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Abstract

The purpose of this note is to provide a proof of the so-called fundamental theorem of matrix
product states, which concerns the gauge degrees of freedom of translationally invariant matrix prod-
uct states. In connection with this, we also follow the proofs of certain facts regarding matrix product
states and the accuracy of approximations.
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Introduction

This note fills in the details between the lines of Refs. [2, 7] concerning the proof of a certain gauge
indeterminacy, called the fundamental theorem of matrix product states (MPS) [2].

For general aspects of MPS, the review articles [3, 4] are useful references. For matrix analysis, the
lecture notes [5] are also helpful. It should be noted that many important results concerning MPS were
obtained in Ref. [1]. On the other hand, Ref. [1] is based on a mathematically rigorous framework for
infinite systems, and is technically demanding. Ref. [2] extends Ref. [1] to systems with a finite number
of sites, and this note follows the proofs related to the fundamental theorem of MPS in Ref. [2].

A matrix product state is a type of tensor network representation of a wavefunction, and in particular
in one spatial dimension it is expressed as

Yiy iy = AE]AE] oA o)

IN )

[m]

where the wavefunction is written as a product of matrices A; . For a finite N-site system, there always

exists such a set of matrices {{A%}}im }m that exactly represents a given wavefunction ;, . ;, without
any loss of information. The crucial point, however, is that for certain classes of states, for example
ground states of Hamiltonians consisting of local terms, depending on the physical quantities of interest,
one can efficiently approximate the matrices A[ "] by finite-rank approximations, with computational
cost scaling only polynomially in the system size "N and in the inverse of the error. Consequently, one
can investigate the properties of quantum states in one spatial dimension—which are essentially infinite-
dimensional systems—using finite-size matrices. As an example, we will see in the final section that,
owing to the fundamental theorem of MPS, one can define invariants characterizing symmetry-protected
topological (SPT) phases.

1 Approximation of Wavefunctions

1.1 Schmidt Decomposition

We begin with the singular value decomposition.

a I
Theorem 1.1 (Singular Value Decomposition). For a matriz A € Mat,, ,(C), the following decom-

position holds:
A=UxV' U e€Mat,,(C), V&Mat,,(C), X=dag(o,..., o), (1.1)
vltv=1,, viv=1, o >--->o0,. (1.2)

Here r = rank(A), the set of singular values {o,}h_1 is uniquely determined, while U and V are
unique up to unitary transformations within degenerate singular values.
/

(Proof) Note that the matrix AfA is Hermitian and positive semidefinite. Diagonalizing AT A, we obtain

AtA = Zazvavl, o1 > >0 >0, vlvb = ap- (1.3)

IThe content of this note is based on the intensive lectures “Gauge degrees of freedom of matrix product states and their
applications,” held at the University of Tokyo on July 29 (Mon.) — July 30 (Tue.), 2024. In preparing this note, I am deeply
indebted to Kenji Shimomura, Kan Kitamura, and Akihiro Hokkyo for instructive discussions on numerous questions, as
well as for pointing out errors.



Let V = (v1,...,v,). Defining u, = Avy/0oq, a =1,...,r, we have ufu, = vl AT Avy/(0404) = dap, and

ioauavl = Aivavl =A- A1, — i”a”l) = A. (1.4)
a=1 a=1 a=1

Here we used ker A = ker ATA, which follows from Av = 0 = ATAv = 0 and ATAv = 0 = [|Av|| =
0 = Av = 0. The uniqueness of {o,}"_; is clear from the construction. The non-uniqueness of singular
vectors v, arises when singular values are degenerate: for o,, = -+ = 0,,, the ambiguity is given by a
unitary transformation W € U(p),

(Uau'"avap)'_)(Ual,“';vap)W, (15)

and correspondingly,
(Uays - Ua,) ¥ (Uays oo Ua, )W. (1.6)
O

We now move to the Schmidt decomposition. Consider a quantum state [¢) in a general finite-
dimensional Hilbert space H,

) =3 wili). (L7)

Here |i) is a basis of the Hilbert space H. Decompose H into two subsystems L and R in an arbitrary
manner:

H=H,3Hr. (1.8)
Accordingly, the basis can be written as |i) = |i,ig) = |ir) ® |ir), and
[0) = D Yipin lizsir) . (1.9)
iL,iR

Applying the singular value decomposition to the wavefunction v;, ;., we obtain the following decompo-
sition.

\
Corollary 1.2 (Schmidt Decomposition). For any state |1) € Hp @Hp, there exists a decomposition
W) =X [La) ® |Ra) (1.10)
a=1

Here {|Ly)}a and {|Rs)}a are orthonormal sets satisfying (La|Ls) = ap, (Ra|Rb) = Oab, and {Aa}h_4
are positive real numbers with \y > -+~ > A\, > 0. The integer r € N and the set {\,}}_; are uniquely
determined. The orthonormal sets {Ly}h_1,{Ra}h_1 are unique up to unitary transformations within
blocks of degenerate Schmidt coefficients N\,. That is, for a block with X\, = -+ = X,,, the ambiguity
is given by a unitary U € U(p):

(Lays-- 1 La) = (Lays s Lo )U,  (Rays-. s Ra)) = (Rays .., Ra, )U™. (1.11)

Moreover, when |¢) satisfies the normalization condition (Y|) =1, we have Y. _; Ag = 1.

o J

e 7 is called the Schmidt rank.

e The reduced density matrix obtained by tracing out subsystem L is

pr =11 [9) (] =D Aa|Ra) (Ral, (1.12)



and similarly,

pr = trr|¥) (U] =Y AalLa) (Lal. (1.13)
a=1
e In particular, the entanglement entropy is given by
S(pr) = —trprlogpr = —Z)\alog)\a. (1.14)
a=1

e Example. |[11) = |1) ® |1) has a Schmidt decomposition with r =1, A\ = 1.
e Example. The Bell pair

th—H 1 1

has a Schmidt decomposition with r =2, A1 = Ay = 1/\/5

(=) en (1.15)

1.2 Low-rank Approximation

The Schmidt decomposition provides the best approximation of a state |¢) in the following sense.

Given the Schmidt decomposition of the state |1},

T

) = SN2 L) @ |Ra), (1.16)

a=1
we introduce the rank-D approximation

D

[p) i= 3" Ad |La) ® |Ra) - (1.17)

Note that (¢p|p) < 1.

4 N
Theorem 1.3. For any state |¢p) of Schmidt rank D, we have

1e) = [ép) | = 1) = [¢p) | = [ D Aa- (1.18)

Furthermore, when |¢p) is normalized, the following holds:

W10 | < | Wliod | = 3 A (1.19)
o i Y,
Equation (1.19) follows immediately from (1.18): from || [1) — [¢p) |12 > || [4) — [p) |2, we obtain
2-2R(Y|¢p) = 1+ (WplYp) — 2R (Y[¢p) = 2 = 2R (¥[¢p), (1.20)
which implies
D
R (Plgp) <R (W) =D . (1.21)
st



The phase of |¢p) is arbitrary. In particular, by choosing the phase such that (¥|¢p) > 0, we obtain
(1.18).

The corresponding theorem for the singular value decomposition is known as the Eckart—Young-Mirsky
theorem. We now proceed to prove this. As preparation, we present the min-max theorem and Weyl’s
inequality.

/Theorern 1.4 (Min-max Theorem). Let A be an n x n Hermitian matriz. Denote its eigenvalues\
by
AL> 2> A (1.22)
Then,
A = dim V= kve\%ﬁ 1 (vl4fv), (1.23)
= R k41 veV ol = , (vlAf). (1.24)
- /
Clearly,
A= max (v]AJ), (1.25)
An = min (v[Afv), (1.26)

v, [[v]|=1
hold. The min-max theorem provides such a variational characterization for the other eigenvalues as well.
(Proof) Let the degeneracy of the eigenvalue A, be d,. List the eigenvalues of A without multiplicities as
AL > > A, (1.27)

and denote the eigenspace corresponding to A = A, by V, (note that }-?_ dimV, = n). For a subspace
V C C™, the following holds:

van(Vee---aV,) #{0} = ‘I/Ihirh X (v|Av) < A, (1.28)
veV,||v||=
VvcWVea oVt = ghhi (WlAp) > Ao, (1.29)
veV,||v||=

The latter does not hold if dim V > S>¢"! dim Vj,. Moreover, when 3¢~ dim V4, < dim V < ¢, dim V;,
equality in the latter is attained in the case V=V & ---®V,_; & V', where {0} C V' C V,. This yields
(1.23). Equation (1.24) is obtained by applying (1.23) to —A. O

One can also derive a similar variational formula for singular values. List the singular values of a
matrix A € Mat,, ,,(C) in decreasing order as

012092+ 2> Omin(m,n)- (130)

The squares of the singular values of A are nothing but the eigenvalues of the Hermitian matrix ATA.
Noting the trivial inequality

VWlATA) > /(@] ATAw) & (o] ATA) > (] ATAR) (1.31)
we obtain the expression

o) = min (v|ATAlv) = ma [|Av]|. (1.32)
dlmV kveV,|v|=1 dim V kvEVHvH 1
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Corollary 1.5 (Min-max Theorem for Singular Values). Let the singular values of an n x m matriz
A be ordered as
o122 Omin(m,n)- (133)
Then,
= i A 1.34
7= el 141 130
= min max || Av]. (1.35)
dim V=n—k+1veV,|v||=1
o %

Since we will use it later, we state the following.

Corollary 1.6.

0k(AB) < 01(A)ow(B). (1.36)
(Proof)
= i < i - : .
or(AB) G, min [ABv]|| < ||A||df£av’ikve&ﬂﬂﬁ|zl |Bv|| = 01(A)ok(B). O (1.37)

Next, we prove Weyl’s inequality. Let A be an n x n Hermitian matrix. List the eigenvalues of A in
decreasing order:

A=A > > (1.38)

For Hermitian matrices A, B, we want to find inequalities relating the eigenvalue set {\;(A + B)}; with
{\i(A)}; and {\;(B)}i. For example, what can be said about the maximum eigenvalue? Let v;* denote
the normalized eigenstate of A corresponding to the eigenvalue A = A;(A). Then,

M(A+B) = (P, (A+ B)vitP) = (0P, AvftP) + (0P Bt P) (1.39)
< (v, Avf) + (vB, BvP) = A1 (A) + A\1(B), (1.40)

which shows a valid relation.

