C). Then the cone of positive semidefinite

matrices is

M+ = {x0 + x · σ | x0 ≥ |x|}, (3.56)

namely the interior and boundary of a cone. The condition 0 ≤ X ≤ Y means that X lies in the cone
with apex at the origin, and Y lies in the cone with apex at X (see Fig. 2 [a]). Consider the orthogonal

projection onto the (1, 1)-component, p =

(
1 0
0 0

)
. Then

(pMp)+ = {x0 + x3σ3 | x0 = x3}, (3.57)

so Y ∈ (pMp)+ sits on the “rim’’ of the cone M+. For Y ≥ X to hold, X must also lie on the rim of
M+, which shows X ∈ (pMp)+ (see Fig. 2 [b]).

(Proof. [10]) Assume 0 ≤ X ≤ pY p with Y ∈M . Then

0 ≤ (1− p)X(1− p) ≤ (1− p)pY p(1− p) = 0, (3.58)

hence (1− p)
√
X =

√
X(1− p) = 0. Thus (1− p)X = X(1− p) = 0, and therefore X ∈ pMp.

We define irreducibility of a positive linear map T as follows.� �
Definition 3.27. A map T is irreducible if there exists no nontrivial (i.e., neither p = 0 nor p = 1)
orthogonal projection p such that

T (pMp) ⊂ pMp. (3.59)� �
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Recall that an irreducible representation ρ : G → V of a group G (with representation space V )
is one for which ρg cannot be put in block-diagonal form, i.e., there is no nontrivial projection p with
ρg(pV ) ⊂ pV . The above generalizes the notion of irreducibility in the Perron–Frobenius theorem to
positive linear maps.

The condition T (pMp) ⊂ pMp can be reformulated as a property of p:� �
Lemma 3.28. Let p ∈M be an orthogonal projection. Then

T (pMp) ⊂ pMp ⇔ ∃λ > 0 s.t. T (p) ≤ λp. (3.60)� �
(Proof10) Choose a basis so that p =

(
1r

0

)
. Let X ∈ pMp, i.e.,

X =

(
X ′ 0
0 0

)
, X ′ ∈ Matr(C). (3.61)

By linearity of T and the fact that any matrix is a linear combination of positive semidefinite matrices,
we may assume X ≥ 0. Write the spectral decomposition

X =

q∑
a=1

λapa, λ1 ≥ · · · ≥ λq > 0, q ≤ r, (3.62)

and note that

p =

r∑
a=1

pa. (3.63)

Then

0 ≤ λqp ≤ X ≤ λ1p. (3.64)

(⇐) For any X ≥ 0, X ̸= 0, there exists λ1 such that 0 ≤ T (X) ≤ λ1T (p) ≤ λ1λp ∈ (pMp)+. Hence,
by heredity, T (X) ∈ pMp.

(⇒) For some X ≥ 0, X ̸= 0, we have 0 ≤ λqT (p) ≤ T (X) ∈ (pMp)+. Thus, by heredity, λqT (p) ∈
(pMp)+, i.e., T (p) ∈ (pMp)+. Since T (p) ≥ 0 and T (p) ∈ pMp, its spectral decomposition

T (p) =

s∑
a=1

ξap
′
a, ξ1 ≥ · · · ≥ ξs > 0, s ≤ r, (3.65)

implies T (p) ≤ ξ1p.

The following statements hold.� �
Proposition 3.29. Assume T is irreducible. Then

(i) T (1) > 0.

(ii) If X > 0, then T (X) > 0.� �
(Proof) (i) Suppose T (1) has a zero eigenvalue. Let p be the orthogonal projection onto imT (1). Since
T (p) ≤ T (1) ∈ pMp, there exists λ > 0 with T (1) ≤ λp. This contradicts the irreducibility of T .

(ii) If X > 0, there exists ϵ > 0 such that X > ϵ1n. Hence T (X) > ϵT (1) > 0.

10I learned this from Kan Kitamura; many thanks.
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We next reformulate the irreducibility of T .� �
Definition 3.30. We say that T is strictly positive (strictly irreducible), written T > 0, if for every
X ≥ 0, X ̸= 0, one has T (X) > 0.� �
Define the Hilbert–Schmidt inner product by

(A,B)HS := tr [A†B], A,B ∈ Matn(C). (3.66)

� �
Proposition 3.31.

• If X,Y ≥ 0, then (X,Y )HS ≥ 0.

• If X > 0 and Y ≥ 0 (or X ≥ 0 and Y > 0), then (X,Y )HS > 0.

• T > 0 is equivalent to (Y, T (X))HS > 0 for all X,Y ≥ 0 with X,Y ̸= 0.� �
(Proof) The first two items follow from tr [XY ] = tr [

√
Y X

√
Y ] ≥ 0. For the third: (⇒) since tr [Y T (X)] =

tr [
√
T (X)Y

√
T (X)] and T > 0 withX ̸= 0 implies T (X) > 0 (positive definite), we have tr [

√
T (X)Y

√
T (X)] >

0 for Y ̸= 0. (⇐) For any v ∈ Cn, set Y = |v⟩ ⟨v|. Then ⟨v|T (X)|v⟩ > 0, hence T (X) > 0.� �
Lemma 3.32.

T is irreducible ⇔ (1 + T )n−1 > 0. (3.67)� �
(Proof) (⇒) For Y ≥ 0, Y ̸= 0, consider (1 + T )n−1(Y ). If Y > 0 then (1 + T )(Y ) > 0, so assume Y has
zero eigenvalues. If (1 + T )(Y )v = 0 for some v ∈ Cn, then ⟨v|(1 + T )(Y )|v⟩ = 0 implies ⟨v|Y |v⟩ = 0,
hence Y v = 0. Thus ker(1 + T )(Y ) ⊂ kerY always holds.

