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Non-Hermitian Systems

Non-Hermitian Hamiltonians and matrices often appear in various physical systems.

These include Photonics, Mechanics, Electrical Circuits, Biological Physics, Optomechanics,
Hydrodynamics, Open Quantum Systems, and Non-unitary Conformal Field Theories.

For more details on where non-Hermiticity shows up, see the review by, for example,
[Ashida=Gong=Ueda, 2006.01837].
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One-particle non-Hermitian Systems

In this lecture, I will provide a brief introduction to the topological aspects of one-particle
non-Hermitian systems. Specifically, we’ll delve into the topological nature of matrices

H = {Hσσ′(x, x′)}x,x′∈Λ,σ,σ′=1,...,N

defined over a d-dimensional lattice, Λ, with internal degrees of freedom given by σ = 1, . . . , N .
We’ll assume the hopping range is local, i.e., ||H(x, x′)|| < e−|x−x′|/ξ. (Otherwise, the concept of
“dimension” would be meaningless.)
Each physical system might possess intrinsic internal symmetries (which do not affect spatial
positions).
We may be interested in the physics robust against the disorder effect, which is compatible only
with the internal symmetry.
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Example: Wilson Dirac Operator

In lattice gauge theory, we examine the lattice Dirac operator on the Euclidean cubic lattice. The
Wilson Dirac operator is defined as:

DW [U ] = I − κ

3∑
ν=1

[(I + γν)Tν+ + (I − γν)Tν−]− κ
[
eµ(I + γ4)T4+ + e−µ(I − γ4)T4−

]
,

where:

[Tν+]x,y = Uν(x)δx+ν̂,y, [Tν−]x,y = Uν(y)
†δx−ν̂,y.

Here, Uµ(x) ∈ U(N) represents the U(N) gauge field, and µ denotes the chemical potential.

When the chemical potential µ is absent (i.e., µ = 0), DW satisfies the γ5-Hermiticity condition:

γ5DW [U ]†γ5 = DW [U ].
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Ex. Mechanical Metamaterials

Consider a mass-spring model with the equation of motion:

ü = −Du+ Γu̇,

where u = {ui(x)}x,i denotes the displacement vector components at site x.

The matrices D and Γ are real with D being positive semi-definite for system
stability.

Without friction, Γ is skew-symmetric (i.e., ΓT = −Γ). However, this isn’t
generally the case.

Using the variable ũ = (
√
Du, iu̇)T , the dynamics follows a Schrödinger-type

equation [Kane=Lubensky 1308.0554, Süsstrunk=Huber 1604.01033.]:

i
d

dt
ũ = Hũ, H =

(
O

√
D√

D iΓ

)
.

The Hamiltonian H inherently exhibits particle-hole symmetry:

σzH
∗σz = −H.

[Figure from Yoshida=Hatsugai, PRB 100, 054109 (2019)]
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Some characteristics of Non-Hermitian Matrices

Eigenvalues can be complex.

Exceptional Points: These occur when the dimension of the Jordan block is 2 or more, making the
matrix H non-diagonalizable. Example matrices include:(

λ 1
0 λ

)
and

λ 1 0
0 λ 1
0 0 λ

 .

Non-Hermitian Skin Effect [Yao=Wang 1803.01876]: The matrix behavior is sensitive to different
boundary conditions, such as periodic boundary condition (PBC), open boundary condition
(OBC), and semi-infinite boundary condition, among others.

8 / 113



Examples of non-Hermitian systems Some basic properties of non-Hermitian systems 1D hopping models

PT Symmetry Breaking Bender=Boettcher physics/9712001

For matrices with PT -symmetry, represented by H∗ = H, eigenvalues either appear as an isolated
real value, E∗ = E, or as a conjugate pair, (E,E∗).

PT -symmetry breaking refers to the transition where two real eigenvalues merge to form a
complex conjugate pair (E,E∗), or vice versa. Such transitions occur at an exceptional point.
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数値実験

２つのn× n複素行列H0, H1をランダムに生成する．

H0, H1を線形に繋ぐハミルトニアン

Ht = (1− t)H0 + tH1

を考える．Htのtを変化させたときの固有値の変化を見る．

複素行列ではなく，H0, H1をランダムな実行列とした場合に何が起こるかを見る．

10 / 113



Examples of non-Hermitian systems Some basic properties of non-Hermitian systems 1D hopping models

PBC vs OBC

Here are some spectra of 1-dimensional non-Hermitian models.
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Non-Hermitian Skin effect Yao=Wang 1803.01876

PBC ̸= OBC for spectra. Extreme sensitivity against the boundary condition.
In OBC, O(L) modes are localized at an edge.
A prime example is the Hatano-Nelson model, a one-dimensional model with non-reciprocal
hopping.
Non-Hermitian Skin effect has a topological origin. [Zhang=Yang=Fang 1910.01131,

Okuma=Kawabata=KS=Sato 1910.02878] (will be explained in last Section)

H =
∑
x∈Z

tegf†
x+1fx + te−gf†

xfx+1
PBC
=⇒ HPBC =

∑
k

f†
k(te

ge−ik + te−geik)fk,

OBC
=⇒ HOBC =

L∑
x=1

tf̃†
x+1f̃x + tf̃†

x f̃x+1, f̃†
x = egxf†

x

PBC

OBC
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数値実験：１次元ホッピング模型

１次元格子上のホッピング模型を考える．各サイトにn個の内部自由度がいるものとする．

xからx+ pサイトへの飛び移り行列をtpとする．短距離条件として，|p| ≤ rまでの飛び移り項を考える．

(2r + 1)個のn× n複素行列{tp}p=−r,...,rをランダムに与える．（ξ > 0を適当に選んでさら

にtp 7→ tpe−|p|/ξなどと短距離性を持たせると良い．）

系のサイズLxを適当に固定して，周期境界条件（PBC）と開放端境界条件（OBC）のハミルトニアンを構
成する．

HPBC =



t0 t−1 t1
t1 t0 t−1

t1
. . .

. . . t−1

t1 t0 t−1

t−1 t1 t0


, HOBC =



t0 t−1 O
t1 t0 t−1

t1
. . .

. . . t−1

t1 t0 t−1

O t1 t0


.
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Example: No symmetry
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Numerical Rounding Error is not Negligible

In computational calculation, rounding error refers to the small differences between the actual real
number and its nearest representable value in the computer. (丸め誤差)

Since O(L) skin modes are exponentially localized at an edge, these small differences can
significantly affect the results.

The “Non-Bloch band theory” is used to compute the OBC spectrum in the thermodynamic
limit.Yao=Wang 1803.01876, Yokomizo=Murakami 1902.10958
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数値実験：１次元ホッピング模型に対称性を入れる

エルミート性：

t−n = t†n.

擬エルミート性：

t−n = ηt†nη
†, η2 = 1, tr [η] = 0.

Z2対称性：

tn = UtnU
†, U2 = 1.

時間反転対称性：

tn = t∗n, (class AI),

tn = (iσy)t
∗
n(iσy)

†, (class AII).

反転対称性：

t−n = ItnI
†, I2 = 1. 16 / 113
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Example: Pseudo Hermiticity

ηt†nη
† = t−n, η2 = 1, tr [η] = 0.
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Example: Inversion symmetry → the Non-Hermitian skin effect is suppressed

utnu
† = t−n, u2 = 1.
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Gap Conditions and Topology

Why gap condition?

Hermitian systems

Non-Hermitian systems
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Equivalence Condition and Phases of Matter

Water Phase Diagram:

Temperature(℃)

P
re

ss
u

re
(k

P
s)

Ice

(solid)

Water vapor

(gas)

Water

(liquid)

Critical end point

374

221

The ice and water phases are distinct: A singularity in the thermodynamic function exists between
these two phases, indicating a phase transition.
Conversely, water and vapor can be considered the same phase since there exists a continuous
path connecting them without encountering a thermodynamic singularity.
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Topological Equivalence

A torus and a sphere are considered to have distinct topologies.

By shrinking one circle of the torus, we obtain a pinched torus. By further shrinking another
circle, we ultimately transform it into a sphere.

torus
Pinched torus sphane

.

_
…

→ 心 →ーね.
.

Q… (

0

What exactly defines topology?

Topological equivalence is determined by deformations that preserve the local structure of the
Euclidean space.

→
Given a defined equivalence relation, we can identify a set of equivalence classes.
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Topology of Matrices

What does it mean to classify matrices topologically?

Consider two N ×N matrices H0 and H1.

They always can be connected to each other by a continuous path defined as:

Ht = (1− t)H0 + tH1, t ∈ [0, 1].

→ no topological classification.
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Hermitian Matrices: Gap Condition

For meaningful classifications, we impose a gap condition.
For Hermitian matrices H (where H† = H), the eigenvalues E are always real E ∈ R.
A reasonable gap condition is to impose a finite energy gap Egap > 0 around zero (or the Fermi
energy EF ) on eigenvalues of matrices:

E ̸= 0.

Two Hermitian matrices H0 and H1 with no zero eigenvalues are considered equivalent if they can
be continuously connected via a homotopy Ht∈[0,1] provided that Ht also satisfies the gap
condition throughout.
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Hermitian Matrices: Gap Condition (cont.)

We may think two H0 and H1 are equivalent if the numbers of negative eigenstates are the same.
This is true: H can be flattened while keeping the gap condition.

Ht = {(1− t)En + t sgn(En)} |n⟩ ⟨n|
t→1−−−→

N∑
n=1

sgn(En) |n⟩ ⟨n| =: sgnH.

The flattened Hamiltonian sgnH is uniquely identified with a point of the complex Grassmaniann:

sgnH = U

(
1N−M

−1M

)
U†, U ∼ U

(
V

W

)
,

U ∈ U(N), V ∈ U(N −M),W ∈ U(M).