More generally, the following holds.

Theorem 1.7 (Weyl’s Inequality).

Aigj—1(A+ B) < Xi(A) + A;(B) < Xivj—n(A + B). (1.41)

(Proof?) By the min-max theorem,

/\i+j_1(A+B) = (I,(A+B)I), (142)

max min
Vidim V=it+j—1zeV,|z]=1
= . A 1.43
Z( ) V’dimr\l//'llzrilfi+1 xe‘r}:ll%fﬁzl(xv ‘T)v ( )

min max (x, Bx). (1.44)
V,dim V=n—j+1zeV,|z|=1

2Wikipedia, Weyl’s inequality, url.
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Thus there exist subspaces Va4 p, Va, Vg such that

Xitj—1(A+ B) = min (,(A+B)x), dimVaip=i+j—1, (1.45)
z€Vayp,|lz|l=1
ANi(A) = max (z,Az), dimVy=n—i+1, (1.46)
z€Va,|lz||=1
Aj(B)= max (z,Bz), dimVp=n-—j+1 (1.47)
z€VE,|z||=1

In this case,
dim(VaNVg) =dimVy + dim Vg —dim(Va UVg) > dimVy +dim Vg —n=n—i—j+2, (1.48)
and

dim(Varg N (VaNVg)) =dimVayp +dim(Va NVg) — dim(Varp U (V4 NVE)) (1.49)
>(+j-1)+n—i—j+2)—n=1, (1.50)

so one can take a nonzero vector
o € VayrpNVanVp. (1.51)
Then,
Xitj—1(A+ B) < (20, (A+ B)zo) = (z0, Azo) + (z0, Bxo) < XNi(A) + \;(B), (1.52)

which gives the left-hand side of the inequality. The right-hand side of the claim is obtained by applying
the left-hand inequality to (—1) times the matrices. O

As a corollary, we obtain the following.

Corollary 1.8 (Weyl’s Inequality for Singular Values).

oirj-1(A+ B) < 0i(A) + 0;(B). (1.53)

(Proof) The singular values of A are the nonnegative eigenvalues of the Hermitian matrix

A= (AT A) : (1.54)
Defining
Ai=o0; i=1,...,n, Apt1=—0On—iy1 t=1,...,m, (1.55)
Weyl’s inequality
Aitj—1(A+ B) < Xi(A) + Aj(B) < Aigj-2n(A+ B) (1.56)
holds. Restricting to i + j — 1 < n gives the desired result. O

Next, we prove the Eckart—Young—Mirsky theorem. For an m x n matrix A € Mat,, ,(C), let its
singular value decomposition be

rank(A)
A=USVI = > ), o1>00> ... (1.57)
=1

The Frobenius norm (defined via the Hilbert—Schmidt inner product) is given by

rank(A)

> o2 (1.58)

i=1

Al = VA s = i [414) =




The 2-norm (operator norm) is defined as

Al ;== sup  ||Az| = o1(4). (1.59)

veCn,[zf=1

Now, define the rank-k approximation of A by

k
Ak = ZO’iui’U; (160)
i=1

The claim is the following.

Theorem 1.9 (Eckart—Young-Mirsky). In both the 2-norm and the Frobenius norm, the best ap-
proximation of A by a rank-k matriz is given by Ay. That is, for any rank-k matrix By, we have

A= Billr = [|A— AkllF, (1.61)
A= Bill2 > [[A = Agll2. (1.62)

(Proof®) By Weyl’s inequality, for any i, j,
Oitj-1(X +Y) < 0y(X) + 0;(Y). (1.63)

Let the rank of B be k. Then note that o;~,(B) =0. Taking j =k+1,X = A— B,Y = B, we obtain

oi+k(A) < 0i(A— B) + 0p41(B) = 0:(A — B). (1.64)

Therefore,
|A— Blls =01(A—B) > or+1(A) = 01(A — Ag). (1.65)
|A=BlE =) 0i(A=B) > 07 (A) = [|[A= 47 O (1.66)

Note that when the wavefunction ;, ;,, is regarded as a matrix, its Frobenius norm coincides with
the norm of the state |¢):

1lF =troptp = > 47, iin = D [Wi,ial = 118 |% (1.67)

iL,IR iL,IR

Therefore, the Eckart—Young—Mirsky theorem with respect to the Frobenius norm is nothing but (1.18).

1.3 Error Estimate

How good is the rank-D approximation |¢p) obtained from the Schmidt decomposition? We show that
the error can be upper-bounded in terms of the Rényi entropy [6]. In the following, we assume that
rank(p) is sufficiently large.

For a general density matrix p, the Rényi entropy is defined by

1
S%p) = T logtrp®, a>0. (1.68)

—

3Physics Stack Exchange, Proof of Eckart- Young-Mirsky theorem, url.
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The limit o« — 1 gives the von Neumann entropy:

S (p) = Sun(p) = —tr plog p. (1.69)

With the spectral decomposition
p=> Xala)(al, M =X>-o, D A=1, (1.70)

we have

1
§(p) = 1— log » A (1.71)

Note that the function f({A\s}a) = >, A is concave for 0 < o < 1 and convex for a > 1. Define the
error

(D) =" A, (1.72)

a>D

and estimate €(D). By (1.18), €(D) is nothing but the squared error ||[1)) — |[¢p)||? of the rank-D
approximation obtained from the Schmidt decomposition of the state |¢).

Theorem 1.10 (Lemma 2 in [6]).

e(D)  1-«

log <

(5% - tox ;2

—

>, 0<a<l. (1.73)
«

Equivalently,

R -
e(D)Sax(Da> xexp{ aaSa(p)}, 0<a<l, (1.74)

holds*. Note that the Rényi entropy depends only on the density matrix p. The error e(D) is thus
bounded from above by a power law in D.

(Proof®) Let 0 < a < 1. We fix (D) and derive a lower bound on S%(p). Since log is monotone increasing,
it suffices to lower-bound )", A%. The function

N N
{{pa}iv €0, 1N | D pa= 1} = (1.76)

is symmetric and concave in its variables for 0 < a < 1, hence Schur-concave. That is, it is bounded from
below by distributions {p, }, that majorize {\,}.°:

{Pata = {Xata =D 3 <D AL (1.77)

If we consider all possible distributions, then the extremal distribution p; = 1, p,~1 = 0 majorizes any
distribution, but yields only the trivial bound 1 <> A%. We therefore fix the tail

S pa = (D) (1.78)

a>D

4In [6] it is written as

l1—«

loge(D) < (S“(p) —log 1 b

), 0<a<l, (1.75)

which appears to be a typo.
5Based on discussions with Kenji Shimomura regarding the proof in [6].

SLet in > p% > ... denote the decreasing rearrangement of {pa}s. We say {pa}a > {¢a}a if for all k& one has
k k
Yh_iph > Ykl



and search for a distribution that is as skewed as possible while still majorizing {A,}a.

For a parameter 0 < h < (1 — €(D))/D, consider the distribution {g,}, defined by

g1 =1—¢€(D)— (D —1)h, (1.79)
92 =43 = " ={4D = 4D+1 = " = 4D+|e(D)/h] = h, (1.80)
4D+(e(D)/n)+1 = €(D) — [e(D)/h] h, (1.81)
qa>D+[e(D)/hJ+1 =0, (1.82)
> da=|e(D)/h) h+ (D) — |e(D)/h] h = €(D). (1.83)
a>D
Thus the partial sums
d ta=1-€¢D), > ¢u=¢eD) (1.84)
a<D a>D
are kept fixed, while the intermediate “height” ¢p = h is varied.
First, evaluate ) q5:
Z @i =01—-¢D)—(D-1)h)*+(D—1+ le(D)/h])h* + (e(D) — Le(D)/th)a. (1.85)
For simplicity, restrict to h = €(D)/r with r € Z~(. Observing that
(1—€(D) — (D —1)h)*+ (D —1+e(D)/h)h* — Dh* — ¢(D)h>~! (1.86)
=(1—¢€(D)—(D—-1)h)*—h" (1.87)
— (1—e(D) = Dh) () 2 0, (1.88)
we obtain
an =(1—€eD)—(D—-1)h)*+ (D —1+e(D)/h)h* > Dh* 4 ¢(D)h*~ 1. (1.89)
Since 0 < a < 1, there exists an h-independent lower bound, attained at
(1= a)e(D)
frd = ——————. 1.
h=nh D (1.90)
Hence,
D(E(D)(l*&))a leoze(D)a
[eY a—1 > a a—1 ‘ _ Do _
Dhe + ¢(D)h~1 > (Dh +e(D)h ) et — Taypge (09D

Therefore, if there exists h with 0 < h < (1 — €(D))/D such that {g.}o > {Xa}a, then >° AS is lower-
bounded by the right-hand side above. We now address the existence of such an h.

