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Introduction: Overview of one-particle non-Hermitian systems

@ Examples of non-Hermitian systems
@ Some basic properties of non-Hermitian systems

@ 1D hopping models
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Examples of non-Hermitian systems
@000

Non-Hermitian Systems

@ Non-Hermitian Hamiltonians and matrices often appear in various physical systems.

o These include Photonics, Mechanics, Electrical Circuits, Biological Physics, Optomechanics,
Hydrodynamics, Open Quantum Systems, and Non-unitary Conformal Field Theories.

@ For more details on where non-Hermiticity shows up, see the review by, for example,
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Examples of non-Hermitian systems
[o] lele}

One-particle non-Hermitian Systems

@ In this lecture, | will provide a brief introduction to the topological aspects of one-particle
non-Hermitian systems. Specifically, we'll delve into the topological nature of matrices

H = {HO'O" (JI, xl)}z,z/GA,o’,a’:l,.“,N

defined over a d-dimensional lattice, A, with internal degrees of freedom given by 0 =1,..., N.

o We'll assume the hopping range is local, i.e., ||H(z,z")|| < e~ le=al/E (Otherwise, the concept of
“dimension” would be meaningless.)

@ Each physical system might possess intrinsic internal symmetries (which do not affect spatial
positions).

@ We may be interested in the physics robust against the disorder effect, which is compatible only
with the internal symmetry.

e O o o o o
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Examples of non-Hermitian systems
ooeo

Example: Wilson Dirac Operator

@ In lattice gauge theory, we examine the lattice Dirac operator on the Euclidean cubic lattice. The
Wilson Dirac operator is defined as:

Dw[U] =1 =& >[I +7)Tor + (I = 7)To-] = & [e# (I + ) Tas +e (I =) L] |

v=1
where:
[Tilo = Un(@)oros [To-loy = Un(y) 6smsy.

Here, U, (z) € U(N) represents the U(N) gauge field, and p denotes the chemical potential.
@ When the chemical potential p is absent (i.e., u = 0), Dw satisfies the y5-Hermiticity condition:

vsDw[U]"s = Dw[U].

—(L+ )0, (z)

o
T =7V ()
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Examples of non-Hermitian systems
oooe

Ex. Mechanical Metamaterials

o Consider a mass-spring model with the equation of motion:
4 = —Du + I'u,

where u = {u;(z)}2,; denotes the displacement vector components at site x.

@ The matrices D and I" are real with D being positive semi-definite for system @ O o

stability. 4 4 4 2
o Without friction, I is skew-symmetric (i.e., r’ = —T"). However, this isn't i v .
generally the case. :
O,
o Using the variable @ = (v/Du,i1)”, the dynamics follows a Schrédinger-type o e
equation : > 5 5 5
U gy g
. d B B O /D [Figure from Yoshida=Hatsugai, PRB 100, 054109 (2019)]
i—u=Hu, H= . .
dt vD il

@ The Hamiltonian H inherently exhibits particle-hole symmetry:
o, H o, = —H.
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Some basic properties of non-Hermitian systems
@0000

Some characteristics of Non-Hermitian Matrices

o Eigenvalues can be complex.

@ Exceptional Points: These occur when the dimension of the Jordan block is 2 or more, making the
matrix H non-diagonalizable. Example matrices include:

A1 0
(3 /1\) and 0 X 1
0 0 X

@ Non-Hermitian Skin Effect : The matrix behavior is sensitive to different
boundary conditions, such as periodic boundary condition (PBC), open boundary condition
(OBC), and semi-infinite boundary condition, among others.
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Some basic properties of non-Hermitian systems
(o] lelele]

PT Symmetry Breaking

o For matrices with PT-symmetry, represented by H* = H, eigenvalues either appear as an isolated
real value, E* = F, or as a conjugate pair, (E, E*).

@ PT-symmetry breaking refers to the transition where two real eigenvalues merge to form a
complex conjugate pair (E, E*), or vice versa. Such transitions occur at an exceptional point.