→ H ∈ GrM (CN ) = U(N)/U(N −M)× U(M).

No further classifications arise since the complex Grassmaniann is simply connected
π0[GrM (CN )] = 0. For example, Gr1(C2) ∼= S2.
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Hermitian Matrices: Example of Symmetry

Even when two matrices have an equal number of negative (and positive) eigenvalues, certain
symmetries can forbid a continuous transformation between them.

Let’s consider a Hermitian matrix H with an additional skew-symmetric constraint

HT = −H, H ∈ Mat2N×2N (C).

The Pfaffian pfH ∈ C is well-defined. 1

Given the relationship (pfH)∗ = pf H∗ = pf HT = (−1)NpfH, the ratio of the Pfaffians of two
matrices is always real:

pfH0

pfH1
∈ R,

implying that its sign is an invariant that takes on values in Z2 = {±1}.
For example, consider these two matrices:

H0 =

(
1

−1

)
, H1 =

(
−1

1

)
.

No continuous transformation connects them while preserving the gap condition and the
symmetries H† = H and HT = −H.

1pf H :=
∑

σ∈S2N,σ(2i−1)<σ(2i),σ(1)<σ(3)<···<σ(2N−1) sgn(σ)Aσ(1)σ(2) · · ·Aσ(2N−1)σ(2N)
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数値実験：２つのハミルトニアンが断熱的に繋がるかどうか？

実は，Pfaffianのようなトポロジカル不変量が未知でもハミルトニアンの分類はでき
るLong=Zhang, PRL 130, 036601 (2023)．

行列次元の等しいエルミートなハミルトニアンH0, H1を考える．

何らかのG(群)対称性を任意に仮定する．
ugHu†

g = H, unitary symmetry,
ugH

∗u†
g = H, time-reversal symmetry(TRS),

ugH
∗u†

g = −H, particle-hole symmetry(PHS),
ugHu†

g = −H, chiral symmetry,

g ∈ G.

平坦化したハミルトニアンQj = sgnHjを用いて，両者を線形に繋ぐハミルトニアン

Qt = (1− t)Q0 + tQ1, t ∈ [0, 1]

を導入する． Qtは対称性を満たす．
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数値実験：２つのハミルトニアンが断熱的に繋がるかどうか？（続き）

以下が成立．

Long=Zhang, PRL 130, 036601 (2023)

Qtの固有値の構造は|ϵt| = a(t− 1
2
)2 + b.

Qt= 1
2
がゼロ固有値を持たない ⇒ H0とH1を断熱的に繋ぐパスが存在する．

H0とH1を断熱的に繋ぐパスが存在しない ⇒ Qt= 1
2
のゼロ固有値は摂動に対して安定．

したがって，与えられた同一の対称性を満たすハミルトニアンの対H0, H1が断熱的に繋がるか
どうかは，断熱パスを探索する必要はなく，Qt= 1

2
の固有値を計算すれば良い．

実装は，δ = 10−8などと固定して，
|λmin| = minλ∈Spec(Q 1

2
)|λ| > δ ならばH0とH1は同一グループに属する．

|λmin| = minλ∈Spec(Q 1
2
)|λ| < δのときは，摂動Hj 7→ Hj + δHjに対して条件|λmin| < δが安定であ

れば，H0とH1は異なるグループに属する．

として，グループ分けを行う． 2 N個のグループが得られれば，N個のトポロジカル・クラス
がある．

2断熱的に繋がるかどうかは同値関係なので，代表元のみ調べれば良いことに注意．
27 / 113



Why gap condition? Hermitian cases Non-Hermitian cases

Hermitian Matrices: Finite Space dimensions & Translational Invariance

We have discussed Hermitian matrices H without an extended space direction.

In a d-dimensional finite space, the legs of H extend to an infinite lattice:

H = {H(x, x′)}x,x′ , x, x′ ∈ Zd.

Translational symmetry lets us define the Hamiltonian in the Bloch-momentum torus T d:

H(x, x′) = H(x− x′) =
∑
k∈Td

H(k)eik·(x−x′).

Classification is about homotopy for matrix families H(k) over the torus T d.

Gapped HamiltoniansBloch-momentum torus

With symmetry 

constraint

H0(k) is equivalent to H1(k) if a homotopy Ht∈[0,1](k) exists that bridges them while preserving
the gap condition and symmetry.
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数値実験：２バンド模型

2× 2模型であって，正負のエネルギー固有状態を一つ持つハミルトニアンHはGrassmann多様
体Gr1(C2) ∼= S2に値を取る．

sgnH = (|ϕ+⟩ , |ϕ−⟩)
(
1

−1

)
(|ϕ+⟩ , |ϕ−⟩)†, |ϕ+⟩ ∼ |ϕ+⟩ eiχ+ , |ϕ−⟩ ∼ |ϕ−⟩ eiχ− . (1)

２バンド系の場合は|ϕ+⟩を決めれば|ϕ−⟩はそれに直交する状態として決まる．よってハミルト
ニアンHの選び方は，占有状態|ϕ−⟩ ∼ |ϕ−⟩ eiχ−の選び方と同じ． ⇒ S2でパラメータ付けで
きる．

|ϕ−⟩ ∼
(
− sin θ

2

cos θ
2
eiϕ

)
, |ϕ+⟩ ∼

(
cos θ

2

sin θ
2
eiϕ

)
, (θ, ϕ) ∈ S2.

このとき，単純計算より，

sgnH = |ϕ+⟩⟨ϕ+| − |ϕ−⟩⟨ϕ−| =
(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
= n · σ.

よって，与えられたハミルトニアンを平坦化することにより，n ∈ S2が得られる．

n =
1

2
tr [σsgnH].
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数値実験：２バンド模型（続き）

2× 2模型であって，正負のエネルギー固有状態を一つ持つハミルトニアンHはGrassmann多様
体Gr1(C2) ∼= S2に値を取る．

sgnH = (|ϕ+⟩ , |ϕ−⟩)
(
1

−1

)
(|ϕ+⟩ , |ϕ−⟩)†, |ϕ+⟩ ∼ |ϕ+⟩ eiχ+ , |ϕ−⟩ ∼ |ϕ−⟩ eiχ− . (2)

２バンド系の場合は|ϕ+⟩を決めれば|ϕ−⟩はそれに直交する状態として決まる．よってハミルト
ニアンHの選び方は，占有状態|ϕ−⟩ ∼ |ϕ−⟩ eiχ−の選び方と同じ． ⇒ S2でパラメータ付けで
きる．

|ϕ−⟩ ∼
(
− sin θ

2

cos θ
2
eiϕ

)
, |ϕ+⟩ ∼

(
cos θ

2

sin θ
2
eiϕ

)
, (θ, ϕ) ∈ S2.

このとき，単純計算より，

sgnH = |ϕ+⟩⟨ϕ+| − |ϕ−⟩⟨ϕ−| =
(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
= n · σ.

よって，与えられたハミルトニアンを平坦化することにより，n ∈ S2が得られる．

H 7→ n =
1

2
tr [σsgnH] ∈ S2.
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数値実験：２バンド模型（続き）

０次元: ハミルトニアンHはS2上の１点を定める．

１次元：ハミルトニアンH(kx)はkx ∈ [−π, π]上で定義される．⇒ 写像 S1 → S2 を定め
る．（立体角はBerry位相を与える．）

２次元：ハミルトニアンH(kx, ky)は(kx, ky) ∈ [−π, π]×2上で定義される．⇒ 写像 T 2 → S2 を
定める．マップT 2 → S2がS2を何回覆い尽くす回数，つまり写像度（Chern数）

1

8π

∫
T2

n · (dn× dn) ∈ Z

によってトポロジカルな分類が生じる．

対称性が存在すると，取りうるS2上の点に制限が課される．

例えば，クラスD型のPHS

σxH(kx)
∗σx = −H(−kx)

を考えると，対称点kx = 0, πにおいてはsgnH = ±σzであるので，北極か，あるいは南極に制
限される． ⇒ Z2分類．
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Non-Hermitian Matrices: What is the Gap Condition

Eigenvalues of non-Hermitian matrices are complex.
What is a meaningful gap condition?
A characteristic feature of complex eigenvalues is that in a PBC, the phase of an eigenvalue
around a reference energy Eref may have a winding number

W (Eref) =
1

2πi

∮
d log det[HPBC(k)− Eref ] ∈ Z.

→ the origin of the non-Hermitian skin effect [Zhang-Yang-Fang 1910.01131,

Okuma-Kawabata-KS-Sato 1910.02878].
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Non-Hermitian Matrices: Point Gap Gong-Ashida-Kawabata-Takasan-Higashikawa-Ueda 1802.07964

The winding number W (Eref) is stable unless an eigenvalue touches the reference energy Eref .

The point gap condition

E ̸= Eref (det(H(k)− Eref) ̸= 0)

makes sense.

Eg: The following two Hamiltonians are in distinct point-gapped topological phases w.r.t. the
reference energy Eref .

Re

Im

Re

Im
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Non-Hermitian Matrices: Remnants of Hermitian edge states

Even with non-Hermiticity, the remnant of Hermitian topological phases, the boundary states,
might persist.

A minor perturbation doesn’t eliminate the edge states inherent to Hermitian topological phases.
This is because the spectrum can deform continuously smoothly when perturbed slightly.
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Non-Hermitian Matrices: Line Gap Kawabata-KS-Ueda-Sato 1812.09133

To capture such remnants of Hermitian topological edge states in a non-Hermitian system, we
introduce the concept of a line gap:

Spec(H) ∩ L = ∅, where L is a line in the complex plane C.