For h = Ap, one has {qu}a > {Aa}a. Indeed, since the area up to a = D is fixed,

D D
Y =) da=1-¢€D), (1.92)
a=1 a=1

the distribution {g,}, that pushes all weight to ¢; satisfies

D
an:1—e(D)—(D—1)h+(k—1)h:ZAa—(D—k))\D (1.93)
- k D k

=> X+t /\ —Ap) zz ....D, (1.94)
a=1 a=k+ a=1

10
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Figure 1

as illustrated in Fig. 1. Furthermore, for £ > D, because we have fattened the tail of A\,, for D < k <

+ [e(D)/R],
k
> Aa=1—eD)+ (k- D)\DfZ)\ + Z )\D>Z)\ + Z Ao (1.95)

a=D+1 a=D+1

and for k > D + [e(D)/h],

k k
D A=12> Ao (1.96)
a=1 a=1

Hence,
{Qu}a’h:)\D - {)\a}a- (197)
Therefore,
Dl ae a N
(1—0( 1 aaoz —Z)\ (198)

Thus we have obtained a lower bound depending only on D and ¢(D). Taking the Rényi entropy,
1 Dl=¢(D)>

1 « 1.
T 8 [ ayioags < 5°(0) (1.99)
that is,
D e e(D)
1 1 <8¢ 1.1
g 1l <5%p), (1.100)
and hence,
e(D)  1-—a« D
1 < S%p) —1 1.101
og 2 < 122 500 - tor 2 (1.101)
or equivalently,
— D
e(D) < a exp ( a {Sa(p) —log = a]) . (1.102)
O

In critical systems, the Rényi entropy on an interval [1, L] is known to behave as

c+c<1

1
— ) log L. 1.1
D + a) og (1.103)

S%pL) =

Therefore, even in critical systems, note that Zg;ll €x(D) can be bounded by a power of N. We will
examine this point in detail in the next section.

11



2 OBC-MPS

In this section, we introduce matrix product states (MPS) with open boundary conditions (OBC). An
important remark is that OBC-MPS can always be defined, regardless of whether the state itself satisfies
periodic boundary conditions.

Although using diagrammatic notation improves readability for MPS, we will not employ it in this
note.

2.1 Derivation of MPS

Consider a one-dimensional spin system with N sites. Let d be the dimension of the local Hilbert space;
the total Hilbert space is the tensor product of local Hilbert spaces:

N
H=QH. H.=C" (2.1)
=1

Write a basis of H, as {|iz)}¢ _;, and abbreviate
liv...in) =]i1) @ Qin) . (2.2)

A state in H can be written as

V) = ‘ Z Viy iy i1 iN), (2.3)

1r-0tN

and we assume the normalization

(Yl) = 1. (2.4)

Definition 2.1. We call the following representation of the wavefunction ;,  ;, an OBC-MPS:

Yiy.iy = ATTAPL .. AIN=1 4[N, (2.5)

IN—-1

Here each AE‘E] isa D,_1 x D, matrix with Dy = Dy41 = 1.

An OBC-MPS always exists. Including existence, we establish the existence of the following standard
OBC-MPS.

12



4 N
Theorem 2.2 ([2]. Standard form of OBC-MPS). There exists an OBC-MPS satisfying

Soamart =, 1<m<N, (2.6)
[

S Al A4l Al ) << N 27)

Here A" is a diagonal matriz with positive real entries,

Al = diag(AI™, .. Almy, (2.8)
and satisfies
A0 = AT = (2.9)
A > s s, (2.10)
tr Al = i,\gm] =1 (2.11)
a=1

Moreover, T, is the Schmidt rank associated with the bipartition [1---m] and [m+1--- N].

- /

The construction is obtained by repeatedly performing singular value decompositions from the right;
we only sketch the proof.

(Sketch of proof) First apply SVD to ¢, .iy_,.in tO Obtain

1
1A N
wi1~~7;N—177;N = Z (/\t[zjyv,}]) : wgyuiN,]aN,l [AEN]}GN—I' (2'12)
an-—1
Next, apply SVD to
- 1
wgl“'iN—’z,iN—laN—l = (AL]YV:}]) Qw'ﬁl"‘iN—laN—l’ (213)
to get
~ 1 _
w'ﬁl“'iN—%iN—laN—l = Z (At[ljxfig]) 2’1/12/1“'1'N—2LIN—2 At[IJX—z]aN—l' (214)
an—2
Proceed similarly for the remaining steps. Using UTU =1 and VIV = 1 from the SVD A = ULV, one
derives the conditions (2.6) and (2.7). O

With the standard OBC-MPS in hand, the reduced density matrix is obtained immediately:

Pim+1.8) = T (L [¥) (W] = Y A [R,,) (R, |- (2.15)
am=1
Here,
Ra )= > > (A e (AN o i i) - (2.16)

tm41 "IN Gm41°" "GN -1

[Proposition 2.3. The standard OBC-MPS is unique up to the indeterminacy of singular vectors. )

This is clear from the construction.

The uniqueness of the standard OBC-MPS plays an important role in the proof of gauge indeterminacy
of PBC-MPS.
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2.2 Transformation to the Standard OBC-MPS

For a quantum state [¢), consider an OBC-MPS not necessarily in the standard form,

1 N
iy = B BV, (2.17)
We describe a procedure to transform it into a standard OBC-MPS.
\

-

AEM] is a standard OBC-MPS,
Y Zm = 1<m<N,

Al = B[l]Z AN — vy BN
AlM = Ym_lB}m]Zm, 1<m<N.

\_

Theorem 2.4 ([2]). For the OBC-MPS (2.17), there exist matrices Yp,, Zm such that

The derivation is obtained simply by repeatedly applying singular value decompositions from the

right; we only sketch the proof.

(Sketch of proof) First, apply the singular value decomposition to [B[ ]]bN L

N N-1 N
[B[ ]]bN 1 Z UZEN 1(11\[ 1 [N 1]A[ ]'

aN -1
aN-—1

Define

In_y = UWN-UAN-T ) = (AN-Ih -1y IN-1f

so that Yy_; B = A and vy 2y = 1.

Next, apply the singular value decomposition to the matrix

N—-2
Z [BZ[N,l ]]besz71 [ZN—l]bemelv

bn-1

considered as a bipartition between the legs by_o2iny_1 and ay_1:

N—-2 N
Z[Bz[N_l]]beszfl[ZN 1 bN 1aN-1 — Z UbN gaN 2 ajy\z ?[AEN_l

bn-1 aN—2

Defining

In_g = UNAAN=A 0y o = (AN=2) -1y IN=2F

we obtain Yy_o BN U zZy 1 = AN and Yiy_sZy_y = 1.
Repeating this process down to m = 1, we arrive at

B ... BN = Al 4N

i1 iN N
where the Agm} satisfy all conditions except the left-canonical one.

To impose the left-canonical condition, start from m = 1 and diagonalize

S Al AN Z A

i
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Then A;m = Agl]Vl satisfies the left-canonical condition ), A;UHA;[” = AN, noting that A0 = 1.
Redefine A;[Q] = VITAEQ], and diagonalize

ZA;[Q]TA[HA;[Z} — VQA[Q]VJ. (2.29)

7

Then
Z(A;[Q]VQ)TA[I]A;[Q]VQ = Al (2.30)

SO A;/[Q] = A;[Z]Vz satisfies the left-canonical condition.

Collecting these transformations,

AN = Ay, = Bl Z, 1, (2.31)
At — vyt Ay vy, BMz v ms 1, (2.32)
which corresponds to the redefinitions
Z = ZVeny, Yoo 3 VYo, (2.33)
while preserving Y;, Z,,, = 1. O

2.3 Error Estimate

We now estimate how well the OBC-MPS obtained by uniformly truncating the bond dimension of a
standard OBC-MPS to D approximates the original state. Let

Pigoriy = AN AN (2.34)
be a standard OBC-MPS. Choose D € N and define the truncated OBC-MPS by discarding indices
a>D:

D
qu?zN = Z [AE]]IM [Az]]maz e [A’[L.Jjjjll]]aN72aN71 [AEII\\][]}GNfr (235)
ay,...,an—1=1

Equivalently, this can be written using the projection matrix onto the degrees of freedom a,, < D:

P= (ID 0) , (2.36)

as

WP ., = AN PAP .. pAN - PN, (2.37)

i1 iN

Introduce the “error” at the Im—tm+1 bond by

em(D) = i Alml, (2.38)

am=1

Proposition 2.5 (Lemma 1 in [6]).

N—-1
1) = [2) 7 <2 em(D). (2.39)
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The proof requires the contractivity of the trace norm under positive maps (Theorem 3.23), whose
proof will be given in the next section.

(Proof) Tt suffices to evaluate | (¢P[¢) |. We have
(WP|$) = Tr [Sy (PSn—1(PSn—a(--- PS3(PS>(PAM)) - )))] (2.40)
where S,, is the transfer matrix defined by

Sm(X) =D AMTXAM S, (Al = Al (2.41)

which is a positive linear map and trace-preserving: tr[S,,(X)] = tr[X]. Thus, by the contractivity of
the trace norm (Theorem 3.23),

(1S (X ler < [ X [t (2.42)
Introduce the notation
YU = Ayl = g (PY ) = 3 AT py A (2.43)
so that
WP ) = Sy (PSn—1(PSn_2( - PS3(PSy(PAM)) - ))) = Yy IV (2.44)
Also note that
Sy (A=Y = Alm], (2.45)
Now,
1) = 19P) 17 = 1+ (0P [9P) — 2R (0P Jy) < 2(1 = RY V) < 21 — YY), (2.46)
By the contractivity of the trace norm,
1= Y] = ]AV = y ¥ = AT - Y ), = (AU - PY YD) (2.47)
< AU = py V= = AN = pAIN=1 L pAIN-TT L py INS1 (2.48)
< A — PAR 4 [ P(AN T =y IV (2.49)
Using || AB|wx < ||Al|||Bllw:", we obtain
11— YN < AN — pAT T AT -y IV (2.50)

Proceeding similarly to evaluate [[A[N=1 — YIN=1||. . we finally obtain

N-1 N-1
1= YV <y AT = pAITf =SS Al (2.51)
m=1 m=1a>D

O

Therefore, the error between the true state |1)) and the bond-dimension-D approximation |1/?) con-
structed from the standard OBC-MPS can be bounded from above by the sum of the errors at all bonds.
Combining with (1.73), we obtain

N—-1 N-1 “T“ —a
1) =Py 2 <2 em(D) <23 ax (IDO‘> < exp hsa@l,m)} . (2.52)

m=1 m=1

"By Lemma 1.6, [|AB|lux = 3, 0i(AB) < X, 01(A)oi(B) = [|All|[ Bller.
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Now, when |9) is the ground state of a CFT, for 1 < ¢ < N we have

S%(pre) ~ g(l + é) log . (2.53)
Hence,
1) = [#) |* < (const.) x D" NSO, (2.54)
From this, the N-dependence of the bond dimension Dy required to achieve
1) =™ Il < % (2.55)

(as we demand that the error of physical quantities does not grow with N, hence the choice of 1/N) is
determined by

NO < (const.) x D™ =" NN§(+3), (2.56)
which leads to
N2 ﬁ . o
Dy ~ () x N&15a (2.57)
€0

Thus, Dy is given as a polynomial function of the system size V.