Suppose ker(1+T )(Y ) = kerY , i.e., also kerY ⊂ ker(1+T )(Y ). If Y v = 0, then (1+T )(Y )v = T (Y )v,
so kerY ⊂ kerT (Y ), equivalently imT (Y ) ⊂ imY . Let p be the orthogonal projection onto imY (if
Y =

∑r
a=1 λapa with r < n, then p =

∑r
a=1 pa). Since T (p) ∈ imY = im p, letting ξ1 be the largest

eigenvalue of T (p), we have T (p) ≤ ξ1p. By Lemma 3.28, T (pMp) ⊂ pMp. As T is irreducible and Y ̸= 0,
this forces p = 1, a contradiction because then Y would be invertible. Hence ker(1 + T )(Y ) ̸= kerY , so
ker(1+T )(Y ) ⊊ kerY , i.e., rank(1+T )(Y ) > rankY . Applying (1+T ) at least n− 1 times to a singular
Y yields (1 + T )n−1(Y ) full rank, i.e., (1 + T )n−1(Y ) > 0.

(⇐) By contradiction. If T is reducible, there exists a nontrivial projection p and λ > 0 with
T (p) ≤ λp. Then

0 < (1 + T )n−1(p) ≤ (1 + λ)n−1p, (3.68)

whose right-hand side is not full rank—a contradiction.

As an example of an irreducible positive map:

• Example. T (A) := 1
n tr [A] 1n is irreducible, since T 2 = T and hence (1+T )n−1 = 1+(const.)T > 0.

We introduce yet another equivalent formulation of irreducibility.
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� �
Lemma 3.33. T is irreducible if and only if the following holds:

• For any nonzero positive semidefinite X,Y ≥ 0 with (Y,X)HS = 0, there exists k ∈ N such that
(Y, T k(X))HS > 0.� �

This corresponds to the graph-theoretic condition in the classical Perron–Frobenius theorem: for any
pair of nodes (i, j) there exists a path ii1 → i1i2 → · · · → ikj through nonzero matrix entries.

(Proof) (⇒) From irreducibility, for X,Y ≥ 0, X,Y ̸= 0, we have (Y, (1 + T )n−1(X))HS > 0. Expanding
and using (Y,X)HS = 0,(

Y,

{
(n− 1)T +

1

2
(n− 1)(n− 2)T 2 + · · ·+ Tn−1

}
(X)

)
HS

> 0. (3.69)

All terms are nonnegative, so there exists at least one k ∈ {1, . . . , n− 1} with (Y, T k(X))HS > 0.

(⇐) Prove the contrapositive. Suppose there exists a nontrivial projection p with T (pMp) ⊂ pMp.
Then for any k > 0, T k(p) ∈ pMp, hence T k(p) p = T k(p). Therefore, for all k > 0,

0 = tr [(1− p)T k(p)] = (1− p, T k(p))HS. (3.70)

Taking X = p, Y = 1−p—a nonzero pair with (Y,X)HS = 0—we have (Y, T k(X))HS = 0 for all k ∈ N.

Since for Hermitian matrices X,Y the dual satisfies (X,T k(Y ))HS = (Y, T ∗k(X))HS, we obtain:� �
Corollary 3.34.

T is irreducible ⇔ T ∗ is irreducible. (3.71)� �
Finally, define the following real-valued function on M+:

r :M+ → R, r(X) := sup{λ ∈ R | T (X) ≥ λX}. (3.72)

Define also the overall supremum

r := sup
X∈M+

r(X). (3.73)

The Perron–Frobenius theorem follows from the next lemma.� �
Lemma 3.35 ([7]). Assume T is irreducible. Then

(i) There exists X = Z attaining the supremum r and Z is positive definite, Z > 0.

(ii) T (Z) = rZ.

(iii) The eigenspace for λ = r is one-dimensional.

(iv) r = ρT (the spectral radius).� �
(Proof) (i) We first show the existence of X ∈ M+ attaining the supremum. Since r(aX) = a r(X) for
a > 0, we may assume tr [X] = 1. The “sphere’’

S = {X ∈M+ | tr [X] = 1} (3.74)

is compact. Thus, if the restriction r|S were continuous, it would attain a maximum on S. However, r
need not be continuous on S.
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On the other hand, for X > 0 we have T (X) > 0 (by Proposition 3.29), and then

r(X) =
∥∥T (X)−

1
2X T (X)−

1
2

∥∥−1
, (3.75)

so r is continuous on the set of positive definite matrices {X ∈M+ | X > 0}. To see that the supremum
r is achieved by some X > 0, introduce

N := (1 + T )n−1S = {(1 + T )n−1(X) > 0 | tr [X] = 1}. (3.76)

The set N is compact and consists only of positive definite matrices. Hence r|N attains its maximum at
some Z > 0. We claim that Z attains the supremum over all of M+.

Take X ∈ S and set Y = (1 + T )n−1(X) ∈ N . By definition of r(X), T (X)− r(X)X ≥ 0. Hence

(T − r(X))(Y ) = (T − r(X))(1 + T )n−1(X) (3.77)

= (1 + T )n−1
(
T (X)− r(X)X

)
≥ 0. (3.78)

Thus T (Y ) ≥ r(X)Y , and therefore

r(Y ) ≥ r(X) for all X ∈ S. (3.79)

Consequently,

r ≥ max
X∈N

r(X) ≥ sup
X∈S

r(X) = sup
X∈M+

r(X) = r, (3.80)

whence

r = max
X∈N

r(X). (3.81)

Therefore the supremum r is attained at some positive definite matrix Z > 0.