Hamiltonians H0(k) and H1(k) are considered to belong to the same topological phase with
respect to the line gap if there exists a homotopy Ht∈[0,1](k) that connects them while preserving
the line gap and the associated symmetry.
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Non-Hermitian Matrices: Point Gap and Line gap

It is useful to introduce two types of line gaps: real line gap and imaginary line gap. These are
consistent with symmetries associating E with −E,E∗, or −E∗ (detailed later).

P: Point-gap E − Eref ̸= 0.

Lr: Real line gap Re(E − Eref) ̸= 0.

Li: Imaginary line gap Im(E − Eref) ̸= 0.

[Figure from Kawabata=KS=Ueda=Sato 1812.09133]
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Symmetry in non-Hermitian systems
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Symmetries in Non-Hermitian Systems

What kind of symmetries exist in non-Hermitian systems?

Example:
Time-reversal symmetry (TRS) is a fundamental symmetry.

UTH∗U†
T = H.

In the mean-field approach to superconductors, the Bogoliubov–de Gennes (BdG) Hamiltonian HBdG

inherently possesses particle-hole symmetry (PHS).3

UCHT
BdGU†

C = −HBdG, HBdG =

(
h ∆
∆† −hT

)
, UC =

(
1

1

)
.

Bosonic systems with quadratic interactions are captured by the bosonic BdG Hamiltonian

Ĥ = 1
2
(a†,a)HBdG(a,a†)T . To maintain the bosonic commutation relation, HBdG must be

diagonalized using a paraunitary matrix 4, which is the same as the standard diagonalization of the

effective matrix HσBdG = σzHBdG. While HσBdG is non-Hermitian, the Hermiticity of Ĥ is
encoded in its pseudo-Hermiticity:

σzH
†
σBdGσz = HσBdG.

3Note that ∆T = −∆ due to the fermion anti-commutation relation.
4UσzU

† = σz, U
†σzU = σz .
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Symmetries in Non-Hermitian Systems (cont.)

We consider the following 8 types of symmetries :

Symmetry in non-Hermitian systems

u


H
H∗

HT

H†

u† =

{
H
−H

}
, u is a unitary matrix.

This choice is ad hoc. In quantum mechanics, Winger’s theorem tells us symmetry, a transformation that
does not change the observation, is either unitary or anti-unitary. In non-Hermitan systems without
specifying a physical system, we have no such guiding principles. We may consider different types of
symmetry such as

u


H
H∗

HT

H†

 v† = eiϕH, u ̸= v, eiϕ ∈ U(1).

For example, the symmetry type uH†v† = H was discussed to construct the symmetry indicator in
KS=Ono 2105.00677.
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Symmetries in Non-Hermitian Systems (cont.)

Let G be a group. We introduce three homomorphims 5 ϕ, η, c : G → Z2 = {±1} to specify the
type of symmetry as 

ugHu†
g (ϕg = 1, ηg = 1)

ugH
∗u†

g (ϕg = −1, ηg = 1)

ugH
Tu†

g (ϕg = −1, ηg = −1)

ugH
†u†

g (ϕg = 1, ηg = −1)

 = cgH, g ∈ G,

Comparing the transformation with two consecutive h, g transformations and the transformation
with gh, we have {

uguh (ϕg = 1)
ugu

∗
h (ϕg = −1)

}
= zg,hugh, zg,h ∈ U(1), g, h ∈ G.

The relation (gh)k = g(hk) gives the constraint relations

z
ϕg

h,kz
−1
gh,kzg,hkz

−1
g,h = 1, g, h, k ∈ G.

(This means z = (zg,h) is a two-cycle in Z2(G,U(1)ϕ).)
5Let G0 and G1 be groups. f : G0 → G1 is said to be a homomorphism if f(gh) = f(g)f(h) is met.
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8 types of symmetries (names from Kawabata-KS-Ueda-Sato 1812.09133)

ϕg ηg cg Sym. Energy constraints Name

1 1 1 ugHu†
g = H E → E Unitary

1 −1 1 ugH
†u†

g = H E → E∗ Pseudo Hermiticity (PH)

−1 1 1 ugH
∗u†

g = H E → E∗ Time-reversal symmetry (TRS)

−1 −1 1 ugH
Tu†

g = H E → E Time-reversal dagger symmetry (TRS†)

−1 1 −1 ugH
∗u†

g = −H E → −E∗ Particle-hole dagger symmetry (PHS†)

−1 −1 −1 ugH
Tu†

g = −H E → −E Particle-hole symmetry (PHS)

1 1 −1 ugHu†
g = −H E → −E Sublattice symmetry (SLS)

1 −1 −1 ugH
†u†

g = −H E → −E∗ Chiral symmetry (CS)

and finer classifications (detailed on the next slide).
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対称性の分類

非エルミート系における対称性の分類をしたい．

対称性群Gは任意だから分類できないようにも思うが，ハミルトニアンはユニタリーな部分群
の既約表現のセクターにブロック対角化されるため，各ブロックにおいて実現する対称性のみ
を分類すれば良い．

結果，38通りの独立な対称性クラスに分類されることを見る．

まずは既約表現のセクターにブロック対角化されることを確認する．

G0 = {g ∈ G|ϕg = ηg = cg = 1} ⊂ G

をユニタリーな部分群とする．つまり，

ugHu†
g = H, g ∈ G0,

uguh = zg,hugh, g, h ∈ G0.
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Schurの補題

Schurの補題

ug, vgをG0の既約なユニタリ表現とする．任意のg ∈ G0に対して

ugH = Hvg

とする．このとき，u, vが非等価な表現であればH = Oであり，u = vであればH ∝ 1．

この系+αとして．．．

表現uの既約分解をu =
⊕

α nαα, nα ∈ Z≥0とする．基底を選んで，

ug =
⊕
α

uα
g ⊗ 1nα

とできる，この基底においてハミルトニアンは以下の形にブロック対角化される．

H =
⊕
α

1dim(α) ⊗Hα, Hα ∈ Matnα(C).
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数値実験：ブロック対角化

Schurの補題の証明は，例えば英語版のWikipediaの記事で確認してください．

ここではMathematicaに含まれる有限群G0の群表を用いて正則表現を構成し，G0対称性を満た
すランダムなハミルトニアンの固有値が表現次元だけ縮退することを数値的に確かめます．

まず与えられた有限群G0と乗数系zg,hに対して全ての既約表現を得る

正則表現

有限群G0に対して，以下を正則表現と呼ぶ．

[Rg]hk = zg,kδh,gk.

次の事実がある．

R =
⊕
α

dim(α)α.

よって，正則表現Rは全ての既約表現を含み，α既約表現はdim(α)回出現する． a

aしたがって，群表と乗数系zg,hが与えられれば，全ての既約指標が得られます．
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38 symmetry classes Kawabata-KS-Ueda-Sato 1812.09133

What are fundamentally different symmetry classes that govern the topological nature of matrices?
→ We eventually reach the 38 symmetry classes. (cf. 10 Altland-Zirnbauer symmetry classes in
Hermitian systems. cond-mat/9602137)

Proof

(i) The Hamiltonian H is block-diagonalized to the irreducible representations α, β, γ, . . . of the
unitary subgroup G0 = {g ∈ G|ϕg = ηg = cg = 1} ⊂ G.

H =


Hα

Hβ

Hγ

. . .


(ii) A group element g ∈ G in which either ϕg, ηg, or cg is -1, acts on each block Hα as either

g preserves the irreducible representation α. g is closed inside the block Hα.
→ g acts as a Z2 symmetry inside the block Hα. (cf. Wigner criteria)

g exchanges the irreducible representations Hα
g−→ Hβ .

→ Hβ is just a copy of Hα. The topological nature is determined only in the block Hα.
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補足：表現のマップについて

まず，今の場合はh ∈ Gに対して，g ∈ G0のとき，ϕh−1gh = ηh−1gh = ch−1gh = 1であるので，

h−1G0h = G0に注意します．
さらに，h ∈ Gに対して，常にh2 ∈ G0にも注意します．これから，hで２回マップすると元の表現に戻る
ことがわかります．

G0の既約表現αの表現基底を{|i⟩}dim(α)
i=1 とします．

ĝ |j⟩ =
∑
i

|j⟩ [uα]ij , g ∈ G0.

h ∈ Gによってマップされた既約表現hαの表現基底を形式的にĥ |i⟩として導入すると，

ĝĥ |j⟩ = zg,hĝh |j⟩ =
zg,h

zh,h−1gh

ĥĥ−1gh |j⟩ =
zg,h

zh,h−1gh

ĥ
∑
i

|i⟩ [uα
h−1gh

]ij

より，ĥが反ユニタリーな場合に注意して，表現行列は

uhα
g∈h−1G0h

=
zg,h

zh,h−1gh

×
{

uα
h−1gh

ϕh = 1,

[uα
h−1gh

]∗ ϕh = −1.

となります．
この表式から，hαの指標がわかるので，後は既約指標の直交関係

1

|G0|
∑

g∈G0

(χα
g )

∗χβ
g = δαβ

により，αとhαがユニタリ同値かどうかが判定できます．
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補足：Wigner判定条件

h ∈ Gが反ユニタリーϕh = −1の場合でかつ既約表現αとhαがユニタリ同値な場合は，状

態{|i⟩}と{ĥ |i⟩}はユニタリ同値であるにもかかわらず，“直交”する場合があります．（Kramers縮退）

具体的には，次のWigner判定条件を用いて判断されます．

Wα :=
1

|G0|
∑

g∈G0

zhg,hgχ
α
(hg)2

∈ {0,±1}.