3 Positive Maps and the Perron—Frobenius Theorem

In this section we summarize the necessary facts about positive maps. A compact and readable reference
is [9]. The Perron—Frobenius type theorem for positive maps in finite dimensions can be found in [7].

3.1 Properties of Positive Maps

Definition 3.1. For X € Mat, (C), we say X is positive semidefinite (X > 0) if (v, Xv) > 0 for all
v € C". We say X is positive definite (X > 0) if (v, Xv) > 0 for all nonzero v € C".

In particular, if X is positive semidefinite, then X is Hermitian:

[Proposition 3.2. For X € Mat,,(C), if (v,Xv) € R for allv € C", then X is Hermitian. ]

(Proof) Note the identity (a type of polarization identity)
13
&
(z, Ay) = 1 Eoz (x4 i*y, A(z + i*y)). (3.1)

Since (v, Xv) = (XTv,v) and the assumption is that this is real, we have (XTv,v) = (XTv,v)* = (v, XTv).
Thus, (v, (X — XT)v) = 0 for all v € C*. By the above identity, it follows that (x, (X — XT)y) = 0 for all
x,y € C™. O

Hereafter, we always assume maps of the form

T : Mat,n(C) — Mat,, (C) (3.2)
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are linear, i.e.

T(aX +pY)=aT(X)+ pT(Y). (3.3)
[Proposition 3.3. If X >0, then for any matriz A, ATXA > 0. ]
(Proof)

(W] ATX Alv) = (Av, X Av) > 0. O (3.4)

Definition 3.4. A map T : Mat,, (C) — Mat,,(C) is called positive if it preserves positive semidefi-
niteness:

X>0 = T(X)>0. (3.5)

For example, given a family of matrices {A4;}¢_, with A; € Mat,, ,,(C),
d
T(X) =) AlXA (3.6)
i=1

is positive.

Definition 3.5. For T : Mat,,(C) — Mat,,(C), the dual map T* : Mat,,(C) — Mat,,(C) is defined
by

tr (YT(X)) = tr (T*(Y)X), X € Mat,,(C), ¥ € Mat,(C). (3.7)

Note that the dual map 7 is not the Hermitian adjoint 71 with respect to the Hilbert-Schmidt inner
product (X,Y)ugs = tr[XTY]. When X,Y are restricted to Hermitian matrices, however, T* and T'
agree.

Proposition 3.6.
T is positive << T7 is positive.

(Proof) Assume T is positive. For the spectral decomposition X =", A; |4) (],

(u[T™(X)[v) = tr [T"(X) |v) (v]] = tr [X T(|v) (v])] (3.8)
=Y X T (o) (w)li) > 0, (3.9)
hence T™ is positive. The converse is similar. O]
a I
Definition 3.7. We say T : Mat,,(C) — Mat,, (C) is trace-preserving if
tr [T(X)] = tr [X], (3.10)
and unital if
T(1) = 1. (3.11)
o %
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Proposition 3.8.
T is trace-preserving < T™ is unital.

(Proof) This follows from tr [T*(1)X] = tr [T'(X)]. O

Any Hermitian matrix X can be written as the difference of two positive semidefinite matrices:

Definition 3.9. For a Hermitian matrix X € Mat,(C), X' = X, with spectral decomposition
X =3, Aili) (i, define

Xo= S NGl Xo = 3T (A i) Gl (3.12)

i,A:>0 i,A; <0
In particular,
X=X,-X_, X|=VvVXIX=X,+X_. (3.13)

Proposition 3.10. Any matriz A € Mat,(C) can be expressed as a linear combination of positive
semidefinite matrices.

(Proof) Writing A = (A + AT)/2 4+ (A — A")/(2i) = X + 1Y, we obtain

A=X, - X_+iY, —iy_. O (3.14)

4 I
Proposition 3.11. Let T : Mat, (C) — Mat,,(C) preserve Hermiticity, i.e.

X=X = 7(X)! = T(X). (3.15)
Then:
(i) For A € Mat,,(C), we have T(A)t = T(A").

(ii) The eigenvalues of T are either real or occur in complex conjugate pairs (A, \*).

(iii) For real eigenvalues, the eigenvectors of T can be chosen Hermitian.

%

(Proof) (i) Decompose A = X +iY with X' = X, YT =Y. Then
TA) =T(X)T —iT(Y) = T(X) —iT(Y) = T(A"). (3.16)
(i) If T(A) = AA, then T(AT) = T(A)" = A*AT. (iii) From T'(A + A") = X\(A + AT). O
[Proposition 3.12. If T : Mat,(C) — Mat,,(C) is positive, then T preserves Hermiticity. ]

(Proof) Write X = X — X_ as the difference of positive semidefinite matrices. Then T'(X) = T'(X ) —
T(X_), but T(X),T(X_) are positive semidefinite and hence Hermitian. O

Therefore, the eigenvalues of a positive map T are either real or appear as complex conjugate pairs.

Next, we introduce matrix and operator norms.
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Definition 3.13. For v € C", A € Mat,,(C), and T : Mat,,(C) — Mat,,(C), define
ol == (| Y wil?, (3.17)
i=1
|A]| ;== sup | Av], (3.18)
veCn,||lv||=1
1T} = sup 1A (3.19)
A€Mat,, (C),]|All=1
- /
4 I

Proposition 3.14. The norm of a matriz A is given by its largest singular value:

[ All = omax(A). (3.20)
o

(Proof) From the singular value decomposition A = USVT, we have ||Av| = ||X¢/|| with o' = Viv. O

Proposition 3.15.

[Av] < [|A[l[lo]], (3.21)
IT(A) < 1T Al (3.22)
(Proof)
A A
4] = LA 1A, (3.23)
vecrwzo [0l T (o]
and similarly for ||T|. O
Proposition 3.16.
IAB| < [[A[llIBI], (3.24)
1T Tol| < [T | T2 (3.25)
(Proof) For any v € C™,
[ABo|| < [|Al[l|Boll < Al B[], (3.26)
and similarly for ||T7T%||. O
Lemma 3.17.
1 A
Al <1 < (AT 1) > 0. (3.27)

(Proof) Let A = UXVT be the singular value decomposition with oy > --- > o,,. Then

@ f) = (U v) b C Jf) (UT m)- (3.28)
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Hence the eigenvalues are {1 + 0;,1 — 0;};. Therefore,

1 A
<AT 1)20 & o<l & |A4|<1 O (3.29)

Theorem 3.18 (Russo-Dye). Let T : Mat,, (C) — Mat,,(C) be positive and unital. Then

7] = 1. (3.30)

(Proof) For a general unitary matrix U € U(n), take its spectral decomposition
U= e%P, Pl=P, P’=P. (3.31)
i
Then
(T(}])T T(lU)> = Z (e—z‘j@;g?()pi) ei?gf?)) = Z (e—lmi ei?) @ T(F;). (3.32)
Each term in the last expression is positive semidefinite®. Thus

( 1 T(U))zo. (3.33)

By the preceding lemma, this implies | T(U)|| < 1.

Now, for a general A € Mat,,(C) with ||A| = 1, take its singular value decomposition A = UXVT with
1=01 > 09 >---. Since

10; —1i0;
0; =cosb; = %, (3.34)
we can write
1 ) , 1 . . 1 1
A= 3U diag(e®, ... e VT + §Udiag(e_’91, e YT = UL+ 502, (3.35)

as a convex combination of two unitary matrices. Therefore

IT(A) < 5T + ITUs)]) < 1. (3.36)

On the other hand,
1T = [TV = |1 = 1. (3.37)
Hence ||T]| = 1. O

Corollary 3.19 (Russo-Dye). For a positive map T : Mat, (C) — Mat,, (C),

1]} = Tl (3.38)

(Proof) Let P := T(1) > 0. If P > 0, then the map 7"(A) = P~'/2T(A)P~'/? is unital with T"(1) = 1.
Thus,

IT(A) = |I1P2T' (AP < IIPIIT (A < IPINTNIAIN = [ PI]AIL (3.39)

8If A, B > 0, then the eigenvalues of A ® B are \;(A)\;(B) > 0, hence A® B > 0.
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Hence ||T|| < |[P]|. On the other hand, |T(1)[| = [|P[|, so [T = [[P[| = [T(1)]-

If P has zero eigenvalues, then for small € > 0, define T.(A) = T(A) + €l. Then T.(1) = P+ ¢l > 0.
Thus ||T¢|| = ||Te(1)]]. Taking € — 0, we obtain the desired result. O

Definition 3.20 (Trace Norm). For A € Mat,,(C), the trace norm is defined by

Ao = tr]Al. (3.40)

If {o,}, are the singular values of A, then
[Allee =) oa. (3.41)
a=1

Note also that for any U,V € U(n),

JUAV e = [[Alle. (3.42)

Next, we prove the contractivity of the trace norm under positive maps. As preparation, we first
prove the following lemma.

Lemma 3.21. For A, B € Mat,,(C),
[tr (AB)| < [|Alle:|| Bl (3.43)

Equality holds when A = U|A| is the polar decomposition and B = UT.