(ii) Suppose, to the contrary, that T (Z)− rZ ̸= 0. Let W = (1 + T )n−1(Z). Then

T (W )− rW = (1 + T )n−1
(
T (Z)− rZ

)
> 0, (3.82)

which implies r(W ) > r, contradicting the maximality of r.

(iii) Suppose there exists another eigenvector Z ′ not proportional to Z with T (Z ′) = rZ ′. Since r is
real, Z ′ can be taken Hermitian (Proposition 3.11). Consider the spectral decomposition

Z− 1
2Z ′Z− 1

2 =

n∑
a=1

λapa, λ1 ≥ · · · ≥ λn. (3.83)

Then

λ1 1− Z− 1
2Z ′Z− 1

2 =

n∑
a=2

(λ1 − λa)pa ≥ 0 (3.84)

is not full rank. Hence λ1Z − Z ′ is not full rank; but

0 < (1 + T )n−1(λ1Z − Z ′) = (1 + r)n−1(λ1Z − Z ′), (3.85)

a contradiction.

(iv) Define

T̃ (A) :=
1

r
Z− 1

2 T
(
Z

1
2AZ

1
2

)
Z− 1

2 . (3.86)
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Then T̃ (1) = 1, so T̃ is unital. By Theorem 3.18, ∥T̃∥ = 1. If T (A) = αA, then

T̃
(
Z− 1

2AZ− 1
2

)
=
α

r
Z− 1

2AZ− 1
2 . (3.87)

Therefore

1 = ∥T̃∥ ≥
∣∣∣α
r

∣∣∣ . (3.88)

Thus |α| ≤ r for every eigenvalue α, i.e. r = ρT .

Moreover, any eigenvector corresponding to an eigenvalue λ ̸= r cannot be positive semidefinite.� �
Lemma 3.36 ([7]). Assume T is irreducible. If Y ≥ 0, Y ̸= 0 is an eigenvector of T with eigenvalue
α, then α = r.� �

(Proof) Use the dual T ∗. Then T ∗ is also irreducible. As for T , define

r∗ := sup
X∈M+

sup{λ ∈ R | T ∗(X) ≥ λX}. (3.89)

There exists Z∗ > 0 such that T ∗(Z∗) = r∗Z∗. Then

r (Z∗, Z)HS = (Z∗, T (Z))HS = (T ∗(Z∗), Z)HS = r∗(Z∗, Z)HS > 0, (3.90)

hence r = r∗. If T (Y ) = αY with Y ≥ 0, Y ̸= 0, then

α (Z∗, Y )HS = (Z∗, T (Y ))HS = (T ∗(Z∗), Y )HS = r (Z∗, Y )HS. (3.91)

Since Z∗ > 0, we have (Z∗, Y )HS > 0 (Proposition 3.31), hence α = r.

Putting everything together, we obtain:� �
Theorem 3.37 ([7]. (Finite-dimensional Krein–Rutman Theorem)). Let T : Matn(C) → Matn(C)
be an irreducible positive linear map. Then

(i) ρT ∈ Sp(T ).

(ii) The eigenspace for λ = ρT is nondegenerate and has a positive definite eigenvector:

T (Z) = ρTZ, Z > 0. (3.92)

(iii) Any eigenvector corresponding to an eigenvalue λ ̸= ρT is not positive semidefinite.� �
For an irreducible positive linear map T , the spectrum has the shape illustrated in Fig. 3.� �
Corollary 3.38. Let T : Matn(C) → Matn(C) be an irreducible positive linear map. Then

(i) ρT ∈ Sp(T ).

(ii) An eigenvector for the eigenvalue λ = ρT can be chosen positive semidefinite.� �
(Proof [5]) The set of irreducible positive linear maps is dense in the set of all positive linear maps.
Indeed, given any positive linear map T and some irreducible positive linear map S, the map

Tϵ = T + ϵS (3.93)
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Figure 3

is irreducible because

(1 + Tϵ)
n−1 = (1 + ϵS)n−1 + · · · > 0. (3.94)

(Recall that if T1, T2 are positive, then so is T1 ◦T2.) Thus, for any T there exist irreducible Tϵ arbitrarily
close to T . Applying Theorem 3.37 to irreducible Tϵ, we have

Tϵ(Zϵ) = ρTϵZϵ, Zϵ > 0. (3.95)

Taking ϵ→ +0,

T (Z) = ρTZ, Z ≥ 0. (3.96)

(Here Z need not be positive definite, and the eigenspace for λ = ρT need not be nondegenerate.)

Irreducibility is preserved under the following “similarity transformations.’’� �
Proposition 3.39. Let T : Matn(C) → Matn(C) be an irreducible positive linear map. For any
c > 0 and any Q ∈ GLn(C), define

T̃ (A) = cQ−1T (QAQ†)(Q†)−1. (3.97)

Then

(i) T̃ is irreducible.

(ii) T̃ ∗(A) = cQ† T ∗((Q−1)†AQ−1
)
Q.� �

(Proof) (i) Let q be an orthogonal projection and assume T̃ (q) ≤ λq for some λ > 0. This is equivalent
to c T (QqQ†) ≤ λQqQ†. Let p be the orthogonal projection onto im (QqQ†); then p “reduces’’ T .
Indeed, with the spectral decomposition

QqQ† =

r∑
a=1

λapa, λ1 ≥ · · · ≥ λr > 0, (3.98)

and p =
∑r

a=1 pa, we have λrp ≤ QqQ† ≤ λ1p and hence λrT (p) ≤ λ1p. Thus c λrT (p) ≤ λλrp. Since T
is irreducible, p = 0 or p = 1.