Wα = 0 ⇒ αとhαは非等価．

Wα = 1 ⇒ αとhαはユニタリ同値であり，クラマース縮退なし．

Wα = −1 ⇒ αとhαはユニタリ同値であり，クラマース縮退あり．

最も簡単な例は，自明な群G0 = {e}の自明な表現に対して，Z2 = {e, T}の時間反転対称性が存在する場
合であり，

T̂ 2 = zT,T = 1 ⇒ Kuramers縮退なし, T̂ 2 = zT,T = −1 ⇒ Kuramers縮退あり.
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38 symmetry classes (cont.)

(iii) The problem is recast as how different symmetry actions there are in a single block Hα.

(iv) We can assume the absence of unitary symmetry (i.e., (ϕg, ηg, cg) ̸= (1, 1, 1)).
→ The symmetry group G realized in the single block is either one of

G = Z×N
2 , N = 0, 1, 2, 3.

(Otherwise, there is a unitary group element.)

(v) For a group element g with ϕg = −1, namely antiunitary symmetry, the square is proportional to
identity (since g2 = e) but its coefficient is quantized to a sign 6

ugu
∗
g = ±1.

6The coefficient should be a sign: Set ugu
∗
g = eıϕ. Then, eiϕug = ugu

∗
gug = ug(ugu

∗
g)

∗ = uge
−iϕ. The sign ±1 is

unchanged under ug 7→ eiαug .
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38 symmetry classes (cont.)

(vi) Case of N = 0 — Unique.

(vii) Case of N = 1 — Seven patterns:

(ϕ1, η1, c1) = (−1, 1, 1), (−1,−1, 1), (−1, 1,−1), (−1,−1,−1), (1,−1, 1), (1, 1,−1), (1,−1,−1).

For ϕ1 = −1, we have 2 cases for each, resulting in 2× 4 + 3 = 11.

(viii) Case of N = 2 — When ϕg = −1 is included, there are four patterns

{(ϕ1, η1, c1), (ϕ2, η2, c2)} ={(−1, 1, 1), (−1,−1, 1)}, {(−1, 1, 1), (−1, 1,−1)},
{(−1, 1, 1), (−1,−1,−1)}, {(−1,−1, 1), (−1, 1,−1)},

and choices of the signs of u1u
∗
1 = ±1 and u2u

∗
2 = ±1 for each. When ϕg = −1 is not included,

there is only one pattern

{(ϕ1, η1, c1), (ϕ2, η2, c2)} = {(1,−1, 1), (1, 1,−1)},

with the commutation or anticommutation relation of them u1u2 = ±u2u1. As a result, we have
4× 4 + 2 = 18.
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38 symmetry classes (cont.)

(ix) Case of N = 3 — The set of three generators is unique

{(ϕ1, η1, c1), (ϕ2, η2, c2), (ϕ3, η3, c3)} = {(−1, 1, 1), (−1,−1, 1), (−1, 1,−1)}.

The choices of the signs of u1u
∗
1 = ±1, u2u

∗
2 = ±1, and u3u

∗
3 = ±1. We have 2× 2× 2 = 8.

(x) In sum,

1 + 11 + 18 + 8 = 38 classes.

Cf. This is contrasted to the 43-fold classes in the pioneered work by
Bernard-LeClair. [cond-mat/0110649] This is due to overcounting and overlooking.
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Issues in the 38 Symmetry Classes of Non-Hermitian Systems

Having fundamental symmetry classes, several fundamental issues arise:

Anderson localization problem Hatano=Nelson cond-mat/9603165, ...

Spectral statistics (Level-spacing distribution) of random matrices
Hamazaki=Kawabata=Kura=Ueda 1904.13082, ...

Topological classification w.r.t. gap conditions (point or line gap)
Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964, Kawabata=KS=Ueda=Sato
1812.09133, Zhou=Lee 1812.10490, ...

Symmetry protected exceptional points? Kawabata=Bessho=Sato 1902.08479

Existence/absence of non-Hermitian skin effect Kawabata=KS=Ueda=Sato 1812.09133,
Kawabata=Okuma=Sato 2003.07597, ...

Connection to quantum many-body physics

Experimental relevance

And more...

Note: This is far from the exhaustive reference list on the topics above, due to the lack of my knowledge of recent developments.
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38 Symmetry Classes in Finite Space Dimensions

In finite space dimensions (with d ≥ 1), how we encode the 38 fundamental symmetries depends
on the specific physical systems under consideration.

One might focus on internal symmetries, which don’t change the spatial position, as they remain
compatible with the effects of the disorder.

Here, we consider the following constraints on the hopping Hamiltonian H(x, x′):
Complex conjugation is local: H(x, x′)∗ ↔ H(x, x′).
Transpose exchanges the hopping direction: H(x, x′)T ↔ H(x′, x).

This rule can be summarized in the table below:

Symmetry Symmetry in Real Space With Translational Invariance

Unitary/SLS uH(x, x′)u† = ±H(x, x′) uH(k)u† = ±H(k)

TRS/PHS† uH(x, x′)∗u† = ±H(x, x′) uH(k)∗u† = ±H(−k)

TRS†/PHS uH(x, x′)Tu† = ±H(x′, x) uH(k)Tu† = ±H(−k)

PH/CS uH(x, x′)†u† = ±H(x′, x) uH(k)†u† = ±H(k)
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A Numerical Experiment: PBC vs OBC for 38 symmetry classes

No symmetry Pseudo Hermiticity

Sublattice symmetry Chiral symmetry
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Class AI Class AII

Class D Class C
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Class AI† Class AII†

Class D† Class C†

+ Other 28 classes → The PBC and OBC spectra are coincident if class AI† symmetry exists.
Kawabata=KS=Ueda=Sato 1812.09133, Kawabata=Okuma=Sato 2003.07597, ...
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Topological Classification

Hermitianization and flattening

Altland-Zirnbauer symmetry class and classifying space

Finite spacial dimension and dimensional isomorphism

Classification of non-Hermitian topological phases
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Classification table of Hermitian topological phases “Periodic Table”
Schnyder=Ryu=Furusaki=Ludwig 0803.2786, Kitaev 0901.2686

[Figure from Chiu=Teo=Schnyder=Ryu 1505.03535]

Well-established. (The derivation is soon later. )
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Point Gap and Hermitianization Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964

The non-Hermitian skin effect is characterized by a nontrivial topological number with a point gap.

Class AII†

[Okuma=Kawabata=KS=Sato 1910.02878]

How to systematically classify such topological phases/numbers? → Use the Hermitianization trick

H̃(k) =

(
H(k)†

H(k)

)
.

A point gap of H̃(k) implies a gap of H̃(k). This is because
Spec(H̃(k)) = Spec(±

√
H(k)†H(k)). I.e., the singular values of H(k) are the same as (absolute

values of) eigenvalues of H̃(k).

Classifying non-Hermitian H(k) is recast as that of Hermitian Hamiltonian H̃(k), which is
well-established. → Done!
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Line Gap and Flattening Kawabata=KS=Ueda=Sato 1812.09133

Hermitionization and Flattening

With the real/imaginary line gap, non-Hermitian Hamiltonians H can be Hermite and flattened while
keeping the real/imaginary line gap.

→ Done!

[Figure  from Kawabata-KS-Ueda-Sato 1812.09133]
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Proof (Based on App. D in Ashida=Gong=Ueda 2006.01837)

For simplicity, from now on, we set Eref = 0.

Flattening

Let C+(C−) be a circle enclosing all the eigenvalues with Re E > 0(Re E < 0).

The projector onto the eigenspace with Re E > 0(Re E < 0) is given by 7

P±(k) =

∮
C±

dz

2πi

1

z −H(k)
, P±(k)

2 = P±(k).

Introduce the homotopy

Ht∈[0,1](k) = (1− t)H(k) + t[P+(k)− P−(k)],

whose eigenvalues are (1− t)En(k) + t sgn[Re En(k)], which have a real line gap for t ∈ [0, 1].

H1(k) = P+(k)− P−(k) has eigenvalues ±1.

7Use the resolvent equation (A − w)−1 − (A − z)−1 = (z − w)(A − z)−1(A − w)−1 to show [P±(k)]2 = P±(k).
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Hermitianization

Decompose H1(k) into real and imaginary parts as

H1(k) = h1(k) + ih2(k) =
H1(k) +H1(k)

†

2
+ i

H1(k)−H1(k)
†

2i
.

H1(k)
2 = P+(k) + P−(k) = 1 implies that

h1(k)
2 − h2(k)

2 = 1, {h1(k), h2(k)} = 0.

Introduce the homotopy

H̃s∈[0,1](k) = (1− s)H1(k) + sh1(k) = h1(k) + i(1− s)h2(k),

whose square is

H̃s(k)
2 = h1(k)

2 − (1− s)2h2(k)
2 = 1 + (1− (1− s)2)h2(k)

2 ≥ 1.

Thus, H̃s(k) keeps the real line gap and H1(k) is Hermitianized to h1(k).

h1(k) is not flat. We take the flattening to h1(k) again.

(Remark) These flattening and Hermitianization methods are compatible with 38 symmetries. 8

8Not compatible with type of symmetries ±u†
gHvg = H,H∗, HT , H†.
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Topological Classification of Hermitian Systems

For both point and line gaps, the classification problem is recast as that for Hermitian systems,
which is well-established.

H(k)† = H(k), H(k)2 = 1 (after flattening)

So, in the remainder of this part, I review the classification of Hermitian topological phases.

Strategy: Classify 0-dimensional Hamiltonians and extend to finite space dimensions.