(Proof) Take the polar decomposition A = U|A|?. Define the linear map

14 : Mat, (C) — Mat,(C), ¢a(B) := tr (|A|B) - 1,, = tr (/]A[B\/|A]) - 1,. (3.44)

This map is positive, so by Russo-Dye, for any B € Mat,, (C),

ltr (AIB)] = ll¢1a|(B)I| < lldrall - 1 BIF < lgay (DIl - 1Bl = tr[A] - || B]| = [|Allex - 1B]]- (3.45)
Therefore,

|tr (AB)| = |tx (|A[BU)| < [|Al|sx - [ BU = [|Alle: - || B|- (3.46)

Equality holds when BU = 1,. O

From this, we obtain the variational expression for the trace norm:

Corollary 3.22.

[Allte = sup |[tr (AB)|. (3.47)
B,||Bll=1

Now we can state the following.

91f A = ULV is the singular value decomposition, then A = (UVT)VZVT gives the polar decomposition.
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4 N
Theorem 3.23 (Contractivity of the Trace Norm). Let T : Mat,, (C) — Mat,,(C) be positive. Then

for any A € Mat,,,(C),
1T (Al < 1T - [[Alf- (3.48)

In particular, if T is trace-preserving,

IT(A)ler < | Aller- (3.49)
- /
(Proof)
[T(A)ller = sup |tr (T(A)B)| = sup [tr (AT"(B))]. (3.50)
B,|Bll=1 B,|Bll=1
Here,
|tr (AT (B))[ < [ Allex - I T*(B)I| < [|Allex - [[T]] - [| B] (3.51)
= [ Allee - [T - | BI]- (3.52)
Thus
IT(A)ller < [[Aller - 1T (D)]]- (3.53)
O

3.2 Perron—Frobenius Theorem

We prove the Perron—Frobenius theorem for finite-dimensional positive linear maps, following [7]. This
is the finite-dimensional version of the Krein—Rutman theorem, an extension of the Perron—Frobenius
theorem to Banach spaces.

Definition 3.24. For T': Mat,,(C) — Mat,,(C), define
e Sp(T):={A € C| \—T is not invertible}, the spectrum of T

® pr = maxyesp(r) |Al, the spectral radius of 7.

The statements we wish to prove are as follows. For a positive linear map T : Mat,,(C) — Mat,, (C):

e pr € Sp(T).
e There exists 7 X > 0 such that T(X)=prX.

That is, for a positive map the spectral radius is an eigenvalue, and moreover an eigenvector can be
chosen to be positive.

Because the proof is somewhat long, we first outline the steps:

e When T satisfies the good condition of being “irreducible,” we prove a stronger statement.

We introduce the notion of hereditary.

e If T is irreducible, then (1 +7)""! > 0.

If T is irreducible, there exists a unique (up to scale) eigenpair T'(X) = prX with X > 0.
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e A general positive map is obtained as a limit of irreducible positive maps.

In this section, unless a specific n must be indicated, we abbreviate M = Mat,,(C), and linear maps
T : M — M are assumed positive. We also denote by
My :={XeM|X >0} (3.54)

the cone of positive semidefinite matrices.

Definition 3.25. A subalgebra M’ C M is called hereditary if it has the following property:

0<X<YandYeM = XeM. (3.55)

[Proposition 3.26. Let p € M be an orthogonal projection. Then the subalgebra pMp is hereditary.)

Before the proof, let us look at an example. Let M = Mato(C). Then the cone of positive semidefinite
matrices is

My ={zo+x 0|x0>|2|}, (3.56)

namely the interior and boundary of a cone. The condition 0 < X < Y means that X lies in the cone
with apex at the origin, and Y lies in the cone with apex at X (see Fig. 2 [a]). Consider the orthogonal

projection onto the (1, 1)-component, p = (é 8) Then
(pMp)+ = {xo + 2303 | 0 = 73}, (3.57)

so Y € (pMp), sits on the “rim’’  of the cone M. For Y > X to hold, X must also lie on the rim of
M, which shows X € (pMp); (see Fig. 2 [b]).

(Proof. [10]) Assume 0 < X < pYp with Y € M. Then
0< (1 =p)X(1—=p)<(1=ppYp(l-p)=0, (3.58)
hence (1 — p)vX = VX (1 —p) =0. Thus (1 —p)X = X(1 —p) = 0, and therefore X € pMp. O

We define irreducibility of a positive linear map 7" as follows.

Definition 3.27. A map T is irreducible if there exists no nontrivial (i.e., neither p = 0 nor p = 1)
orthogonal projection p such that

T(pMp) C pMp. (3.59)
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Recall that an irreducible representation p : G — V of a group G (with representation space V')
is one for which p, cannot be put in block-diagonal form, i.e., there is no nontrivial projection p with
pg(PV) C pV. The above generalizes the notion of irreducibility in the Perron-Frobenius theorem to
positive linear maps.

The condition T'(pMp) C pMp can be reformulated as a property of p:

Lemma 3.28. Let p € M be an orthogonal projection. Then

T(pMp) C pMp <  IX>0 s.t. T(p) < \p. (3.60)

(Proof!?) Choose a basis so that p = <1T O)' Let X € pMp, i.e.,
!
X = <)é 8) . X' € Mat,(C). (3.61)

By linearity of T' and the fact that any matrix is a linear combination of positive semidefinite matrices,
we may assume X > 0. Write the spectral decomposition

q
X:Z)\apa, A > 2X>0, ¢g<m, (3.62)
a=1

and note that

P= Da (3.63)
a=1
Then

0<Ap <X < App. (3.64)

(<) For any X > 0, X # 0, there exists A\; such that 0 < T'(X) < \T(p) < M Ap € (pMp),. Hence,
by heredity, T'(X) € pMp.

(=) For some X > 0, X # 0, we have 0 < A\, T(p) < T(X) € (pMp)+. Thus, by heredity, \,T(p) €
(pMp)4, ie., T(p) € (pMp)4. Since T'(p) > 0 and T'(p) € pMp, its spectral decomposition

T(p) =) &aplyy &> 26>0, s<m (3.65)
a=1

implies T'(p) < &1p. O

The following statements hold.

Proposition 3.29. Assume T is irreducible. Then
(i) T(1) > 0.
(i) If X >0, then T(X) > 0.

(Proof) (i) Suppose T'(1) has a zero eigenvalue. Let p be the orthogonal projection onto im7'(1). Since
T(p) <T(1) € pMp, there exists A > 0 with T'(1) < Ap. This contradicts the irreducibility of 7T'.

(ii) If X > 0, there exists € > 0 such that X > €l,,. Hence T(X) > ¢T'(1) > 0. O

107 Jearned this from Kan Kitamura; many thanks.
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We next reformulate the irreducibility of T

Definition 3.30. We say that T is strictly positive (strictly irreducible), written 7" > 0, if for every
X >0, X #0, one has T(X) > 0.

Define the Hilbert—Schmidt inner product by

(A, B)us :=tr[ATB], A, B € Mat,(C). (3.66)

4 N
Proposition 3.31.

L] IfX,Y > 0, then (X,Y)HS ZO
e IfX>0andY >0 (or X >0 andY > 0), then (X,Y)us > 0.

o T >0 is equivalent to (Y,T(X))us > 0 for all X,Y > 0 with X,Y # 0.
o %

(Proof) The first two items follow from tr [XY] = tr ['Y X/Y] > 0. For the third: (=) since tr [YT(X)]

tr [T (X)Y/T(X)] and T > 0 with X # 0 implies T'(X) > 0 (positive definite), we have tr VT Y\/

0 for Y #0. (<) For any v € C", set Y = |v) (v|. Then (v|T(X)|v) >0, hence T(X)

Lemma 3.32.

T is irreducible < (1+T)"" ' >0. (3.67)

(Proof) (=) For Y >0, Y # 0, consider (1+T)""1(Y). If Y > 0 then (1 +7T)(Y) > 0, so assume Y has
zero eigenvalues. If (14 T)(Y)v = 0 for some v € C™, then (v|(1+ T)(Y)|v) = 0 implies (v|Y|v) = 0,
hence Yv = 0. Thus ker(1 + T)(Y) C ker Y always holds.

Suppose ker(1+T)(Y) = kerY, i.e., also ker Y C ker(14+7)(Y). If Yv =0, then (1+T)(Y)v =T(Y)v,
so kerY C kerT(Y), equivalently im7(Y) C imY. Let p be the orthogonal projection onto imY (if
Y =3 _  Aape with 7 < n, then p = 3! _ p,). Since T'(p) € imY = imp, letting & be the largest
eigenvalue of T'(p), we have T'(p) < & p. By Lemma 3.28, T(pMp) C pMp. As T is irreducible and Y # 0,
this forces p = 1, a contradiction because then Y would be invertible. Hence ker(1 4+ T)(Y) # ker Y, so
ker(1+T)(Y) C kerY, ie., rank(14+7)(Y) > rankY. Applying (1+7') at least n — 1 times to a singular
Y yields (14 7)"~%(Y) full rank, i.e., (1 +7)""1(Y) > 0.

(<) By contradiction. If T is reducible, there exists a nontrivial projection p and A > 0 with
T(p) < Ap. Then

0<(@+1)"Hp) < (L+N)""'p, (3.68)
whose right-hand side is not full rank—a contradiction. O

As an example of an irreducible positive map:
e Example. T(A) := Ltr[A]1, is irreducible, since T? = T and hence (1+7)"~! = 14 (const.) T > 0.

We introduce yet another equivalent formulation of irreducibility.
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Lemma 3.33. T is irreducible if and only if the following holds:

e For any nonzero positive semidefinite X, Y > 0 with (Y, X)us = 0, there exists k € N such that
(Y, Tk(X))HS > 0.

This corresponds to the graph-theoretic condition in the classical Perron-Frobenius theorem: for any
pair of nodes (i, j) there exists a path ii; — i1i2 — - -+ — 4xJ through nonzero matrix entries.

(Proof) (=) From irreducibility, for X, Y >0, X,Y # 0, we have (Y, (1 +T)""1(X))us > 0. Expanding
and using (Y, X)gs = 0,

1
(Y, {(n - DT+ §(n —1)(n—2)T? +--- +T”1} (X)) > 0. (3.69)
HS
All terms are nonnegative, so there exists at least one k € {1,...,n — 1} with (Y, 7%(X))us > 0.