(ii) A straightforward computation:

(T̃ ∗(A), B)HS = (A, T̃ (B))HS = tr
[
A† cQ−1T (QBQ†)(Q†)−1

]
(3.99)

= tr
[
c (Q†)−1A†Q−1 T (QBQ†)

]
= tr

[
c T ∗((Q†)−1A†Q−1

)
QBQ†] (3.100)

= tr
[
cQ†T ∗((Q†)−1A†Q−1

)
QB

]
, (3.101)
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which yields the claimed formula.� �
Proposition 3.40 ([2, 5]. Normalization). Let T : Matn(C) → Matn(C) be an irreducible positive
linear map. By a similarity transform one can achieve

(i) T (1) = 1,

(ii) T ∗(Λ) = Λ, with Λ = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn > 0, and tr [Λ] = 1.� �
(Proof) Let

T (Z) = ρTZ > 0, T ∗(Z∗) = ρTZ
∗ > 0. (3.102)

Consider the similarity transform

T1(A) := ρ−1
T Z−1/2 T (Z1/2AZ1/2)Z−1/2. (3.103)

Then T1(1) = 1, and

T ∗
1

(
Z1/2Z∗Z1/2

)
= Z1/2Z∗Z1/2. (3.104)

Diagonalize Z1/2Z∗Z1/2 = UΛU†, and set

T2(A) := U† T1(UAU
†)U. (3.105)

Then T2(1) = 1 and T ∗
2 (Λ) = Λ. (Rescale to ensure tr [Λ] = 1.)

4 TI-MPS

From this section on, we study MPS with translational symmetry.

4.1 Existence and Canonical Form of TI-MPS

When a Hamiltonian for a 1D spin system is defined with periodic boundary conditions, its eigenstates
are expected to possess translational symmetry in an appropriate sense. Hence one may expect that the

site dependence of the matrices {A[m]
i } can be removed.� �

Definition 4.1. An MPS whose matrices A
[m]
i do not depend on m is called a translationally

invariant (TI) MPS.� �
Define the translation operator by

T̂r |i1 · · · iN ⟩ := |iN i1 · · · iN−1⟩ . (4.1)

In this note we consider only states with Bloch momentum 0, i.e., states |ψ⟩ satisfying T̂r |ψ⟩ = |ψ⟩.� �
Theorem 4.2. Any state with T̂r |ψ⟩ = |ψ⟩ admits a TI-MPS representation.� �
Logically, this is a nontrivial statement.
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(Proof) Let an OBC-MPS of |ψ⟩ be

|ψ⟩ = A
[1]
i1

· · ·A[N ]
iN

|i1 · · · iN ⟩ . (4.2)

By translation invariance, for any k,

|ψ⟩ = tr [A
[k+1]
i1

· · ·A[k+N ]
iN

] |i1 · · · iN ⟩ . (4.3)

Average over k. The following matrices yield a TI-MPS:

Bi := N− 1
N


0 A

[1]
i

0 A
[2]
i

. . .

0 A
[N−1]
i

A[N ] 0

 . (4.4)

Thus, a translationally invariant state T̂r |ψ⟩ = |ψ⟩ can be represented by a set {Ai}di=1 of square
matrices at a single site:

|ψ⟩ =
∑

i1...iN

tr [Ai1 · · ·AiN ] |i1 · · · iN ⟩ . (4.5)

We would like to classify the matrices {Ai}i in order to classify“gapped, nondegenerate ground states.”
We also want to exclude the following kinds of states:

• Example.

A↑ =

(
1

0

)
, A↓ =

(
0

1

)
. (4.6)

The resulting state is a superposition of macroscopic states,

|ψ⟩ = |↑ · · · ↑⟩+ |↓ · · · ↓⟩ . (4.7)

More generally, we wish to exclude cases where

Ai =

(
Bi Di

Ci

)
(4.8)

is an upper block-triangular matrix.

• Example.

A↑ =

(
1
)
, A↓ =

(
1

)
. (4.9)

In this case,

|ψ⟩ = |↑↓↑↓ · · ·⟩+ |↓↑↓↑ · · ·⟩ , (4.10)

which is a superposition of macroscopically non–translationally invariant states whose translational
invariance is restored only after taking a linear combination. As we will see, this can be excluded
by imposing constraints on the eigenstructure of the transfer matrix.

We thus wish to exclude states of the above types. For a TI-MPS {Ai}i, define the transfer maps

TA(X) :=

d∑
i=1

AiXA
†
i , (4.11)

T ∗
A(X) :=

d∑
i=1

A†
iXAi. (4.12)
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By imposing suitable conditions on these transfer maps, we will obtain the desired class of states.� �
Proposition 4.3. The transfer maps TA, T

∗
A are positive linear maps.� �

(Proof) Linearity is obvious. For positivity, decompose X ≥ 0 spectrally as X =
∑

a λaPa, then

TA(X) =
∑
i,a

AiPaA
†
i , (4.13)

and since AiPaA
†
i ≥ 0 (Proposition 3.3), we obtain T (X) ≥ 0.

In fact, TA is known to be completely positive. In what follows, however, we only use the positivity
of T .