O M+tia
A—a Ata A

e ———— =

O A—ia

> e
[
Il
—
>
IS}
[

—a A
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Some basic properties of non-Hermitian systems
[e]e] lele]

BERER

o 2DOMn x nfBFRITIH, H1 % Z VY LERT 5.
o Hy, Hi ZMICEBS NIV =TV

H; = (1 —t)Ho + tHy

“EZ%. HOt=RZLS B ZOEREOEILZRS.

o BRITNTRML, Ho, HiE TV LREFTIE LEBEIANEI 2N 2R 5.
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Examples of non-Hermitian systems Some basic properties of non-Hermitian systems 1D hopping models
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PBC vs OBC

Here are some spectra of 1-dimensional non-Hermitian models.

Lx=100,n=1

11/113



Some basic properties of non-Hermitian systems
oooo0e

Non-Hermitian Skin effect Yao=Wang 1803.01876

o PBC # OBC for spectra. Extreme sensitivity against the boundary condition.

@ In OBC, O(L) modes are localized at an edge.

@ A prime example is the Hatano-Nelson model, a one-dimensional model with non-reciprocal
hopping.

@ Non-Hermitian Skin effect has a topological origin. [Zhang=Yang=Fang 1910.01131,

Okuma=Kawabata=KS=Sato 1910.02878] (will be explained in last Section)

H= Zte‘q ;+1fz + tefgfgfzﬂ el Hppc = Z f;z(tegeiik + tefgeik)fk,
xEL k
OBC L
B . - _
EE Hoso =Y tfl fo+tflferr, Jl=efl
=1
PBC
x
x
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1D hopping models
@00000

BEEER : 1 ) RThy BV JER

19 ta to
1. (0] (o] Lufo] b
===k
e rer e
o TRTMFLDKRY EV I ERAEEZZ. &Y MInEONBEBEENANZEDET 5.
o ah bz +pH A hADRUBYTIAEL & ¥ 5. BEMRMEELT, p|<rETORVBYEEER 2.
o (2r + VDN x nERITI{tp}per,..  EIVILILERD. (6> 0EEHITBATE S

Ity s tpe IPI/ER Y L SERRBEM A 78 5 & BN
o RDYA AL, ABYICEELT, BHEREM (PBC) CRIMBEREMA (OBC) ONIL NPV %M

MY 5.
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1D hopping models

Examples of non-Hermitian systems Some basic properties of non-Hermitian systems
0000 00000 0@0000
Example: No symmetry
Lx=100,n=1
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1D hopping models
[e]e] le]ele}

Numerical Rounding Error is not Negligible

@ In computational calculation, rounding error refers to the small differences between the actual real
number and its nearest representable value in the computer. (FL&HFRE)

@ Since O(L) skin modes are exponentially localized at an edge, these small differences can
significantly affect the results.

® 08BC

@ The “Non-Bloch band theory” is used to compute the OBC spectrum in the thermodynamic
limit.
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1D hopping models
[e]e]e] lele}

HIEEER . 1 RThy EY JERICHFEE AND

TILI—ME:

BIILI—ME:

Zo SRR -

B S B APt

REERFRE -

top =t
t_n = TitIJIT: "72 = 17tr [T]} =0.
tn = Ut U, U?=1.

tn =t5, (class Al),
tn = (ioy)th (ioy)t,  (class All).

t_nZItnIT, =1 16/113



Examples of non-Hermitian systems Some basic properties of non-Hermitian systems 1D hopping models
0000 00000 [e]eleTe] o}

Example: Pseudo Hermiticity

nthn' =t_n, n°=1, tr[g]=0.

Lx=100,n=2
® OBC
, 3 4 = ® PBC
5. 25
vxlP Ivx P Wwxl? (M
. 0.14
0is 0015}« 012
3 . s 5 0.10
0.10 oot 0.08
. 0.08
008 0.005 0.04
0.02 K
x ! x
20 40 60 80 100 20 40 60 80 100 17/113
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Examples of non-Hermitian systems
0000

Some basic properties of non-Hermitian systems
00000

1D hopping models

00000e
Example: Inversion symmetry — the Non-Hermitian skin effect is suppressed
utnuT =1t_p, u?=1.
Lx=100,n=2
im
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e edge state edge state
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Why gap condition? Hermitian cases Non-Hermitian cases
000 000000000 00000

o Why gap condition?
@ Hermitian systems

@ Non-Hermitian systems
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Why gap condition?
@00
Equivalence Condition and Phases of Matter