(<) Prove the contrapositive. Suppose there exists a nontrivial projection p with T'(pMp) C pMp.
Then for any k > 0, T%(p) € pMp, hence T*(p) p = T*(p). Therefore, for all k > 0,

0=tr[(1-p)T"(p)] = (1 - p, T"(p))us- (3.70)
Taking X = p, Y = 1—p—a nonzero pair with (Y, X )gs = 0—we have (Y, T%(X))gs = Oforall k € N. [

Since for Hermitian matrices X, Y the dual satisfies (X, T7%(Y))us = (Y, T**(X))nus, we obtain:

Corollary 3.34.

T is irreducible < T™ is irreducible. (3.71)

Finally, define the following real-valued function on M :
r: My —-R, r(X):=sup{AeR|T(X)>AX}. (3.72)
Define also the overall supremum

r:= sup r(X). (3.73)
XeMy

The Perron—Frobenius theorem follows from the next lemma.

4 N
Lemma 3.35 ([7]). Assume T is irreducible. Then

(i) There exists X = Z attaining the supremum r and Z is positive definite, Z > 0.
(i) T(Z)=rZ.

(iii) The eigenspace for A = r is one-dimensional.

(i) r = pr (the spectral radius).
/

(Proof) (i) We first show the existence of X € M, attaining the supremum. Since r(aX) = ar(X) for
a > 0, we may assume tr [X] = 1. The “sphere’’

S={XeM, |tr[X]=1} (3.74)

is compact. Thus, if the restriction r|g were continuous, it would attain a maximum on S. However, r
need not be continuous on S.
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On the other hand, for X > 0 we have T'(X) > 0 (by Proposition 3.29), and then
r(X) = || 7O 7EX T E | (3.75)

so r is continuous on the set of positive definite matrices {X € M, | X > 0}. To see that the supremum
r is achieved by some X > 0, introduce

N=01+T)"'S={1+T)""HX)>0]tr[X]=1}. (3.76)

The set N is compact and consists only of positive definite matrices. Hence 7|y attains its maximum at
some Z > 0. We claim that Z attains the supremum over all of M .

Take X € S and set Y = (1+ T)""1(X) € N. By definition of r(X), T(X) — r(X)X > 0. Hence

(T —r(X)(Y) = (T —r(X)) 1+ T)" 1(X) (3.77)
=(1+T)" Y (T(X)-r(X)X) > 0. (3.78)

Thus T(Y) > r(X)Y, and therefore

r(Y)>r(X) forall X € 5. (3.79)
Consequently,
r> max r(X) > ;%%T(X) = Xsélz\2+ r(X)=r, (3.80)
whence
r= glgj)\%r(X). (3.81)

Therefore the supremum 7 is attained at some positive definite matrix Z > 0.
(ii) Suppose, to the contrary, that T(Z) —rZ # 0. Let W = (1 +T)""!(Z). Then
TW)—rW =1+T)""T(Z)-rZ) >0, (3.82)
which implies (W) > r, contradicting the maximality of r.

(iii) Suppose there exists another eigenvector Z’ not proportional to Z with T(Z') = rZ’. Since r is
real, Z' can be taken Hermitian (Proposition 3.11). Consider the spectral decomposition

n
2752275 =3 Aapay M1 =2 A (3.83)
a=1
Then
M1=Z732'275 =3 (A = Aa)pa > 0 (3.84)
a=2

is not full rank. Hence \{Z — Z’ is not full rank; but
0<(A4+D)"*NZ-2Z)=Q0+r)"""t\NZ -2, (3.85)
a contradiction.

(iv) Define

T(A) = % 7% T(Z%AZ%) z77%. (3.86)
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Then T(1) = 1, so T is unital. By Theorem 3.18, ||T|| = 1. If T(A) = oA, then

T(Z*%AZ*%) - %Z*%AZ*%. (3.87)

Therefore
1= |17 > |2, (3.88)
Thus |a| < r for every eigenvalue a, i.e. r = pr. O

Moreover, any eigenvector corresponding to an eigenvalue \ # r cannot be positive semidefinite.

Lemma 3.36 ([7]). Assume T is irreducible. If Y > 0,Y # 0 is an eigenvector of T with eigenvalue
a, then a =r.

(Proof) Use the dual T*. Then T™ is also irreducible. As for T, define

r*:= sup sup{\ e R|T"(X) > AX}. (3.89)
XeMy

There exists Z* > 0 such that T*(Z*) = r*Z*. Then
r(Z*, Z)us = (Z*,T(Z))us = (T*(Z*), Z)us = r*(Z*, Z)us > 0, (3.90)

hence r =r*. f T(Y) = aY with Y >0, Y # 0, then
a(Z,Y)us = (25, T(Y))us = (I"(Z7),Y )us =7 (Z",Y )us. (3.91)
Since Z* > 0, we have (Z*,Y)us > 0 (Proposition 3.31), hence o = r. O

Putting everything together, we obtain:

e I
Theorem 3.37 ([7]. (Finite-dimensional Krein-Rutman Theorem)). Let T : Mat,,(C) — Mat,, (C)

be an irreducible positive linear map. Then

(i) pr € Sp(T).

(i) The eigenspace for A = pr is nondegenerate and has a positive definite eigenvector:

T(Z) = prZ, Z>0. (3.92)

(iti) Any eigenvector corresponding to an eigenvalue A # pr is not positive semidefinite.

For an irreducible positive linear map 7', the spectrum has the shape illustrated in Fig. 3.

Corollary 3.38. Let T : Mat,,(C) — Mat,,(C) be an irreducible positive linear map. Then

(i) pr € Sp(T).

(i) An eigenvector for the eigenvalue X = pr can be chosen positive semidefinite.

(Proof [5]) The set of irreducible positive linear maps is dense in the set of all positive linear maps.
Indeed, given any positive linear map 7" and some irreducible positive linear map S, the map

T.=T+e€S (3.93)
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Figure 3
is irreducible because
1+T)" ' =1+eS)" 1 4+--->0. (3.94)

(Recall that if T, Ty are positive, then so is T 0o T5.) Thus, for any T there exist irreducible T, arbitrarily
close to T'. Applying Theorem 3.37 to irreducible T, we have

T.(Z) = pr.Ze, Zc>0. (3.95)

Taking € — +0,
T(Z)=prZ, Z>0. (3.96)
(Here Z need not be positive definite, and the eigenspace for A = pr need not be nondegenerate.) O

Irreducibility is preserved under the following “similarity transformations.”’

4 I
Proposition 3.39. Let T : Mat,(C) — Mat,(C) be an irreducible positive linear map. For any

¢> 0 and any Q € GL,(C), define
T(A) = cQ™'T(QAQT)(QN) . (3.97)
Then
(i) T is irreducible.

(ii) T*(A) = c Q' T*((Q™1)T4Q7Y) Q.
\_ /

(Proof) (i) Let ¢ be an orthogonal projection and assume T'(g) < Aq for some A > 0. This is equivalent
to cT(QqQ") < AQqQT. Let p be the orthogonal projection onto im (QqQ"); then p “reduces’” T.
Indeed, with the spectral decomposition

QqQT = ZAapm /\1 2 Z /\r > 0; (398)
a=1

and p =Y _, pa, we have A\,p < QgQT < A\;p and hence A\, T(p) < A\;p. Thus ¢\ T(p) < A\,p. Since T
is irreducible, p =0 or p = 1.

(ii) A straightforward computation:

(T*(A), B)us = (A, T(B))us = tr[AT cQ'T(QBQ)(QT) '] (3.99)
=tr[c(QN)TATQT T(QBQ")| = tr[c T*((QT) 'ATQ™') QBQT] (3.100)
=tr[cQIT*((QT)'ATQ ) @B, (3.101)
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O

which yields the claimed formula.

Proposition 3.40 ([2, 5]. Normalization). Let T : Mat,, (C) — Mat, (C) be an irreducible positive
linear map. By a similarity transform one can achieve

(1) T(1) =1,
(i) T*(A) = A, with A = diag(A1,...,An), A1 >+ > X, >0, and tr[A] = 1.

(Proof) Let
T(Z)=prZ >0, T*(Z*)=prZ*>0. (3.102)
Consider the similarity transform
Ti(A) = ppt Z7V2 T (22 AZY?) 7712, (3.103)
Then T7(1) =1, and
N VARV AV AR ALY AVALL (3.104)
Diagonalize Z'/2Z*7Z1/2 = UAUT, and set
Ty(A) = U TyW(UAUT) U. (3.105)

Then T5(1) =1 and T35 (A) = A. (Rescale to ensure tr [A] = 1.) O

4 TI-MPS

From this section on, we study MPS with translational symmetry.

4.1 Existence and Canonical Form of TI-MPS

When a Hamiltonian for a 1D spin system is defined with periodic boundary conditions, its eigenstates
are expected to possess translational symmetry in an appropriate sense. Hence one may expect that the

site dependence of the matrices {Agm]} can be removed.

Definition 4.1. An MPS whose matrices Agm] do not depend on m is called a translationally
invariant (TI) MPS.

Define the translation operator by
Trliy - in) o= |int1 - in—1). (4.1)

In this note we consider only states with Bloch momentum 0, i.e., states |¢) satisfying Tr |1)) = |1)).

[Theorem 4.2. Any state with Tr |¢)) = |[¢) admits a TI-MPS representation. ]

Logically, this is a nontrivial statement.
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(Proof) Let an OBC-MPS of |¢) be

) = AE] ...Ay]\v’] iy in). (4.2)
By translation invariance, for any k,

) = te [AFT AN (4.3)

Average over k. The following matrices yield a TI-MPS:

o Al

0o AP

Bii=N"W : 0 (4.4)
0 A[N—l]
AN 0

Thus, a translationally invariant state Tr|¢) = |¢)) can be represented by a set {A4;}%, of square
matrices at a single site:

W)= 3 A A i) (45)

We would like to classify the matrices {4;}; in order to classify “gapped, nondegenerate ground states.”
We also want to exclude the following kinds of states:

() a0 4

The resulting state is a superposition of macroscopic states,

[y =1+ 1) (4.7)

More generally, we wish to exclude cases where

A = (B” g) (4.8)

e Example.

is an upper block-triangular matrix.