(Remark) The classification of non-Hermitian topological phases here is for PBC. Due to the
non-Hermitian skin effect, quantitative (and possibly qualitative) properties such as edge states
must be discussed using the bulk Hamiltonian in OBC. The bulk-boundary correspondence is true
between the bulk OBC Hamiltonian and the edge state. Yao=Wang 1803.01876, Yao=Song=Wang

1804.04672
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Altland=Zirnbauer symmetry classes

The fundamental internal symmetries are classified into 10-fold Altland-Zirnbauer (AZ) symmetry
classes. Altland=Zirnbauer cond-mat/9602137

There are three types of symmetries: 9

TRS: uTH(x, x′)∗u†
T = H(x, x′) uTu

∗
T = ±1,

PHS: uCH(x, x′)∗u†
C = −H(x, x′) uCu

∗
C = ±1,

Chiral: uΓH(x, x′)u†
Γ = −H(x, x′) u2

Γ = 1, tr [uΓ] = 0.

AZ class TRS PHS Chiral
A 0 0 0
AIII 0 0 1

AI 1 0 0
BDI 1 1 1
D 0 1 0
DIII −1 1 1
AII −1 0 0
CII −1 −1 1
C 0 −1 0
CI 1 −1 1

9tr [uΓ] = 0 is needed. Otherwise, H has zero modes.
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Classifying Space

We start with the classification of zero-dimensional Hamiltonian.

H† = H, H2 = 1 (⇔ E = ±1) + AZ symmetry.

What is the “space” of such matrices?

With “stable equivalence”, such “spaces” become the classifying spaces in the K-theory. Kitaev

0901.2686
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Example: 2× 2 Hermitian matrix with H2 = 1

2× 2 Hermitian matrix H can be expanded as

H = d0 + dxσx + dyσy + dzσz = d0 + d · σ.

Eigenvalues:

E = d0 ± |d|.

Thus, flattening implies either one of the following.
d0 = 1 and d = 0,
d0 = −1 and d = 0,
d0 = 0 and |d| = 1.

Thus, there is a one-to-one correspondence

{H ∈ Mat2×2(C)|H† = H,H2 = 1} = {d0 = 1}︸ ︷︷ ︸
pt

∪{d ∈ S2}︸ ︷︷ ︸
Sphere

∪{d0 = −1}︸ ︷︷ ︸
pt

.
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Stable equivalence Kitaev 0901.2686

Practically, the homotopy classification of Hamiltonians whose target space is a finite and fixed
dimension is hard to compute.

Even the classification is not a group.

Example: class A 2× 2 Hamiltonian in 3-space dimensions (“Hopf insulator Moore=Ran=Wen

0804.4527”) 10:

[T 3, S2] =

{
(i) Three Chern numbers (nx, ny, nz) ∈ Z×3

(ii) Hopf invariant is classified by Z2·GCD(nx,ny,nz)

The “stable equivalence condition” was introduced: Two Hamiltonians H0(k) and H1(k) are said
stably equivalent H0(k) ∼ H1(k) if H0(k)⊕H ′(k) and H1(k)⊕H ′(k) are homotopically
equivalent. 11

Physical motivation: stable against hybridization of higher- and lower-energy bands and the band
folding by breaking translational symmetry.

Mathematical motivation: (relatively) easy to compute.
10π3(S

2) = Z, which is generated by the Hopf map S2 → S3.
11We further introduce the equivalence relation to pairs of Hamiltonians with the same size (H0(k), H1(k)). Two pairs

(H0(k), H1(k)) and (H′
0(k), H

′
1(k)) are equivalent if H0(k) ⊕ H′

1(k) ∼ H′
0(k) ⊕ H1(k). The equivalence classes form the

K-theory.
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Class A: Classifying Space C0

Let H be an N ×N Hermitian matrix H with H2 = 1.
H is diagonalized by a unitary matrix

H = U

(
1N−M

−1M

)
U†,

where M(0 ≤ M ≤ N) is the number of negative eigenvalues.
U is not unique:

U 7→ U

(
V

W

)
, V ∈ U(N −M), W ∈ U(M).

Thus, H is characterized by Grassmann manifolds

N⋃
M=0

U(N)

U(N −M)× U(M)
.

With the stable equivalence [Kitaev 0901.2686], the Hamiltonian is eventually characterized by the
classifying space C0,

12

C0 =
⋃
k∈Z

lim
n→∞

U(2n)

U(n+ k)× U(n− k)
.

12２つの行列の形式差(H0, H1)は(H0 ⊕ (−H1), H1 ⊕ (−H1))に安定同値である．nはH0, H1の行列次元，kはH0, H1の
負の固有値の数の差． 67 / 113



Hermitianization and flattening Altland-Zirnbauer symmetry class and classifying space Finite spacial dimension and dimensional isomorphism Classification of non-Hermitian topological phases

Class AIII: Classifying Space C1

Let H be an 2N × 2N Hermitian matrix H with H2 = 1 and chiral symmetry

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0.

WLOG, we can set uΓ = σz =

(
1

−1

)
. Then,

H =

(
q†

q

)
, q ∈ U(N).

Thus, H is characterized by the unitary group U(N).

With the stable equivalence [Kitaev, 0901.2686], the Hamiltonian is eventually characterized by the
classifying space C1,

C1 = lim
n→∞

U(n).
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Class AIII: Classifying Space C1 (alternative)

There is another perspective on C1.

Start with the diagonalization H = UσzU
†.

Set uΓ = σx. The symmetry σxHσx = −H implies that one can choose σxU = Uσx. Namely,

U = u+P+ + u−P− =
1

2

(
u+ + u− u+ − u−
u+ − u− u+ + u−

)
, u+, u− ∈ U(N).

where P± = 1±σx
2

is the projection onto σx = ±1.

The redundancy of U is U 7→ UV with V σzV
† = σz and σxV = V σx. Thus, V is a form

V = σy ⊗ Ṽ , Ṽ ∈ U(N).

We got

C1 = lim
n→∞

[U(n)× U(n)]/U(n).
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補足：複素対称行列の分解（Autonne=髙木分解）

Aを複素対称行列AT = Aとする．あるユニタリ行列Qと要素が非負実数の対角行列Σが存在して，

A = QΛQT .

(証明) 13 Q,Λの存在を示す． A = A1 + iA2 = A+A∗

2
+ iA−A∗

2i
, Q = Q1 + iQ2 = Q+Q∗

2
+ iQ−Q∗

2i
と実部と

虚部に分解すると，方程式A = QΛQTは以下と等価．

A1 = Q1ΛQ
T
1 −Q2ΛQ

T
2 , A2 = Q1ΛQ

T
2 +Q2ΛQ

T
1 .

これは，以下と等価．

Ã = Q̃

(
Λ

−Λ

)
Q̃T , Ã =

(
−A2 A1

A1 A2

)
, Q̃ =

(
Q2 −Q1

Q1 Q2

)
.

Qがユニタリ性QQ† = 1は，Q̃の直交性Q̃Q̃T = 1と等価．さてÃは実対称行列であるから直交行列で対角化さ
れ，またカイラル対称性(iσy)Ã = −Ã(iσy)を有するから，確かに，

Q̃ =

((
Q2

Q1

)
, iσy

(
Q2

Q1

))
なる直交行列で対角化される．

注意として，複素対称性行列Aは対角化可能とは限らないが，Autonne=髙木分解は常に存在する．
13リンク先を参考にした．
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補足：複素反対称行列の分解

Aを偶数次元の複素反対称行列AT = −Aとする．あるユニタリ行列Qと要素が非負実数の対角行
列Σが存在して，

A = QΛ⊗ (iσy)Q
T .

証明は練習問題とする．
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補足：反ユニタリな対称性の標準形

反ユニタリなZ2対称性は，２種類存在する．

u = ±uT .

uT = uの場合は，u = QQTなるユニタリ行列が存在する．このQを用いて基底変換をするこ
とにより，常に

u 7→ Q†uQ∗ = 1

なる基底が存在することがわかる．

同様に，uT = −uの場合は，u = Q(iσy)Q
Tなるユニタリ行列が存在する．このQを用いて基

底変換をすることにより，常に

u 7→ Q†uQ∗ = iσy

なる基底が存在する．
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Class AI: Classifying Space R0

Let H be an N ×N Hermitian matrix H with H2 = 1 and class AI TRS

uTH
∗u†

T = H, uTu
∗
T = 1.

WLOG, we can set uT = 1 14, meaning that H is diagonalized by an orthogonal matrix

H = O

(
1N−M

−1M

)
OT .

The same logic as class A leads the classifying space R0,

R0 =
⋃
k∈Z

lim
n→∞

O(2n)

O(n+ k)×O(n− k)
.

14Every symmetric matrix uT
T = uT can be uT = QΛQT with Λ ≥ 0 and Q a unitary (Autonne–Takagi factorization).

When uT is unitary, Λ = 1.
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Class BDI: Classifying Space R1

Let H be an N ×N Hermitian matrix H with H2 = 1 and class BDI symmetry

uTH
∗u†

T = H, uTu
∗
T = 1,

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0,

uTu
∗
Γ = uΓuT .

We can set uΓ = σz and uT = 1, meaning that q is an orthogonal matrix

H =

(
q†

q

)
, q ∈ O(N).

We get the classifying space R1,

R1 = lim
n→∞

O(n).

The Z2 invariant is given by det q ∈ {±1}.
As for C1, it can also be obtained as R1 = limn→∞[O(n)×O(n)]/O(n).
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Class D: Classifying Space R2

Let H be an 2N × 2N Hermitian matrix H with H2 = 1 and class D PHS

uCH
∗u†

C = −H, uCu
∗
C = 1.

We can set uC = 1, meaning that iH is a real skew-symmetric matrix, which is diagonalized as

iH = O

[
1N ⊗

(
1

−1

)]
OT , O ∈ O(2n).

O is not unique:

O 7→ O

(
Re U Im U
−Im U Re U

)
, Re U =

U + U∗

2
, Im U =

U − U∗

2i
, U ∈ U(n).