@ Water Phase Diagram:

221

Critical end point

Pressure(kPs)

Ice
(solid)

Water vapor
(gas)

Temperature(°C)

374

@ The ice and water phases are distinct: A singularity in the thermodynamic function exists between
these two phases, indicating a phase transition.

o Conversely, water and vapor can be considered the same phase since there exists a continuous
path connecting them without encountering a thermodynamic singularity.
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Why gap condition?
oeo

Topological Equivalence
@ A torus and a sphere are considered to have distinct topologies.
@ By shrinking one circle of the torus, we obtain a pinched torus. By further shrinking another

circle, we ultimately transform it into a sphere.

—+oruns ‘?«A&wl Aows gPL\.o\VQ—

‘o=

o Topological equivalence is determined by deformations that preserve the local structure of the

Euclidean space. \ 3 E

o Given a defined equivalence relation, we can identify a set of equivalence classes.

@ What exactly defines topology?
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Why gap condition?
ooe

Topology of Matrices

@ What does it mean to classify matrices topologically?

o Consider two N x N matrices Ho and Hi.

@ They always can be connected to each other by a continuous path defined as:

H,=(1—-tHo+tH:, te€][0,1].

— no topological classification.
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Hermitian cases
00000000

Hermitian Matrices: Gap Condition

@ For meaningful classifications, we impose a gap condition.
For Hermitian matrices H (where H' = H), the eigenvalues F are always real F € R.

o
@ A reasonable gap condition is to impose a finite energy gap Egap > 0 around zero (or the Fermi
energy Er) on eigenvalues of matrices:
E #0.
Egap
o 7
@ Two Hermitian matrices Hp and H; with no zero eigenvalues are considered equivalent if they can

be continuously connected via a homotopy Hic[o,1] provided that H; also satisfies the gap
condition throughout.
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Hermitian cases
O@0000000

Hermitian Matrices: Gap Condition (cont.)

o We may think two Hy and H; are equivalent if the numbers of negative eigenstates are the same.

@ This is true: H can be flattened while keeping the gap condition.

Hy ={(1—¢)E, +tsgn(En)}|n) (n| = Z sgn(Ey) |n) (n| =: sgnH.

n=1
E
— |,

E——
H sgnH

@ The flattened Hamiltonian sgnH is uniquely identified with a point of the complex Grassmaniann:

sgnH:U(lN*M _1M) U, U~U<V W),

UeU(N),VeU(N-M),WeUM).
— H € Gry(CY) = U(N)/U(N — M) x U(M).

@ No further classifications arise since the complex Grassmaniann is simply connected
70[Grar (CN)] = 0. For example, Gr (C?) 2 §2.
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Hermitian cases
00@000000

Hermitian Matrices: Example of Symmetry

@ Even when two matrices have an equal number of negative (and positive) eigenvalues, certain
symmetries can forbid a continuous transformation between them.

o Let's consider a Hermitian matrix H with an additional skew-symmetric constraint
HT = —H, H e Matanxan(C).
o The Pfaffian pf H € C is well-defined. *

o Given the relationship (pf H)* = pf H* = pf HY = (—1)Vpf H, the ratio of the Pfaffians of two
matrices is always real:
pf Hy
R
pf H1 €%

implying that its sign is an invariant that takes on values in Zy = {£1}.
@ For example, consider these two matrices:

() ()

No continuous transformation connects them while preserving the gap condition and the
symmetries H' = [ and H" = —H.