We now introduce the canonical form of TI-MPS. Let {Ai}i be a TI-MPS. We say that {Ai}i is
irreducible (resp. reducible) if TA is irreducible (resp. reducible).� �

Proposition 4.4. If {Ai}i is reducible, then without changing the state |ψ⟩ the TI-MPS can be
block-diagonalized as

Ai =

(
Bi

Ci

)
. (4.14)� �

(Proof) By reducibility of TA, there exists a nontrivial orthogonal projection p ̸= 0, 1 such that TA(pMp) ⊂
pMp. The restriction of TA to the subalgebra pMp is also positive, hence there exists Y ∈ pMp such
that TA(Y ) = ρTA|pMp

Y with Y ≥ 0, nonzero, and not full rank. With the spectral decomposition

Y =

r∑
a=1

λa |a⟩ ⟨a| , (4.15)

we obtain

r∑
a=1

d∑
i=1

Ai |a⟩ ⟨a|A†
i =

r∑
a=1

λa |a⟩ ⟨a| . (4.16)

By general arguments, the vector space spanned by {Ai |a⟩}i,a coincides with that spanned by {|a⟩}a.
Let PY =

∑r
a=1 |a⟩ ⟨a| be the orthogonal projection onto imY . Since Ai |a⟩ ∈ imY , we have Ai |a⟩ =

PYAi |a⟩, hence AiPY = PYAiPY . Thus, in a basis with PY =

(
1r

0

)
,

Ai =

(
Bi Di

0 Ci

)
. (4.17)

The off-diagonal block does not contribute after taking the trace, so replacing

Ai 7→
(
Bi 0
0 Ci

)
(4.18)

leaves the state |ψ⟩ unchanged.� �
Proposition 4.5. The similarity transformation (3.97) leaves the state |ψ⟩ unchanged.� �

(Proof) It corresponds to the transformation

Ai 7→
√
cQ−1AiQ. (4.19)
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Here Q cancels out, and
√
c only contributes an overall constant.

Combining the above two propositions, we obtain the canonical form of TI-MPS:� �
Theorem 4.6 ([2]. Canonical form of TI-MPS). Any TI-MPS {Ai}i admits the canonical form

Ai =
⊕
α

ραA
α
i , ρα > 0, (4.20)

where each block {Aα
i }i is irreducible and satisfies the canonical conditions∑
i

Aα
i A

α†
i = 1Dα

, (4.21)∑
i

Aα†
i ΛαAα

i = Λα, Λα = diag(λα1 , . . . , λ
α
Dα

), tr [Λα] = 1. (4.22)

� �
4.2 Injectivity and Strong Irreducibility

Irreducibility alone is insufficient to characterize the class of “gapped, nondegenerate ground states.”
For instance, the undesirable example (4.9) has transfer matrix spectrum Sp(TA) = {1,−1, 0, 0}.

From the behavior of correlation functions, one can impose restrictions on the spectral structure of the
transfer matrix TA. Indeed, it is known that in a gapped ground state, any two-point correlation function
decays exponentially [11]. For any pair of operators Ôx, Ô

′
y supported near sites x, y, the correlation

function

⟨ψ|ÔxÔ
′
y|ψ⟩ (4.23)

is governed, in the large-distance limit |y − x| → ∞, by the subleading eigenvalue of (TA)
|y−x|. Thus, if

there are multiple eigenvalues with |λ| = ρTA
, some correlation functions exhibit long-range order. We

therefore exclude such cases.� �
Definition 4.7 (Strong irreducibility [8]). A TI-MPS {Ai}i is called strongly irreducible if it is
irreducible and

|λ| = ρTA
⇒ λ = ρTA

.� �
If {Ai}i is strongly irreducible, then TN

A “collapses’’ for sufficiently large N . With the spectral
decomposition of TA,

TA(Z) = ρTA
Z, T ∗

A(Z
∗) = ρTA

Z∗, tr [Z∗Z] = 1,

we can write

TA(·) = ρTA

[
Ztr (Z∗·) +

∑
λ

λ

ρTA

Pλ(·)
]
, (4.24)

so that

TN
A ∼ (ρTA

)N [Ztr (Z∗·) + · · · ] . (4.25)

The subleading terms decay exponentially in N . In particular, as N → ∞,

TN
A (X) ∼ (ρTA

)N tr (Z∗X). (4.26)
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Strong irreducibility can be reformulated as an algebraic property of {Ai}i. For L ∈ N define the
linear map

ΓL : Matn(C) → (Cd)⊗L, X 7→ ΓL(X) :=
∑

i1,...,iL

tr [XAi1 · · ·AiL ] |i1 · · · iL⟩ . (4.27)

� �
Proposition 4.8 ([2]).

ΓL is injective ⇔ Span {Ai1 · · ·AiL}i1,...,iL = Matn(C).� �
(Proof) (⇐) If ΓL(X) = 0, then tr [XAi1 · · ·AiL ] = 0 for all i1, . . . , iL. By assumption, {Ai1 · · ·AiL}
spans Matn(C), so there exist coefficients {ci1...iL} with

∑
ci1...iLAi1 · · ·AiL = X†. Then tr [XX†] = 0,

i.e. X = 0.

(⇒) Represent ΓL as

[ΓL]i1...iL,ab = ⟨i1 · · · iL|ΓL(|a⟩ ⟨b|)⟩ = ⟨b|Ai1 · · ·AiL |a⟩ = [Ai1 · · ·AiL ]ba. (4.28)

If ΓL is injective, the matrix ΓL has full rank n2, hence the row vectors [Ai1 · · ·AiL ] span Matn(C).� �
Proposition 4.9 ([2]).

ΓL injective ⇒ ΓL′ injective for all L′ > L.� �
(Proof) For L′ = L+ 1,

ΓL+1(X) =
∑
iL+1

ΓL(AiL+1
X) |iL+1⟩ .

If ΓL+1(X) = 0, then ΓL(AiX) = 0 for all i. By injectivity of ΓL, this implies AiX = 0 for all i. Since
{Ai1 · · ·AiL} spans Matn(C), there exist {ci1...iL} with

∑
ci1...iLAi1 · · ·AiL = 1n. Thus X = 0.� �

Definition 4.10 (Injectivity). A TI-MPS {Ai}i is injective if there exists L0 ∈ N such that ΓL0 is
injective. Equivalently, for some L0, the set {Ai1 · · ·AiL0

}i1,...,iL0
spans Matn(C).� �

Note that injectivity of {Ai}i is different from requiring that the set of all products of arbitrary length
spans Matn(C), i.e.