→ R2 = lim
n→∞

O(2n)

U(n)
.

The Z2 invariant is given by pf [iH] = detO ∈ {±1}.
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Class D: Classifying Space R2 (alternative)

Start with the diagonalization H = UσzU
†.

Set uC = 1. Then, the symmetry constraint H∗ = −H implies that U can be chosen as

U∗ = Uσx, which is the same as V = Ue
iπ
4

(σx−1) is real V ∗ = V .

Then, H = V (−σy)V
†.

The redundancy of V is V 7→ V Q with Q∗ = Q and QσyQ
† = σy, which means Q ∈ U(N) as

before.

We get

R2 = lim
n→∞

O(2n)

U(n)
.

76 / 113



Hermitianization and flattening Altland-Zirnbauer symmetry class and classifying space Finite spacial dimension and dimensional isomorphism Classification of non-Hermitian topological phases

Class DIII: Classifying Space R3

Let H be an 4N × 4N Hermitian matrix H with H2 = 1 and class CI symmetry

uTH
∗u†

T = H, uTu
∗
T = 1,

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0,

uTu
∗
Γ = −uΓuT .

We can set uΓ = σz and uT = σxτy. Then, the symmetry constraint is recast as follows.

H =

(
q†

q

)
, τyq

T τy = q.

The matrix τyq is a complex skew-symmetric and unitary, meaning that it can be a form
τyq = Q(iσy)Q

T with Q ∈ U(2N).

The redundancy of Q is Q 7→ QV with V V † = 1 and V (iσy)V
T = iσy. Namely, V ∈ Sp(N).

We get

R3 = lim
n→∞

U(2n)

Sp(n)
.
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Class AII: Classifying Space R4

Let H be an 2N × 2N Hermitian matrix H with H2 = 1 and class AII TRS

uTH
∗u†

T = H, uTu
∗
T = −1.

We can set uT = iσy =

(
1

−1

)
15. The eigenvectors come in Kramers pairs

(u2i−1, u2i) = (u2i−1, iσyu
∗
2i−1),

meaning that H is diagonalized by a compact symplectic matrix

H = S

(
1N−M

−1M

)
S†, S ∈ Sp(N) = Sp(2N ;C) ∩ U(2N) = {S ∈ U(2N)|ST iσyS = iσy}.

→ R4 =
⋃
k∈Z

lim
n→∞

Sp(2n)

Sp(n+ k)× Sp(k − n)
.

15Every skew-symmetric matrix uT
T = −uT can be uT = QΛQT with Λ =

⊕
i

(
λi

−λi

)
QT with Q a unitary. When

uT is unitary, λis can be λi ≡ 1.
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Class CII: Classifying Space R5

Let H be an N ×N Hermitian matrix H with H2 = 1 and class CII symmetry

uTH
∗u†

T = H, uTu
∗
T = −1,

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0,

uTu
∗
Γ = uΓuT .

We can set uΓ = σz and uT = τy. Then, the symmetry constraint is recast as follows.

H =

(
q†

q

)
, τyq

∗τy = q ⇔ qτyq
T = τy.

We get

R5 = lim
n→∞

Sp(n).

As for C1, it can be obtained as R5 = limn→∞[Sp(n)× Sp(n)]/Sp(n).
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Class C: Classifying Space R6

Start with the diagonalization H = UσzU
†.

Set uC = σy. Then, the symmetry constraint σyH
∗ = −Hσy implies that U can be chosen as

σyU
∗ = Uσy. Namely, U ∈ Sp(N).

The redundancy of U is U 7→ UV with V σyV
T = σy and V σzV

† = σz, which means

V =

(
v

v∗

)
with v ∈ U(N).

We get

R6 = lim
n→∞

Sp(n)

U(n)
.

80 / 113



Hermitianization and flattening Altland-Zirnbauer symmetry class and classifying space Finite spacial dimension and dimensional isomorphism Classification of non-Hermitian topological phases

Class CI: Classifying Space R7

Let H be an 2N × 2N Hermitian matrix H with H2 = 1 and class CI symmetry

uTH
∗u†

T = H, uTu
∗
T = 1,

uΓHu†
Γ = −H, u2

Γ = 1, tr [uΓ] = 0,

uTu
∗
Γ = −uΓuT .

We can set uΓ = σz and uT = σx. Then, the symmetry constraint is recast as follows.

H =

(
q†

q

)
, qT = q.

The complex symmetric and unitary matrix can be a form q = QQT with Q ∈ U(N).

The redundancy of Q is Q 7→ QV with V V † = 1 and V V T = 1. Namely, V ∈ O(N).

We get

R7 = lim
n→∞

U(n)

O(n)
.
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Classifying Space

Eventually, we get the 10 classifying spaces and their disconnected parts. 16

AZ class TRS PHS Chiral Classifying Space π0 Top. invariant

A 0 0 0 C0 = ∪k∈Z limn→∞
U(2n)

U(n+k)×U(n−k)
Z k ∈ Z

AIII 0 0 1 C1 = limn→∞ U(n) 0

AI 1 0 0 R0 = ∪k∈Z limn→∞
O(2n)

O(n+k)×O(n−k)
Z k ∈ Z

BDI 1 1 1 R1 = limn→∞ O(n) Z2 det q ∈ ±1

D 0 1 0 R2 = limn→∞
O(2n)
U(n)

Z2 pf [iH] ∈ ±1

DIII −1 1 1 R3 = limn→∞
U(2n)
Sp(n)

0

AII −1 0 0 R4 = ∪k∈Z limn→∞
Sp(2n)

Sp(n+k)×Sp(n−k)
2Z k ∈ Z

CII −1 −1 1 R5 = limn→∞ Sp(n) 0

C 0 −1 0 R6 = limn→∞
Sp(n)
U(n)

0

CI 1 −1 1 R7 = limn→∞
U(n)
O(n)

0

16Sp(N) = Sp(2N ;C) ∩ U(2N) = {S ∈ U(2N)|ST iσyS = iσy}
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数値実験：ランダムなハミルトニアンのグループ分け

10通りのAZクラスに対して，対称性の演算子を以下のように固定して良い． 17

グループ分けにより，π0が再現できるLong=Zhang, PRL 130, 036601 (2023)．

AZ class TRS PHS Chiral Classifying Space π0 Top. invariant

A C0 = ∪k∈Z limn→∞
U(2n)

U(n+k)×U(n−k)
Z k ∈ Z

AIII σz C1 = limn→∞ U(n) 0

AI 1 R0 = ∪k∈Z limn→∞
O(2n)

O(n+k)×O(n−k)
Z k ∈ Z

BDI 1 σz σz R1 = limn→∞ O(n) Z2 det q ∈ ±1

D 1 R2 = limn→∞
O(2n)
U(n)

Z2 pf [iH] ∈ ±1

DIII iσy 1 σy R3 = limn→∞
U(2n)
Sp(n)

0

AII iσy R4 = ∪k∈Z limn→∞
Sp(2n)

Sp(n+k)×Sp(n−k)
2Z k ∈ Z

CII iσy iτy σyτy R5 = limn→∞ Sp(n) 0

C iσy R6 = limn→∞
Sp(n)
U(n)

0

CI 1 iσy σy R7 = limn→∞
U(n)
O(n)

0

17カイラル対称性ΓH + HΓ = 0についてはゼロ固有値の不在より，tr Γ = 0が必要．
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Finite Space Dimensions (i) from torus to sphere

Thanks to the stable equivalence, the topological structure from “different origins” can be
discussed independently.

For d-spatial dimensions, the Bloch-momentum space is a d-dimensional torus T d, however, with
stable equivalence, the topological classification is decomposed into that of sub-spheres Sp,
0 ≤ p ≤ d, like

“H(Skyrmion + Vortex)” → “H(Skyrmion)⊕H(Vortex)”.

We can assume the Bloch-momentum space is a d-sphere.
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Finite Space Dimensions (ii) Dirac Hamiltonians

Moreover, it is found that the representative Hamiltonian can be a form of the Dirac Hamiltonian

H(k) =

d∑
i=1

kiγi +M, {γi, γj} = 2δij , {γi,M} = 0, M2 = 1.

The topological classification of H(k) is recast as the classification of the mass term M subject to
the constraint by γis and AZ symmetry.

Adding space dimensions d = 1, 2, . . . is the same as adding gamma matrices γ1, γ2, . . . .

The gamma matrices γis behave as chiral symmetries.
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Dimensional isomorphism

We will show that adding gamma matrices is nothing but a shift of AZ symmetry class.

· · · → A → AIII → A → · · · (without TRS and PHS),

· · ·AI → CI → C → CII → AII → DIII → D → BDI → AI → · · · .

The key observation is that two chiral symmetries can be “solved” trivially:

{σx,M} = {σy,M} = 0 ⇒ M = σz ⊗ M̃.
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A → AIII → A

Let us consider a d = 1 class A Dirac Hamiltonian

H(k1) = k1γ1 +M, {γ1,M} = 0.

γ1 behaves as chiral symmetry for M , thus,

(d = 1, class A) = (d = 0, class AIII).

Next, let us consider a d = 1 class AIII Dirac Hamiltonian

H(k1) = k1γ2 +M, {γ2,M} = 0,

γ1H(k1)γ
†
1 = −H(k1).

We can set γ1 = σx and γ2 = σz. Then,

M = σy ⊗ M̃.

No constraints on M̃ exist, meaning that

(d = 1, class AIII) = (d = 0, class A).
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Dimensional isomorphism with TRS or PHS

With antiunitary symmetry, we chase the change of AZ symmetry for M̃ .