1 — )
pf H := 20652]\]70(2i71)<a(2i),a(1)<U(3)<---<0(2N71) sgn(0)As(1)0(2) - Ac(2N-1)0(2N)
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Hermitian cases
000800000

BEEER : 2DDN\I I NZ T UDBHICENAZHNE DI N ?

o R, Pfaffian®D &I R MNROVHIREEN KM TENIIL I ZTVONBILTE
%

o TARTDEHELWVWIILI—RFMEENZ )L }\ /H(),H1%%7Lé

o MSHIDGEH)NFMEEERICIRET 2.

ugHu; =H, unitary symmetry,

ugH*u} = H, time-reversal symmetry(TRS),
ugH*u) = —H, particle-hole symmetry(PHS),
ugHu; = —H, chiral symmetry,

ge@q.

o FHILLANIINMNZT7VQ; =sgnH; ZAWVT, MBERBICEISNI I
Qi =(1-1)Qo+tQ1, tel0,1]
HEBAT D, QIRTMEEMIT
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Hermitian cases
000080000

BEEERR: 2DDON\IIINZT ULMBBICELZHNEID? (FHE)

o LUFAYAKIL.

o QDEHEDEER ;| =a(t — 3)2+0.
o Qt:%ﬁ‘ﬁnﬁlﬁfﬁéﬁk@m = Hokl Hi 2MBNICE SN EET 5.
o Ho& HiEMIRIICRC/SZNFELBY =  Q,_ PYNEREEBICH L TRE.

o LN -T, BALNERA—DORIMELZBLT/NIINN=ZT Y ONHo, Hi ' ETEBICEDN 2
EIMME, BB EZRRT IBEIFAL], Qtzéd)lﬁl*ﬁ‘{ﬁ’ﬁfﬁimiﬁm.
o REWL, s=10REEEELT,
© |Amin| = minyegpec(@)|1Al > 8 BOEH & HiIER—7 IV —TICBY 5.
2
] ‘)\min‘ = minAESpec(Ql )l)\l < 60)& g‘r;, EE}]H] — H] + 6HJ ‘:j‘j’ L’C%#P\mml < 67!)(%._'(%_6%
2
niE, HiEH1ZERZTIV—TICET 3.

ELT, TIL—TDF%EFS5. 2 NEOISL—THESANE, NED KOS HIL - 75
NH 3.

2URBEICEA B HE D NMNEEERRAD T, RRTOAFARNIERWNT EISEE.
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Hermitian cases
000008000

Hermitian Matrices: Finite Space dimensions & Translational Invariance

@ We have discussed Hermitian matrices H without an extended space direction.
@ In a d-dimensional finite space, the legs of H extend to an infinite lattice:

H = {H(w,x/)}zyz/, z, 2 €7
o Translational symmetry lets us define the Hamiltonian in the Bloch-momentum torus T'%:
H(z,2')=H(x —2') = Z H(k)e““‘(z_zl).
keTd
o Classification is about homotopy for matrix families H (k) over the torus T,

E

H(k)

With symmetry
constraint

Bloch-momentum torus Gapped Hamiltonians
e Hy(k) is equivalent to H; (k) if a homotopy Hyc[o,1)(k) exists that bridges them while preserving
the gap condition and symmetry.
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Hermitian cases
000000800

HIBEER : 2/ RiEARY

0 2x2BHTH->T, EEADIRINF—EBEBHREEZ—DFD/\I I b=T ¥ HIEGrassmannZ
1AGr(C?) = S?ICEXELS.

sentl = (190, 16-) (1)) (0001002 [6uh ~ 000 e, lo) ~lo) L ()
o 2RV RROBA|6, ) ERDNIE|0_)ETNICERTZREE LTRES., LoTAILE
—FUHDRCHE, SEREG ) ~ |6 ) e DRGAERL. = SPTK5A—FHIT
5.
6~ (TI2) ) e~ (L95,), (0.9 e s
- cos geid’ ’ + sin gew ’ ’
°o ZDEE, BMMFELY,
9  sinfe"?
sgnH = ¢ N+ | — 9_)o| = (S;;fgem e ) =n-o.

o £oT, BALNENINIZTUEHELELTZIEICLY, ne S*H /OIS,

1
= atr [osgnH].
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Hermitian cases
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HIEEER : 2\ RER (%)

0 2x2BHTH->T, EEADIRINF—EBEBHREEZ—DFD/\I I b=T ¥ HIEGrassmannZ
1AGr(C?) = S?ICEXELS.