Span
(⋃

L

{Ai1 · · ·AiL}i1,...,iL
)
= Matn(C).

For example, in (4.9), although Span(A↑, A↓, A↑A↓, A↓A↑) = Mat2(C), for no fixed L do the length-L
products span Mat2(C).� �

Proposition 4.11. If {Ai}i is injective, then it is irreducible.� �
(Proof) By contraposition. If {Ai}i is reducible, then as in Proposition 4.4,

Ai =

(
Bi Di

0 Ci

)
,

so for any L, the products {Ai1 · · ·AiL} cannot span Matn(C).
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� �
Proposition 4.12 ([1, 8]). If {Ai}i is strongly irreducible, then it is injective.� �

(Proof) Suppose not: for every L, the products {Ai1 · · ·AiL} do not span Matn(C). Then for each L
there exists BL ̸= 0 orthogonal to this span, i.e. tr [Ai1 · · ·AiLBL] = 0 for all i1, . . . , iL. Thus

0 = (TA)
L(BL ⊗B†

L).

But by strong irreducibility,

(TA)
L(BL ⊗B†

L)
L→∞−−−−→ (ρTA

)Ltr (Z∗BLZB
†
L),

which is nonzero since Z,Z∗ > 0. Contradiction.

In fact, the converse also holds: injectivity implies strong irreducibility [8]. The proof relies on spectral
properties of TA following from Schwarz-positivity [7], which we do not reproduce here.

4.3 Fundamental theorem of TI-MPS

For a finite system, the quantum state |ψ⟩ is defined only up to a global U(1) phase, i.e. |ψ⟩ ∼ eiα |ψ⟩.
Similarly, a TI-MPS {Ai}i leaves the state |ψ⟩ invariant (up to an overall factor) under the similarity
transformation (4.19); that is, the “physical state’’ is unchanged. While a general TI-MPS admits
more ambiguities than (4.19), in the strongly irreducible case it can be shown that the only freedom is
precisely the similarity transformation (4.19).

We first relate the bond dimension n of a TI-MPS to the structure of the state |ψ⟩ it represents.� �
Proposition 4.13 ([2]). Let {Ai}i be an injective TI-MPS with bond dimension n, and suppose ΓL0

is injective for some L0 ∈ N. For a system of N sites and any R with L0 ≤ R ≤ N −R, one has

rank ρ[1,R] = n2.� �
(Proof) We can write

|ψ⟩ =
∑

i1···iN

tr [Ai1 · · ·AiN ] |i1 · · · iN ⟩ (4.29)

=

n∑
a,b=1

ΓR(|b⟩ ⟨a|) ΓN−R(|a⟩ ⟨b|). (4.30)

By injectivity of ΓR and ΓN−R, the n
2 vectors {ΓR(|b⟩ ⟨a|)}a,b and {ΓN−R(|a⟩ ⟨b|)}a,b are linearly inde-

pendent. Thus

|ψ⟩ =
n2∑
k=1

|vk⟩ |wk⟩ , {|vk⟩}k, {|wk⟩}k linearly independent.

Hence

ρ[1,R] =

n2∑
k,l=1

|vk⟩ ⟨wl|wk⟩ ⟨vl| .

Since the Gram matrix ⟨wl|wk⟩ is full rank, rank(ρ[1,R]) = n2.

We now introduce two technical lemmas.
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� �
Lemma 4.14 ([2]). Let T, S : Cℓ → Cm be linear maps and let Y1, . . . , Yℓ ∈ Cℓ satisfy:

• T (Yk) = S(Yk+1) for k = 1, . . . , ℓ− 1.

• Y1, . . . , Yℓ−1 are linearly independent.

• Y1, . . . , Yℓ are linearly dependent, with Yℓ =
∑ℓ−1

k=1 λkYk.

Then for any solution x of the polynomial equation

λ1x
ℓ−1 + λ2x

ℓ−2 + · · ·+ λℓ−1x = 1,

define

µ1 = λ1x, (4.31)

µ2 = λ1x
2 + λ2x, (4.32)

... (4.33)

µℓ−1 = λ1x
ℓ−1 + · · ·+ λℓ−1x = 1. (4.34)

Then the vector

Y =

ℓ−1∑
k=1

µkYk

satisfies

Y ̸= 0, T (Y ) =
1

x
S(Y ).� �

(Proof omitted; direct calculation.)� �
Lemma 4.15 ([2]). Let B,C ∈ Matn(C). The solution space of

W (C ⊗ 1n) = (B ⊗ 1n)W

is
S ⊗Matn(C), S = {X ∈ Matn(C) | XC = BX}.� �

(Proof omitted.)
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� �
Theorem 4.16 ([2, 12]. Fundamental theorem of TI-MPS). Let {Bi}i be a TI-MPS of bond dimen-
sion n, which is injective and in the canonical form, that is, there exists L0 ∈ N such that ΓL0

is
injective and the canonical conditions∑

i

BiB
†
i = 1n, (4.35)∑

i

B†
iΛBBi = ΛB , ΛB = diag(λB,1, . . . , λB,n), λB,1 ≥ · · · ≥ λB,n > 0, tr [ΛB ] = 1, (4.36)

are satisfied. Furthermore, let {Ci}i be another TI-MPS of the same bond dimension n, which is
irreducible and in the canonical form, that is, satisfying∑

i

CiC
†
i = 1n, (4.37)∑

i

C†
iΛCCi = ΛC , ΛC = diag(λC,1, . . . , λC,n), λC,1 ≥ · · · ≥ λC,n > 0, tr [ΛC ] = 1. (4.38)