The symmetry constraint

uTH(k)∗u†
T = H(−k),

uTH(k)∗u†
T = −H(−k)

implies that

uT γ
∗
i u

†
T = −γi, uTM

∗u†
T = M,

uCγ
∗
i u

†
C = γi, uCM

∗u†
C = −M.
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AI → CI

Let us consider a d = 1 class AI Dirac Hamiltonian

H(k1) = k1γ1 +M, {γ1,M} = 0.

The symmetry algebra

uT γ
∗
1u

†
T = −γ1, uTu

∗
T = 1,

is solved by

uT = 1, γ1 = σy.

Introducing PHS uC = iγ1uT = iσy, the constraint on the matrix M is the same as class CI:

uTM
∗u†

T = M, uTu
∗
T = 1,

uCM
∗u†

C = −M, uCu
∗
C = −1.

Thus,

(d = 1, class AI) = (d = 0, class CI).
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CI → C

Let us consider a d = 1 class CI Dirac Hamiltonian

H(k1) = k1γ1 +M,

uCγ
∗
1u

†
C = γ1, uCM

∗u†
C = −M, uCu

∗
C = −1,

uΓγ1u
†
Γ = −γ1, uΓMu†

Γ = −M, u2
Γ = 1,

uCu
∗
Γ = −uΓuC .

We can set uΓ, γ1, and M as

uΓ = σx, γ1 = σz, M = σy ⊗ M̃.

The only remaining symmetry is uc, which should be a form

uC = σz ⊗ ũC , ũC ũ
∗
C = −1,

and constrain the mass term M̃ as

ũCM̃
∗ũ†

C = −M̃.

Thus,

(d = 1, class CI) = (d = 0, class C).
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Dimensional isomorphism

In this way, we have the shift of AZ symmetry classes by adding space dimensions

· · · → A → AIII → A → · · · (without TRS and PHS),

· · ·AI → CI → C → CII → AII → DIII → D → BDI → AI → · · · .

These also show the Bott periodicity

Cn−2 = Cn, Rn−8 = Rn.

Eventually, the topological classification of d-dimensional Hamiltonian H(k) with AZ symmetry
Cn or Rn is given by

π0[Cn−d] and π0[Rn−d].

→ periodic table.
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Identify Mapped Symmetry: Point gap

The remaining task is to identify how 38 non-Hermitian symmetry classes are mapped to 10 AZ
Hermitian symmetry classes for each gap condition.

For the point gap, the Hermitianized doubled Hamiltonian

H̃(k) =

(
H(k)†

H(k)

)
has additional chiral symmetry

σzH̃(k)σz = −H̃(k).

Other internal symmetries are mapped for a symmetry constraint of H̃(k) and
commutation/anticommutation relation with σz.

Ex: Class AI → Class BDI

H(k)∗ = H(−k) ⇒ H̃(k)∗ = H̃(−k), σzH̃(k)∗σz = −H̃(−k).
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Identify Mapped Symmetry: Line gap

For the real (imaginary) line gap, H(k) can be (anti-)Hermite H(k)† = H(k) (H(k)† = −H(k))
while keeping the line gap.

The (anti-)Hermitian condition of H(k) is the same as imposing an additional chiral symmetry on
H̃(k):

σyH̃(k)σy = −H̃(k) for real line gap ⇒ H̃(k) = σx ⊗H ′(k).

σxH̃(k)σx = −H̃(k) for imaginary line gap ⇒ H̃(k) = σy ⊗H ′(k).

Other internal symmetries have definite commutation/anticommutation relations with σy (σx).

Ex (real line gap): class AI → class AI

H(k)∗ = H(−k) ⇒ H ′(k)∗ = H ′(−k).

Ex (imaginary line gap): class AI → class D

H(k)∗ = H(−k) ⇒ H ′(k)∗ = −H ′(−k).
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Hermitianization and flattening Altland-Zirnbauer symmetry class and classifying space Finite spacial dimension and dimensional isomorphism Classification of non-Hermitian topological phases

Classification tables of non-Hermitian topological phases Kawabata=KS=Ueda=Sato 1812.09133, cf.

Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964, Zhou=Lee 1812.10490

+ 30 other symmetry classes. (See Kawabata=KS=Ueda=Sato 1812.09133 for the details.)
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Point gap vs Line gap Intrinsic Non-Hermitian topology Examples

Intrinsic Non-Hermitian Topology

Point gap vs Line gap

Intrinsic Non-Hermitian topology

Examples
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Edge Majorana zero mode

?
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Point gap vs Line gap Intrinsic Non-Hermitian topology Examples

Motivating example: 1d class D non-Hermitian superconductor

Class D PHS symmetry:

τxH(kx)
T τx = −H(−kx), E → −E.

Both the point gap and line gap show the Z2 classification.
Non-Hermitian Z2 invariant:

(−1)ν = sgn

{
Pf[H(π)τx]

Pf[H(0)τx]
× exp

[
−1

2

∫ π

0

d log det[H(k)τx]

]}
If (−1)ν = −1, there is a Majorana zero mode at each edge Kawabata=KS=Ueda=Sato 1812.09133.

[Figure from Okuma=Sato 1904.06355]

Unique to non-Hermitian systems?
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Topological phenomena unique to non-Hermitian systems

Sometimes, we encounter topological phases which are realized only in non-Hermitian systems.
Non-Hermitian skin effect, PT-symmetry breaking (exceptional point), ...

On the other hand, there are topological phases that are remnant in non-Hermitian systems. For
instance, the Chern insulator with a small non-Hermite perturbation is still characterized by the
Chern number of the Bloch wave function.

Is there any good approach to extracting topological phases realized only in the presence of
non-Hermiticity?

Our proposal [Sec.IX in Supplemental Material of Okuma=Kawabata=KS=Sato 1910.02878]:
Take the cokernel of the following map

Line-gapped topological phases −→ Point-gapped topological phases
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Point gap vs Line gap Intrinsic Non-Hermitian topology Examples

Line gap ⇒ point gap

If a line gap is open, the point gap is also open.

[Figure from Kawabata=KS=Ueda=Sato 1812.09133]

This implies that there exist homomorphisms fr and fi from the real and imaginary line-gapped
topological phases to the point-gapped topological phases!

fr : (Real line-gapped topological phases) → (Point-gapped topological phases),

fi : (Imaginary line-gapped topological phases) → (Point-gapped topological phases).
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Intrinsic non-Hermitian Topology

The point-gapped topological phases that are in the image

Im fr + Im fi ⊂ (Point-gapped topological phases)

can be deformed into a real or imaginary line-gapped topological phase while keeping the point
gap.

Such point-gapped topological phases are also realized in Hermitian or anti-Hermitian systems.

Importantly, their physics such as the bulk-boundary correspondence can be understood in
Hermitian or anti-Hermitian systems.

On the other hand, the quotient

(Point-gapped topological phases)/(Im fr + Im fi)

represents topological phases intrinsic to non-Hermitian systems.

Thanks to the dimensional isomorphism introduced before, it suffices to calculate the
homomorphisms fr, fi from line-gapped to point-gapped topological phases only for d = 0.
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Ex: 1d class A with sublattice symmetry

Sublattice symmetry (non-Hermitian SSH chain)

σzH(kx)σz = −H(kx) ⇒ H(kx) =

(
h1(kx)

h2(kx)

)
.

The winding number is defined for each h1(kx) and h2(kx),

Nj =
1

2πi

∮
d log dethj(kx) ∈ Z (j = 1, 2).

⇒ The classification of point-gapped topological phases is Z⊕ Z, which is characterized by
(N1, N2).

The real(imaginary)-line gap condition implies that H(kx) can be (anti-)Hermite, i.e.
h2(kx) = ±h1(kx)

†.
⇒ N1 = −N2 ⇒ Im fr/i = Z[(1,−1)].

The classification of intrinsic Non-Hermitian topology is

(Z⊕ Z)/Z[(1,−1)] ∼= Z.

Remark: The image Im fr/i = Z[(1,−1)] ⊂ Z⊕ Z does not show the non-Hermitian skin effect,
since the total winding number N1 +N2 is zero.
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Results: AZ class

Tables from Okuma=Kawabata=KS=Sato 1910.02878.

AZ class d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A 0 Z 0 Z 0 Z 0 Z
AIII 0 0 0 0 0 0 0 0
AI 0 Z 0 0 0 2Z 0 0
BDI 0 0 0 0 0 0 0 0
D 0 0 0 Z 0 0 0 2Z

DIII 0 0 0 0 Z2 0 0 0
AII 0 2Z 0 0 0 Z 0 0
CII 0 0 0 0 0 0 0 0
C 0 0 0 2Z 0 0 0 Z
CI Z2 0 0 0 0 0 0 0

d = 1, class A: non-Hermitian skin effect.

d = 3, class A: non-Hermitian skin effect induced by a magnetic field. Bessho=Sato 2006.04204,

Kawabata=Shiozaki=Ryu 2011.11449
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AZ† class

AZ† class d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

AI† 0 0 0 2Z 0 Z2 Z2 Z
BDI† 0 0 0 0 0 0 0 0

D† 0 Z 0 0 0 2Z 0 0

DIII† 0 Z2 Z2 0 0 0 0 0

AII† 0 Z2 Z2 Z 0 0 0 2Z
CII† 0 0 0 0 0 0 0 0

C† 0 2Z 0 0 0 Z 0 0

CI† 0 0 0 0 0 Z2 Z2 0

d = 1, 2, class AII†: Z2 non-Hermitian skin effect. Okuma=Kawabata=KS=Sato 1910.02878
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AZ class with sublattice symmetry or pseudo-Hermiticity

AZ class Add. symm. d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A η 0 0 0 0 0 0 0 0
AIII S+, η+ 0 0 0 0 0 0 0 0

A S 0 Z 0 Z 0 Z 0 Z
AIII S−, η− Z2 0 Z2 0 Z2 0 Z2 0

AI η+ 0 0 0 0 0 0 0 0
BDI S++, η++ 0 0 0 0 0 0 0 0
D η+ 0 0 0 0 0 0 0 0

DIII S−−, η++ 0 0 0 0 0 0 0 0
AII η+ 0 0 0 0 0 0 0 0
CII S++, η++ 0 0 0 0 0 0 0 0
C η+ 0 0 0 0 0 0 0 0
CI S−−, η++ 0 0 0 0 0 0 0 0

d = 2, class AII+S−: Edge exceptional point Denner=Neupert=Schindler 2304.13743
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(cont.)