sentl = (190, 16-) (1)) (1000000 [6sh ~ 00, lo) o)L @)
o 2RV RROBA|6, ) ERDNIE|0_)ETNICERTZREE LTRES., LoTAILE
—FUHDRCHE, SEREG ) ~ |6 ) e DRGAERL. = SPTK5A—FHIT
5.
6~ (TI2) ) e~ (L95,), (0.9 e s
- cos geid’ ’ + sin gew ’ ’
°o ZDEE, BMMFELY,
9  sinfe"?
sgnH = ¢ N+ | — 9_)o| = (S;;fgem e ) =n-o.

o £oT, BALNENINIZTUEHELELTZIEICLY, ne S*H /OIS,

H—n= §tr [osgnH] € S°.
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Hermitian cases
00000000 e

HIEEER : 2\ RER (%)

o ORTL: NIIIZTVHIES*> LD 1 HEEDH S
o 1RFTT: NIV MZFTVH(k)Eky € [-7, 71| LTEHREIND. = B S' - S? #ED
3. (AIkAFBerryfilBE= 5 X 3.)
0 2RIT: NI MZT YV H(ky, ky)lE(koy ky) € [-m, 7] P LTEHREEIND. = BT > 5% %
EHD. v ITT? - SPHSPEAEBEVRL $EE, DFYEKRE (Chern$l)
1

87 Jr2

IC& > TR RAOTHILRDEINEL 2.

n-(dnxdn)€eZ

o MMMEMNEET D&, WD BS2EDHICHIREHIREINS.
o Bz IE, U5 ZADEIDPHS

oxH(ky) 00 = —H(—ks)

BEZDE, WMk, =0, 7cBWTldsgnH = 10, THBDT, L&D, H5WITEHICHEH
[REN3. = Z. %8
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Non-Hermitian cases
@0000

y gap condition? Hermitian

Non-Hermitian Matrices: What is the Gap Condition

o Eigenvalues of non-Hermitian matrices are complex.

o What is a meaningful gap condition?

@ A characteristic feature of complex eigenvalues is that in a PBC, the phase of an eigenvalue
around a reference energy F,ef may have a winding number

1
W(Eref) = TM %dlog det[Hch (k) - Eref] € 7.

— the origin of the non-Hermitian skin effect [Zhang-Yang-Fang 1910.01131,
Okuma-Kawabata-KS-Sato 1910.02878].

Lx=100,n=1
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Why gap condition? Hermitian

Non-Hermitian cases
[eYele)

(o] lelele]

Non-Hermitian Matrices: Point Gap Gong-Ashida-Kawabata-Takasan-Higashikawa-Ueda 1802.07964
@ The winding number W (E\¢) is stable unless an eigenvalue touches the reference energy Eyct.
@ The point gap condition
E # Erer  (det(H (k) — Erer) # 0)
makes sense.

o Eg: The following two Hamiltonians are in distinct point-gapped topological phases w.r.t. the
reference energy Elet.

Re Re
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Non-Hermitian cases
[e]e] lele]

Why gap condition? Hermitian

000

Non-Hermitian Matrices: Remnants of Hermitian edge states

@ Even with non-Hermiticity, the remnant of Hermitian topological phases, the boundary states,
might persist.

@ A minor perturbation doesn’t eliminate the edge states inherent to Hermitian topological phases.
This is because the spectrum can deform continuously smoothly when perturbed slightly.

Lx=100,n=2
Im

_ edge state ~ edge state

Yy ) - /f"'f . ® 0BC

M_",-‘«F/ 05 e os y,,f‘/‘ @ PBC
05 e
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Non-Hermitian cases
[e]ele] o]

Why gap condition?
000

Non-Hermitian Matrices: Line Gap Kawabata-KS-Ueda-Sato 1812.09133

@ To capture such remnants of Hermitian topological edge states in a non-Hermitian system, we
introduce the concept of a line gap:

Spec(H)NL =0, where L is a line in the complex plane C.

e Hamiltonians Ho(k) and Hi(k) are considered to belong to the same topological phase with
respect to the line gap if there exists a homotopy Hycjo,1(k) that connects them while preserving
the line gap and the associated symmetry.

Lx=100,n=2
I

~ edge state ~ edge state
,/;f _eoBc , e
e o ,V/ e PBC .
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Non-Hermitian cases
oooo0e

hy gap condition? Hermitian

o It is useful to introduce two types of line gaps: real line gap and imaginary line gap. These are
consistent with symmetries associating £ with —F, E*, or —E* (detailed later).