Suppose that for some system size N > 2L0 + n4, the states represented by the TI-MPS {Bi}i and
{Ci}i are physically equivalent, that is, there exists a U(1) phase eiα such that

ψi1···iN = tr [Bi1 · · ·BiN ] = eiαtr [Ci1 · · ·CiN ] for all i1, . . . , iN . (4.39)

Then, there exist a unitary matrix U ∈ U(n) and a U(1) phase eiθ ∈ U(1) such that

Bi = eiθUCiU
†, i = 1, . . . , d. (4.40)

Moreover, if the TI-MPS {Bi}i, {Ci}i are strongly irreducible, then eiθ is unique and U is unique up
to a U(1) phase.� �
The strategy of the proof is to construct OBC-MPS from TI-MPS {Bi}, {Ci}i, and then use the

uniqueness of OBC-MPS (Proposition 2.2) to relate them.

(Proof) By redefining Ci 7→ e−iα/NCi, we may assume eiα = 1. Construct OBC-MPS as follows:

tr [Bi1 · · ·BiN ] =
∑
a,b,c

[Bi1 ]ab[Bi2 · · ·BiN−1
]bc[BiN ]ca =

∑
a,b,c

[Bi1 ]ab[B̃]bc[BiN ]ca (4.41)

where, regarding the index a as contracted by an inner product, we arrange B̃ diagonally n times as

=
∑
a

uaB̃va (4.42)

= (u1, . . . , un)

B̃ . . .

B̃


v1...
vn

 . (4.43)

Define

b
[1]
i = (u1, . . . , un) = ([Bi]1·, . . . , [Bi]n·), (4.44)

b
[N ]
i = (v1, . . . , vn)

⊤ = ([Bi]·1, . . . , [B]·n)
⊤, (4.45)

then we obtain the OBC-MPS representation

ψi1···iN = b
[1]
i1
(Bi2 ⊗ 1n) · · · (BiN−1

⊗ 1n)b
[N ]
iN
. (4.46)

Similarly for {Ci}i,

ψi1···iN = c
[1]
i1
(Ci2 ⊗ 1n) · · · (CiN−1

⊗ 1n)c
[N ]
iN
. (4.47)
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By the canonical form of OBC-MPS (Proposition 2.2), there exists a common standard OBC-MPS

{{A[m]
im

}im}m such that

A
[m]
i = Ym−1(Bi ⊗ 1n)Zm = Y ′

m−1(Ci ⊗ 1n)Z
′
m, (4.48)

YmZm = 1, Y ′
mZ

′
m = 1, 1 < m < N, (4.49)

holds. A
[m]
im

is an rm−1 × rm matrix. By Proposition 4.13, for L0 ≤ m ≤ N − L0, the reduced density
matrix ρ[1,m] has rank n2. Thus, for L0 ≤ m ≤ N − L0, rm = n2. The matrices Ym, Y

′
m are rm × n2,

and Zm, Z
′
m are n2 × rm, so (4.49) implies that Ym, Zm, Y

′
m, Z

′
m are invertible for L0 ≤ m ≤ N − L0.

Therefore, from (4.48), defining Wm = ZmY
′
m, we have

Wm−1(Ci ⊗ 1n) = (Bi ⊗ 1n)Wm, i = 1, . . . , d, L0 + 1 ≤ m ≤ N − L0, (4.50)

which holds independently of i. The set {Wm}N−L0

m=L0+1 is a solution to the linear equations for the n2×n2

matrices, and since N − 2L0 > n4, they are linearly dependent.

Thus, we have obtained the following: define Ti(W ) = W (Bi ⊗ 1n), Si(W ) = (Ci ⊗ 1n)W . There
exists ℓ ∈ N, 1 < ℓ < n4 + 1 such that W1, . . . ,Wℓ−1 are linearly independent and

W =Wℓ =
ℓ−1∑
k=1

λkWk, (4.51)

Ti(Wk) = Si(Wk+1), k = 1, . . . , ℓ− 1, i = 1, . . . , d. (4.52)

Therefore, by Lemma 4.14, there exist W ̸= 0 and x ̸= 0 such that

W (Bi ⊗ 1n) =
1

x
(Ci ⊗ 1n)W, i = 1, . . . , n. (4.53)

By Lemma 4.15, W belongs to the following intersection:

W ∈
d⋂

i=1

Si ⊗Matn(C) = (

d⋂
i=1

Si)⊗Matn(C), Si = {X ∈ Matn(C) | XBi =
1

x
CiX}. (4.54)

In particular,
⋂d

i=1 Si ̸= ∅. Choose U ∈
⋂d

i=1 Si, then

UBi =
1

x
CiU, i = 1, . . . , d. (4.55)

We show that |x| = 1. Since {Bi}i is in canonical form,

U†ΛBU = U
(∑

i

B†
iΛBBi

)
U† =

1

|x|2
∑
i

C†
i U

†ΛBUCi. (4.56)

Taking the trace, we obtain

0 < tr [U†ΛBU ] =
1

|x|2
∑
i

tr [U†ΛBUCiC
†
i ] =

1

|x|2
tr [U†ΛBU ], (4.57)

hence |x| = 1.

We show that U ∈ U(n). From UBi = eiθCiU we obtain

TC(UU
†) =

∑
i

CiUU
†C†

i =
∑
i

UBiB
†
iU

† = UU†. (4.58)

Since TC is irreducible, the eigenvector corresponding to λ = 1 is unique. Therefore, UU† ∝ 1n. As
UU† > 0, we may set UU† = 1n.
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We now prove the uniqueness of eiθ, U under the assumption of strong irreducibility. Suppose U ′Bi =
eiθ

′
CiU, i = 1, . . . , d. ∑

i

CiU
′U†C†

i =
∑
i

e−iθ′
U ′Bie

iθB†
iU

† = e−iθ′
eiθU ′U†. (4.59)

By strong irreducibility, the only eigenvalue λ with |λ| = 1 is λ = 1, and the corresponding eigenvector
is unique. Therefore, eiθ

′
= eiθ and U ′ ∼ U .