AZ class Add. symm. d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

AI S− 0 Z 0 0 0 Z 0 0
BDI S−+, η+− 0 0 0 0 Z2 0 Z2 0
D S+ 0 0 0 Z 0 Z2 0 Z

DIII S−+, η−+ 0 0 0 0 Z2 0 Z2 0
AII S− 0 Z 0 0 0 Z 0 0
CII S−+, η+− Z2 0 Z2 0 0 0 0 0
C S+ 0 Z2 0 Z 0 0 0 Z
CI S−+, η−+ Z2 0 Z2 0 0 0 0 0

AI η− 0 Z2 Z2 0 0 0 0 0
BDI S−−, η−− 0 0 0 0 0 0 0 0
D η− 0 0 0 0 Z2 0 0 0

DIII S++, η−− 0 0 0 0 Z2 Z2 0 0
AII η− 0 0 0 0 0 Z2 Z2 0
CII S−−, η−− 0 0 0 0 0 0 0 0
C η− Z2 0 0 0 0 0 0 0
CI S++, η−− Z2 Z2 0 0 0 0 0 0
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(cont.)

AZ class Add. symm. d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

AI S+ Z2 Z2 0 0 0 Z2 0 Z2

BDI S+−, η−+ Z2 Z2 Z2 0 0 0 Z2 0
D S− 0 Z2 Z2 Z 0 0 0 Z

DIII S+−, η+− Z2 0 Z2 Z2 Z2 0 0 0
AII S+ 0 Z2 0 Z2 Z2 Z2 0 0
CII S+−, η−+ 0 0 Z2 0 Z2 Z2 Z2 0
C S− 0 0 0 Z 0 Z2 Z2 Z
CI S+−, η+− Z2 0 0 0 Z2 0 Z2 Z2

Note: I’m not familiar with the current status of the studies of intrinsic non-Hermitian topological phases. The reference list
above may be very limited.
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1D class A (No symmetry)

The intrinsic non-Hermitian topology is classified by Z.
Topological invariant:

N(Eref) =
1

2πi

∮
d log det[H(k)− Eref ] ∈ Z.

Nonzero winding number N(Eref) ̸= 0 implies the non-Hermitian skin effect.

107 / 113



Point gap vs Line gap Intrinsic Non-Hermitian topology Examples

1D class AII†: Z2 non-Hermitian skin effect

Class AII† symmetry

σyH(k)Tσy = H(−k) ⇔ σyH(x− x′)Tσy = H(x′ − x).

The intrinsic non-Hermitian topology is classified by Z2!
Topological number:

(−1)ν(Eref ) =
Pf[(H(π)− Eref)σy]

Pf[(H(0)− Eref)σy]
× exp

[
−1

2

∫ π

0

d log det[(H(k)− Eref)σy]

]
∈ {±1}.

Nonzero ν(Eref) ̸= 0 implies the reciprocal non-Hermitian skin effect:
O(L) modes localized both at left and right edges.

Remark: Let |E⟩ is an right eigenvector with eigenvalue E and ⟨⟨E| be the corresponding left
eigenvector, i.e.,

HOBC = E |E⟩ ⟨⟨E|+ · · ·

The class AII† symmetry implies that σy|E⟩⟩∗ is also an eigenvector with eigenvalue E orthogonal
to |E⟩.

HOBC |E⟩ = E |E⟩ ⇔ HOBCσy|E⟩⟩∗ = Eσy|E⟩⟩∗,
⟨⟨E|σy|E⟩⟩∗ = 0.

If |E⟩ is localized at right, then its Kramers pair σy|E⟩⟩∗ is at left.
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2D class AII†: Z2 non-Hermitian skin effect at π-vortex

Class AII† symmetry

σyH(kx, ky)
Tσy = H(−kx,−ky) ⇔ σyH(x− x′, y − y′)Tσy = H(x′ − x, y′ − y).

The intrinsic non-Hermitian topology is still classified by Z2.

When the bulk is Z2 nontrivial, under the π-vortex defect, the O(L) non-Hermitian skin modes
are localized at the π-vortex and boundary. (figure from Okuma=Kawabata=KS=Sato 1910.02878)
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3D class A: non-Hermitian skin effect induced by magnetic field

The intrinsic non-Hermitian topology is classified by Z.
The topological number is 3D winding number

W (Eref) =
1

24π2

∫
T3

tr [(Hk − Eref)
−1d(Hk − Eref)]

3 ∈ Z.

Nonzero W (Eref) implies that the non-Hermitian skin effect is induced by the magnetic field.
Model:

Hk = cos kx + cos ky + cos kz + iγ(σx sin kx + σy sin ky + σz sin kz).

x,y: PBC, z: PBC/OBC. m: magnetic flux along the z direction. (figure from Kawabata=KS=Ryu
2011.11449)

Figure 1:
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Example: Class AIII+S− (sublattice symmetry anti-commuting with chiral symmetry)

Symmetry:{
σzH(k)σz = −H(k),

σyH(k)†σy = −H(k).
⇒ H(k) =

(
h1(k)

h2(k)

)
, hj(k)

† = hj(k) (j = 1, 2).

d = 0: (Point-gapped topological phases)/(Im fr ∪ Im fi) = Z2.
→ is understood as the existence of the PT -symmetry breaking accompanied with an exceptional
point at E = 0:
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Example: Class AIII+S− (cont.)

d = 2: (Point-gapped topological phases)/(Im fr ∪ Im fi) = Z2.

There exists an intrinsic non-Hermitian topological phase.

A model:

H(kx, ky) =

(
hChern(kx, ky)

12×2

)
,

hChern(kx, ky) = sin kxσx + sin kyσy + (m− t cos kx − t cos ky)σz.

H =

(
ϵ

1

)
⇒

{
E = ±

√
ϵ (ϵ > 0)

E = ±i
√
−ϵ (ϵ < 0)
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Example: Class AIII+S− (cont.)

The Chern insulator hChern(kx, ky) has a chiral edge state localized at each edge.

Therefore, the non-Hermitian Hamiltonian H(kx, ky) has an exceptional point, the trajectory of
the “PT -symmetry breaking”, at each edge. Denner=Neupert=Schindler 2304.13743
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Summary

In this lecture, I gave

1. Introduction
— One-particle non-Hermitian systems
— Exceptional point
— Non-Hermitian skin effect

2. Gap condition and topology
— Point gap
— Real and imaginary line gaps

3. Symmetry classes
— 38 classes in non-Hermitian systems

4. Topological classification
— Point gap → doubled Hermitian Hamiltonian → Hermitian topological phases
— Line gap → Hermitianization → Hermitian topological phases
— Classifying spaces
— Dimensional isomorphism

5. Intrinsic non-Hermitian topology
— Line gap implies point gap
— Intrinsic non-Hermitian topological phases should be interesting!
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Skin effect is topological Zhang-Yang-Fang 19, Okuma-Kawabata-KS-Sato 19

W (H(k)) := 1
2πi

∮
d log det[HPBC(k)] ̸= 0 ⇒ skin effect.

(Our proof)

Let σ(HPBC), σ(HOBC) and σ(HSIBC) be the spectrum for PBC, OBC and the semi-infinite bdy
condition, respectively. It holds that

σ(HOBC) ⊂ σ(HSIBC).

The spectrum for OBC is invariant under the similarity transformation

Vgf
†
xV

†
g = egf†

x, g ∈ (0,∞).

Therefore,

σ(HOBC) ⊂
⋂

g∈(−∞,∞)

σ(V −1
g HSIBCVg).
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Skin effect is topological (cont.) Zhang-Yang-Fang 19, Okuma-Kawabata-KS-Sato 19

Toeplitz index theorem:

σ(HSIBC) = σ(HPBC) ∪ {E ∈ C|W (H(k)− E) ̸= 0}︸ ︷︷ ︸
dense spectrum

.

This is because the bulk-boundary correspondence for the class AIII doubled Hamiltonian

H̃(k) =

(
H(k)− E

H(k)† − E∗

)
.

If W (H(k)− E) < 0, there exists a zero mode (0, |E⟩)T of H̃, i.e., the right eigenstate of H(k)
with eigenvalue E.
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Skin effect is topological (cont.) Zhang-Yang-Fang 19, Okuma-Kawabata-KS-Sato 19

Suppose that HPBC(k) has a nonzero winding number.

Take an arbitrary complex energy E with W (HPBC(k)− E) ̸= 0. |E⟩ represents an right or left
eigenstate localized at the boundary.

There exists g ∈ (0,∞) s.t. |E⟩ such that |E⟩ is a delocalized plane wave of V −1
g HSIBCVg, i.e.

E ∈ σ(V −1
g HPBCVg).

The intersection of σ(HSIBC) and σ(V −1
g HPBCVg) is strictly smaller than σ(HSIBC). This proves

that σ(HPBC) ̸= σ(HOBC).

Furthermore,
⋂

g∈(−∞,∞) σ(V
−1
g HSIBCVg) reaches a topological trivial area or curves, otherwise a

contradiction arises.
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