@ P: Point-gap E — Eet #0.
o L,: Real line gap Re(E — Eret) # 0.
o L;: Imaginary line gap Im(E — Eyef) # 0.

ImE Im E ImE

Real gap
- &

¢ @ S S
' E ' ReE ReE Imaginary gap Re E

[Figure from Kawabata=KS=Ueda=Sato 1812.09133]
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Symmetry in non-Hermitian systems 38-fold symmetry class Some fundamental issues
0000 000000000 00000
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Symmetry in non-Hermitian systems
@000

Symmetries in Non-Hermitian Systems

@ What kind of symmetries exist in non-Hermitian systems?
o Example:
o Time-reversal symmetry (TRS) is a fundamental symmetry.
UrH*Ul = H.

o In the mean-field approach to superconductors, the Bogoliubov—de Gennes (BdG) Hamiltonian Hpqg
inherently possesses particle-hole symmetry (PHS).3

h A 1
UcHpacUL = —Hpag, Hpac = (AT —hT> , Uc= (1 ) .

o Bosonic systems with quadratic interactions are captured by the bosonic BdG Hamiltonian
H= %(aT,a)HBdg(a,aT)T. To maintain the bosonic commutation relation, Hgqg must be
diagonalized using a paraunitary matrix 4, which is the same as the standard diagonalization of the
effective matrix Hy,gqg = 02 Hpag. While H g is non-Hermitian, the Hermiticity of His
encoded in its pseudo-Hermiticity:

UzHZrBdGUZ = HyBaG-

3Note that AT = —A due to the fermion anti-commutation relation.
AUG'ZUJr =0, UTO'ZU =o0,.
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Symmetry in non-Hermitian systems
[o] Tele]

Symmetries in Non-Hermitian Systems (cont.)

@ We consider the following 8 types of symmetries :

Symmetry in non-Hermitian systems

H

H* i H . it tri
U HT = _H (° w IS a unitary matrix.

Ht

@ This choice is ad hoc. In quantum mechanics, Winger's theorem tells us symmetry, a transformation that
does not change the observation, is either unitary or anti-unitary. In non-Hermitan systems without
specifying a physical system, we have no such guiding principles. We may consider different types of
symmetry such as

H
H*
HT
Hf

ol =€e’H, uw#wv, e U(1).

For example, the symmetry type uH vt = H was discussed to construct the symmetry indicator in
KS=Ono 2105.00677.
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Symmetry in non-Hermitian systems
ooeo

Symmetries in Non-Hermitian Systems (cont.)

o Let G be a group. We introduce three homomorphims ° ¢, 1, ¢ : G — Zo = {#1} to specify the
type of symmetry as

UgHuj;T (pg =1,mg=1)
“gH*ug (¢g = -1,y =1)

=cgH, e G,
“gHTu; (pg = —1,ng = —1) J g
ugHJru;r; (g =1,ng =—1)

@ Comparing the transformation with two consecutive h, g transformations and the transformation
with gh, we have

gty (pg = —1)

@ The relation (gh)k = g(hk) gives the constraint relations

{ UgUn (()bg = 1) } = Zg,hUgh, Zg,h € U(]_)’ g,h €G.

dg -1 -1 _
2% %gh ke hkZgn =1, g, hk € G.

(This means z = (z4,3) is a two-cycle in Z2(G,U(1)4).)
SLet Gp and G be groups. f : Go — G4 is said to be a homomorphism if f(gh) = f(g)f(h) is met.
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Symmetry in non-Hermitian systems
oooe

8 types of symmetries (names from

¢y Mg cg  Sym. Energy constraints Name

1 1 1 wuHul=H E—-E Unitary

1 -1 1 wuHW =H FE—E* Pseudo Hermiticity (PH)

-1 1 1 ugH ul = H E— L Time-reversal symmetry (TRS)

-1 -1 1 ugH™uf=H E—E Time-reversal dagger symmetry (TRST)
-1 1 -1 wyH'uw,=-H FE——FE" Particle-hole dagger symmetry (PHS')
-1 -1 -1 wyH"™w)=-H E— -E Particle-hole symmetry (PHS)