As already noted, injectivity and strong irreducibility are equivalent [8], so it is not necessary to
impose strong irreducibility additionally to prove the uniqueness of eiθ, U .

4.4 Application: one-dimensional SPT phases

As an application, we show that when a translationally invariant and “gapped non-degenerate” state
|ψ⟩ has a symmetry group G, an invariant taking values in the group cohomology H1(G,U(1)ϕ) ×
H2(G,U(1)ϕ) can be defined.

First, let us define the symmetry. Let G be a group, and let ϕ : G→ Z/2 = {±1} be a homomorphism
such that ϕg = 1 indicates that g is a unitary symmetry, while ϕg = −1 indicates that g is an antiunitary
symmetry. For a group element g ∈ G, its action on the Hilbert space H is defined as the tensor product
of the group action on the local Hilbert spaces:

ĝ =

{⊗
x ĝx (ϕg = 1),

(
⊗

x ĝx)K (ϕg = −1),
, ĝx |j⟩ =

∑
i

|i⟩ [ug]ij . (4.60)

Here K denotes complex conjugation. The unitary matrices {ug}g are assumed to form a linear repre-
sentation, that is,

ugu
ϕg

h = ugh, g, h ∈ G, (4.61)

where for a matrix X we introduce the notation

Xϕg =

{
X (ϕg = 1),

X∗ (ϕg = −1).
(4.62)

Writing the state described by the TI-MPS {Ai}i as

|{Ai}i⟩ =
∑

i1,...,iN

tr [Ai1 · · ·AiN ] |i1 · · · iN ⟩ , (4.63)

the action of G on the TI-MPS is given by

ĝ |{Ai}i⟩ =
∑

i1,...,iN ,j1,...,jN

tr [Ai1 · · ·AiN ]ϕg |j1 · · · jN ⟩ [ug]j1i1 · · · [ug]jN iN =

∣∣∣∣∣∣
∑

j

[ug]ijA
ϕg

j


〉
, (4.64)

that is,

g : Ai 7→ gAi :=
∑
j

[ug]ijA
ϕg

j , i = 1, . . . , d. (4.65)

By the linearity of ug, note that

ghAi =
ghAi, i = 1, . . . , d. (4.66)

The state |{Ai}i⟩ is G-invariant, i.e., there exists eiαg such that

ĝ |{Ai}i⟩ = |{gAi}i⟩ = eiαg |{Ai}i⟩ , g ∈ G, (4.67)
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where the system size N is fixed.

It is expected that any translationally invariant “gapped non-degenerate state” can be approximated
by a strongly irreducible TI-MPS. Let {Ai}i be a strongly irreducible TI-MPS in canonical form. Then,
by Theorem 4.16, the G symmetry (4.67) implies, for each g ∈ G,

gAi = eiθgV †
g AiVg, i = 1, . . . , d, (4.68)

where eiθg is unique and the unitary matrix Vg is unique up to a U(1) phase. From (4.66) we have

ghAi =
g(eiθhV †

hAiVh) = eiϕgθh(V
ϕg

h )†(gAi)V
ϕg

h

= eiϕgθh(V
ϕg

h )†eiθgV †
g AiVgV

ϕg

h = eiθgeiϕgθh(VgV
ϕg

h )†Ai(VgV
ϕg

h ), i = 1, . . . , d. (4.69)

On the other hand,

ghAi = eiθghV †
ghAiVgh. (4.70)

By uniqueness, {eiθg}g forms a one-dimensional representation of G, that is, {eiθg}g ∈ Hom(G,U(1)ϕ) ∼=
H1(G,U(1)ϕ):

eiθgeiϕgθh = eiθgh , g, h ∈ G. (4.71)

On the other hand, since Vg is unique up to a U(1) phase, there exists zg,h ∈ U(1) such that

VgV
ϕg

h = zg,hVgh, g, h ∈ G. (4.72)

The U(1) phase zg,h is not arbitrary, and from (VgV
ϕg

h )V
ϕgh

k = Vg(VhV
ϕh

k )ϕg we obtain

z
ϕg

h,kz
−1
gh,kzg,hkz

−1
g,h = 1, g, h, k ∈ G. (4.73)

That is, zg,h satisfies the 2-cocycle condition. In other words, z ∈ Z2(G,U(1)ϕ)
11. A change of the U(1)

phase of Vg, Vg 7→ Vgηg, induces the transformation

zg,h 7→ zg,hη
ϕg

h η−1
gh ηg, g, h ∈ G, (4.74)

where {ηg}g is an element of the group of 2-coboundaries B2(G,U(1)ϕ). Therefore, a strongly irre-
ducible, canonical, and G-invariant TI-MPS {Ai}i determines an element of the second cohomology
H2(G,U(1)ϕ) = Z2(G,U(1)ϕ)/B

2(G,U(1)ϕ).

Thus, we obtain the following:� �
Theorem 4.17 ([13, 14], one-dimensional SPT phases). Let {Ai}i be a strongly irreducible, canon-
ical, and G-invariant TI-MPS. Then {Ai}i defines quantities taking values in

H1(G,U(1)ϕ)×H2(G,U(1)ϕ). (4.75)� �
As a matter of fact, constructions of TI-MPS realizing all possible combinations of invariants in

H1(G,U(1)ϕ)×H2(G,U(1)ϕ) are known [15].
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