() )

i) = [P ) + ), (4.10)

which is a superposition of macroscopically non—translationally invariant states whose translational
invariance is restored only after taking a linear combination. As we will see, this can be excluded
by imposing constraints on the eigenstructure of the transfer matrix.

e Example.

In this case,

We thus wish to exclude states of the above types. For a TI-MPS {A4;};, define the transfer maps

d

Ta(X) =) AXA (4.11)
=1
d

Th(X) =) AlXA, (4.12)
=1
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By imposing suitable conditions on these transfer maps, we will obtain the desired class of states.

[Proposition 4.3. The transfer maps Ta, T} are positive linear maps. ]

(Proof) Linearity is obvious. For positivity, decompose X > 0 spectrally as X = > A, Py, then

Ta(X) =) AP, Al (4.13)
and since AZ-PGA;r > 0 (Proposition 3.3), we obtain T'(X) > 0. O

In fact, T4 is known to be completely positive. In what follows, however, we only use the positivity
of T

We now introduce the canonical form of TI-MPS. Let {4;}; be a TI-MPS. We say that {A4;}; is
irreducible (resp. reducible) if T4 is irreducible (resp. reducible).

Proposition 4.4. If {A;}; is reducible, then without changing the state |¢) the TI-MPS can be

block-diagonalized as
B;
A; = < Ci> . (4.14)

(Proof) By reducibility of T4, there exists a nontrivial orthogonal projection p # 0, 1 such that T4 (pMp) C
pMp. The restriction of Ty to the subalgebra pMp is also positive, hence there exists Y € pMp such
that Ty(Y) = PTalprs,Y With Y >0, nonzero, and not full rank. With the spectral decomposition

Y = Z Ao la) (al, (4.15)

we obtain
T d

Y Aila)(al AT = Aala) {al. (4.16)

a=1 i=1

By general arguments, the vector space spanned by {4;|a)}i . coincides with that spanned by {|a)},.
Let Py = >."_, |a) (a| be the orthogonal projection onto imY. Since A;|a) € imY, we have 4;|a) =

Py A; |a), hence A; Py = Py A;Py. Thus, in a basis with Py = <1T O>’

B; D;
= (2 8, i
The off-diagonal block does not contribute after taking the trace, so replacing
B, 0
A s ( ’ Ci) (4.18)
leaves the state |1)) unchanged. O
[Proposition 4.5. The similarity transformation (3.97) leaves the state |¢) unchanged. ]

(Proof) It corresponds to the transformation

A; = eQ7HAQ. (4.19)
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Here @ cancels out, and /¢ only contributes an overall constant. O

Combining the above two propositions, we obtain the canonical form of TI-MPS:

a I
Theorem 4.6 ([2]. Canonical form of TI-MPS). Any TI-MPS {A;}; admits the canonical form

A = P raA?, pa >0, (4.20)

where each block {A}; is irreducible and satisfies the canonical conditions

Yo AAM =1p,, (4.21)
STALTACAY = A%, AT = diag(AS, ..., NG ), tr[A%] =1, (4.22)

\_ /

4.2 Injectivity and Strong Irreducibility

Irreducibility alone is insufficient to characterize the class of “gapped, nondegenerate ground states.”
For instance, the undesirable example (4.9) has transfer matrix spectrum Sp(T4) = {1,—1,0,0}.

From the behavior of correlation functions, one can impose restrictions on the spectral structure of the
transfer matrix T4. Indeed, it is known that in a gapped ground state, any two-point correlation function
decays exponentially [11]. For any pair of operators OmO; supported near sites x,y, the correlation
function

(1|00, |¥) (4.23)

is governed, in the large-distance limit |y — 2| — oo, by the subleading eigenvalue of (T4)!¥~*!. Thus, if
there are multiple eigenvalues with |A| = pr,, some correlation functions exhibit long-range order. We
therefore exclude such cases.

Definition 4.7 (Strong irreducibility [8]). A TI-MPS {A4;}; is called strongly irreducible if it is
irreducible and
Al =pra = A=pr,-

If {4;}; is strongly irreducible, then Txf‘V “collapses’”  for sufficiently large N. With the spectral
decomposition of Ty,
Ta(Z)=pr,Z, Ti(Z")=pr, 2%, tr|Z°Z]=1,

we can write

Ta() = pr, [ 200 (2°) + 3 p%m-)}, (1.24)
A A

so that
TN ~ (pr)N (260 (Z*) +---]. (4.25)
The subleading terms decay exponentially in N. In particular, as N — oo,

TY(X) ~ (pra) Vi (27 X)), (4.26)
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Strong irreducibility can be reformulated as an algebraic property of {A;};. For L € N define the
linear map

T : Mat, (C) = (CH)®5, X Tp(X) = Y tr[X Ay, - Ay, ]liy i) . (4.27)

Proposition 4.8 ([2]).

Ty is injective <  Span{A;, --- A, }iy ..., = Mat, (C).

(Proof) (<) I T'(X) = 0, then tr[XA;, ---A;,] = 0 for all 4;,...,iy. By assumption, {4;, ---A;, }

spans Mat,, (C), so there exist coefficients {c;, ,, } with > ¢;, 4, A, --- A;, = XT. Then tr [XXT] =0,
ie. X =0.
(=) Represent I', as
[CLlirip.ab = (i -iz|Tr(la) (b)) = (B[ Aiy - -+ A |a) = [Ai, -+~ Aiy Jpa- (4.28)

If T', is injective, the matrix 'z, has full rank n?, hence the row vectors [A;, - - - A;, | span Mat,,(C). O

Proposition 4.9 ([2]).

Iy injective = T'ps injective for all L' > L.

(Proof) For L' = L + 1,
Tri(X) =Y Tr(Aip, X)lizsa).

L1
If T'41(X) =0, then 'y, (A; X) = 0 for all i. By injectivity of I'z,, this implies A; X = 0 for all . Since
{4;, - A;, } spans Mat,, (C), there exist {c;,. ;. } with > ¢;y. 4, Asy -+ A;, = 1,. Thus X =0. O

Definition 4.10 (Injectivity). A TI-MPS {4;}; is injective if there exists Ly € N such that ', is
injective. Equivalently, for some Lg, the set {A;, - - A, }ila“wiLg spans Mat,, (C).

Note that injectivity of {A;}; is different from requiring that the set of all products of arbitrary length
spans Mat,, (C), i.e.

Span (U{Ai1 - Ay }il,...,n) = Mat,,(C).
L

For example, in (4.9), although Span(A4, A;, A+A;, A A}) = Mate(C), for no fixed L do the length-L
products span Matq(C).

[Proposition 4.11. If {A;}; is injective, then it is irreducible. ]

(Proof) By contraposition. If {A;}; is reducible, then as in Proposition 4.4,

B; D;
Ai:(o C)

so for any L, the products {4;, --- A;, } cannot span Mat, (C). O
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[Proposition 4.12 ([1, 8]). If {A;}; is strongly irreducible, then it is injective. ]

(Proof) Suppose not: for every L, the products {4;, ---A;,} do not span Mat,,(C). Then for each L
there exists By, # 0 orthogonal to this span, i.e. tr [A;, --- A;;, Br] =0 for all 41,...,4r. Thus

0=(Ta)"(Br ® B}).
But by strong irreducibility,
(Ta)* (Br ® B}) == (pr,)"tx (2" BLZB}),
which is nonzero since Z, Z* > 0. Contradiction. O

In fact, the converse also holds: injectivity implies strong irreducibility [8]. The proof relies on spectral
properties of T4 following from Schwarz-positivity [7], which we do not reproduce here.

4.3 Fundamental theorem of TI-MPS

For a finite system, the quantum state |+) is defined only up to a global U(1) phase, i.e. [¢p) ~ €' |¢)).
Similarly, a TI-MPS {A4;}; leaves the state |¢) invariant (up to an overall factor) under the similarity
transformation (4.19); that is, the “physical state’’ is unchanged. While a general TI-MPS admits
more ambiguities than (4.19), in the strongly irreducible case it can be shown that the only freedom is
precisely the similarity transformation (4.19).

We first relate the bond dimension n of a TI-MPS to the structure of the state |¢) it represents.

Proposition 4.13 ([2]). Let {A;}; be an injective TI-MPS with bond dimension n, and suppose I'r,
is injective for some Ly € N. For a system of N sites and any R with Ly < R < N — R, one has

rank p; g) = n?.

(Proof) We can write

¥)

D tr[Ay - Ay lin i) (4.29)

L'r(1b) (al) T n—r(|a) (b]). (4.30)

I
M-

a,b=1

By injectivity of I'g and I'y_g, the n? vectors {T'r(|b) (a|)}a» and {Tn_r(|a) (b])}as are linearly inde-
pendent. Thus

TL2
[) = Z lvg) lwk),  {|vk) e, {|wk) }r linearly independent.
k=1

Hence ,
Pl1,R] = Z [vg) (wi|wg) (vl -
k=1
Since the Gram matrix (w;|wy) is full rank, rank(pj1, ) = n?. O

‘We now introduce two technical lemmas.
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o T'(Yy)=S(Yiy1) fork=1,...,0—1.
e Yi,...,Y, 1 are linearly independent.
e Yi,....Y, are linearly dependent, with Y, = i_zll AYy.
Then for any solution x of the polynomial equation
Mzt a2 N =1,
define

H1 = )\11’,
po = Ma® + Aoz,

po—1 =Mzt 4 Nz =1
Then the vector ,
-1
Y = ZukYk
k=1

satisfies

Lemma 4.14 ([2]). Let T,S : C* — C™ be linear maps and let Y1, ..

., Y, € C satisfy:

(Proof omitted; direct calculation.)

Lemma 4.15 ([2]). Let B,C € Mat,,(C). The solution space of

8

S ® Mat,(C), S={X e Mat,(C)|XC=

BX}.

(Proof omitted.)
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/
Theorem 4.16 ([2, 12]. Fundamental theorem of TI-MPS). Let {B;}; be a TI-MPS of bond dimen-

sion n, which is injective and in the canonical form, that is, there exists Ly € N such that 'z, is
injective and the canonical conditions

> BBl =1,, (4.35)

ZBJABBZ':AB, AB:diag(/\BJ,...,)\B,n), )\371 22/\3711 > 0, tI‘[AB} =1, (436)

K2

are satisfied. Furthermore, let {C;}; be another TI-MPS of the same bond dimension n, which is
irreducible and in the canonical form, that is, satisfying

> cicl=1,, (4.37)

ZCZACQ‘ =Ac, Ac=diag(Ac1,...,Acn), Aci > > Ao >0, triAc]=1. (4.38)

(2

Suppose that for some system size N > 2Lg + n*, the states represented by the TI-MPS {B;}; and
{C;}: are physically equivalent, that is, there exists a U(1) phase e® such that

1/11'1..,2‘]\] =1tr [le BZN] :emtr [Czl OZN] fO’I’ all 1.17...,2.]\/. (439)
Then, there exist a unitary matriz U € U(n) and a U(1) phase ¢ € U(1) such that
B, =UcUut, i=1,....d (4.40)

Moreover, if the TI-MPS {B;};,{C:}s are strongly irreducible, then €% is unique and U is unique up
to a U(1) phase.
\_ %

The strategy of the proof is to construct OBC-MPS from TI-MPS {B;},{C;};, and then use the
uniqueness of OBC-MPS (Proposition 2.2) to relate them.

(Proof) By redefining C; e~ /N we may assume e'* = 1. Construct OBC-MPS as follows:

tr [Bh o 'BiN] = Z[Bil]ab[Bi2 T BiN—l]bC[BiN]CU« = Z[Bh]ab[é]bC[BiN]ca (441)
a,b,c a,b,c

where, regarding the index a as contracted by an inner product, we arrange B diagonally n times as

= Z U Bug (4.42)

B (%1
= (U1y...yUp) Sl (4.43)
B) \w,
Define
b = () = By [Bila), 444
M = (1, o) T = (Bl [Bla) T 4.45)
then we obtain the OBC-MPS representation
N
Giyig = B (Biy @ 1) -+ (Biy_, @ 1)BIN) (4.46)
Similarly for {C;},,
Yirin = 6 (Ci @ 1) - (Cin_, ® 1), (4.47)
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By the canonical form of OBC-MPS (Proposition 2.2), there exists a common standard OBC-MPS
{{AEZ]}im}m such that

AET”] =Y 1(Bi®1,)Zm =Y, 1(Ci ®1,)Z,, (4.48)
Yolm=1, Y.Z' =1, 1<m<N, (4.49)

holds. A[:l} is an r,,_1 X 1, matrix. By Proposition 4.13, for Ly < m < N — Lg, the reduced density

Tm
matrix p ., has rank n?. Thus, for Lo < m < N — Lo, 7, = n?. The matrices Y,,,Y,, are r,, x n?
and Z,,, Z! are n? X rp,, so (4.49) implies that Y,,, Z,,,Y,., Z! are invertible for Ly < m < N — Ly.
Therefore, from (4.48), defining W,,, = Z,,,Y,),, we have

which holds independently of i. The set {Wm}z;fg’ 41 Is a solution to the linear equations for the n? x n?
matrices, and since N — 2Ly > n?, they are linearly dependent.

Thus, we have obtained the following: define T;(W) = W(B; ® 1,,), S;i(W) = (C; ® 1,,)W. There
exists £ € N,1 < £ < n* + 1 such that Wy,...,W,_; are linearly independent and

{—1

W=W,=> MW, (4.51)
k=1

T,(Wi) = S;(Wigr), k=1,....0—1, i=1,....d. (4.52)

Therefore, by Lemma 4.14, there exist W # 0 and x # 0 such that

1
W(B®1,) = —(Cie L)W, i=1...n. (4.53)
By Lemma 4.15, W belongs to the following intersection:
d d 1
W e ﬂ S; ® Mat,, (C) = (ﬂ S;) ® Mat,,(C), S; ={X € Mat,(C) | XB; = ECiX}' (4.54)
i=1 i=1
In particular, ﬂjzl S; # (. Choose U € ﬂ?zl S;, then
1
UBi=_CU, i=1,....d (4.55)
We show that |z| = 1. Since {B;}; is in canonical form,
1
T — i Nt = — frrt .
UTARU U(;BZ ABBZ)U mE zi:CZU ABUC;. (4.56)
Taking the trace, we obtain
1 1
t _ f o= gt
0 < tr[UTABU] = oE ;tr [UTAUC,Cl] = Wtr [UTABU], (4.57)
hence |z| = 1.
We show that U € U(n). From UB; = e C;U we obtain
To(UUY) =Y cuuict =Y UBBlUT =UUT. (4.58)
i i

Since T is irreducible, the eigenvector corresponding to A = 1 is unique. Therefore, UUT « 1,. As
UUT > 0, we may set UUT = 1,,.
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We now prove the uniqueness of e?, U under the assumption of strong irreducibility. Suppose U’B; =
e'CU, i=1,....,d.

S cuutc! =3 e U B BlUt = e PU'UT. (4.59)

By strong irreducibility, the only eigenvalue A with A\ =1 is A =1, and the corresponding eigenvector
is unique. Therefore, ¢ = ¢ and U’ ~ U. O

As already noted, injectivity and strong irreducibility are equivalent [8], so it is not necessary to
impose strong irreducibility additionally to prove the uniqueness of ¢ U.

4.4 Application: one-dimensional SPT phases

As an application, we show that when a translationally invariant and “gapped non-degenerate” state
|¢) has a symmetry group G, an invariant taking values in the group cohomology H'(G,U(1)s) X
H?(G,U(1)4) can be defined.

First, let us define the symmetry. Let G be a group, and let ¢ : G — Z/2 = {+1} be a homomorphism
such that ¢, = 1 indicates that g is a unitary symmetry, while ¢, = —1 indicates that g is an antiunitary
symmetry. For a group element g € G, its action on the Hilbert space H is defined as the tensor product
of the group action on the local Hilbert spaces:

g_{&gm (6g = 1),
(®, 3)K (9, =—1),

Here K denotes complex conjugation. The unitary matrices {u,}, are assumed to form a linear repre-
sentation, that is,

e ld) = Z i) [uglis- (4.60)

uguig =ugn, ¢,h€QG, (4.61)
where for a matrix X we introduce the notation
x00 =X (@9 =1), (4.62)
Xt (gy = —1).

Writing the state described by the TI-MPS {A4;}; as

{Ai}i) = Z tr Ay, - Aiy] i -in) (4.63)

i1, 00N

the action of G on the TI-MPS is given by

g1{Ai}i) = > tr[As, o A )90 [ n) [uglia o [uglivin = QD uglij ALY >’ (4.64)

81,0 EN I 150 N J

that is,

g A IA =Y Jugl AT, =1, d. (4.65)

J

By the linearity of u4, note that
9h A, =9 A i=1,...,d. (4.66)
The state [{4;};) is G-invariant, i.e., there exists e’® such that

A} = {7A}) = e [{Ai}i), g €@, (4.67)
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where the system size N is fixed.

It is expected that any translationally invariant “gapped non-degenerate state” can be approximated
by a strongly irreducible TI-MPS. Let {A;}; be a strongly irreducible TI-MPS in canonical form. Then,
by Theorem 4.16, the G symmetry (4.67) implies, for each g € G,

9A; = eiGQ VgTAng, 1=1,..., d7 (468)
6

where €'’ is unique and the unitary matrix V; is unique up to a U(1) phase. From (4.66) we have

ghAi _ g(eiehv}:rAth) — i%gOn (Vh¢g)T(gAi)Vh¢g
= €i¢gah(vh¢g)T€iag VgTAngVh ‘= 6ieg€i¢gah(%vh¢g)TAi(%Vh D, i=1Ld (4.69)
On the other hand,
Ay = e VI AV (4.70)

By uniqueness, {€%s}, forms a one-dimensional representation of G, that is, {€?s}, € Hom(G,U(1),) =
HI(G, U(1)¢,)

eaeitafn — cWan g hec@. (4.71)
On the other hand, since Vj is unique up to a U(1) phase, there exists z4, € U(1) such that
VoVl = 2gnVon, g.h €G. (4.72)
The U(1) phase z4 is not arbitrary, and from (Vth%)Vk%h = Vg(VhV,fh)% we obtain
bg —1 -1 _
Zh,kzgh,kzgahkzg,h - 15 9, ha kedG. (473)

That is, z, 5, satisfies the 2-cocycle condition. In other words, z € Z2(G,U(1)g) ''. A change of the U(1)
phase of V,, V; = Vyng, induces the transformation

Zg,h — Zg,hn;fgn;hlngv g, h e Gv (474)

where {n,}, is an element of the group of 2-coboundaries B?(G,U(1)s). Therefore, a strongly irre-
ducible, canonical, and G-invariant TI-MPS {4;}; determines an element of the second cohomology
H2(G,U(1)) = Z*(G,U(1))/B*(G,U(1)g)-

Thus, we obtain the following:

Theorem 4.17 ([13, 14], one-dimensional SPT phases). Let {A;}; be a strongly irreducible, canon-
ical, and G-invariant TI-MPS. Then {A;}; defines quantities taking values in

HYG,U(1)g) x H*(G,U(1)y). (4.75)

As a matter of fact, constructions of TI-MPS realizing all possible combinations of invariants in
HY(G,U(1)y) x H*(G,U(1)4) are known [15].
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