1 1 -1 wgHul=-H FE—-FE Sublattice symmetry (SLS)

1 -1 -1 uwHul=-H E-— -E Chiral symmetry (CS)

and finer classifications (detailed on the next slide).
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38-fold symmetry class
000000000

SFRED S ER

0 ETILI—PMRICBITDRIMEDDEEE L=V,

o WMMUBGIIERLEDILPEETERVWLIICERIN, NI hZT7 x4y —RLEDEE
DEHNRBOEI7Y—Ic7AOy /dAalInNsdH, FTAY VICEWTEREBET ZRHMEDOH
ENETHIER.

o HER, 38BY DM MMES FRICHEINDIEERS.
o FTWREMWRBFOEI/9—ICT7 Oy I/WABILIND I E5HET .
Go={9€Glpg=m3=c,=1} C G
18 —REAREES B, 2FY,

ugHu;r, =H, gé€ Gy,

UgUp = Zg,nUgh, g, h € Go.
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38-fold symmetry class
0@0000000

Schur®D A

SchurD 8
Ug, Vg EGoDEEM I =—4 )KRIVE T 5. FRBDg € GolIH LT
ugH = Huy

ET3. ZDEE, u,vHhFFEMARETHNIEH =0THY, u=vTHNILH 1.

ZDFR+a& LT...
RBuDBEN DR Zu = D, nad,na € Z>0ET 5. HEK%ZEAT,
ug = @u? ® 1n,

ETED, COEEICBVWTININNZZVEUTORICTOY /AEINS.

H = P laim(e) ® Hay Ha € Maty,, (C).
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38-fold symmetry class
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FEER : 70y Ik

o Schur®FHREDEEEAIL, Bl Z IEHEEAR D WikipediaDFEE THERRAL T 72 L,
o Z Z TlEMathematicall ZEE N2 BREGDEHREZAVWTEAMRIEAZEHR L, GoxdEsEx
TIVYLBRNINNZTVOEBEIRERTEIIET 2 2 & MENICEIOXT.

o FTHEALNIEAREG E TPz, 1 ICH L TE2TORNKRRERSS

IERIRIE
BREGICH LT, UTZERIKRE &M,

[Rglnk = 2g,k0n,gk-
ROEBENH 3.
R= @ dim(a)or.

£2T, FRIRBREZTORNRELEH, BNRREdn()EHET S, °
N ST, BREEHFR:, I 5A5NMNE, 2TORNEEFrBONET.
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38 symmetry classes

@ What are fundamentally different symmetry classes that govern the topological nature of matrices?

— We eventually reach the 38 symmetry classes. (cf. 10 Altland-Zirnbauer symmetry classes in
Hermitian systems.

Proof

(i) The Hamiltonian H is block-diagonalized to the irreducible representations «, 8,7, ... of the
unitary subgroup Go = {g € G|y =ng = ¢4 =1} C G.

Ho

H = H,

(i) A group element g € G in which either ¢4, 74, or ¢g is -1, acts on each block H, as either
e g preserves the irreducible representation . g is closed inside the block H.
— g acts as a Zg symmetry inside the block H. (cf. Wigner criteria)

o g exchanges the irreducible representations H, EN Hpg.
— Hpg is just a copy of H,. The topological nature is determined only in the block H,.
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38-fold symmetry class
000080000

R RKBEDOTY 7o\

o £F, SOBBRLEGIIHLT, g€ GoDEE, ¢y 1y =110 = Ch1gy = 1THEDT,

hflGoh =GollEELEY.

0 IHIT, heGICHLT, BICR2 c GolcH3ERBLET. Ihnd, hT203 Yy T2 ETORRICES
ZENDhNYET. A

o GoPEMERRDEREES (i)} Ve LY.

gli) = Z_ 5) [u“Tij, g € Go.

heQIL&>TYy TENBEHNERDRBEEEEHRMICH | '>t LTEAT R,

Ghj) = zgnghli) = — 2" hR=igh|j) = h2|
Zh,h=1gh
&W, MRAZY Y —RIBAISEREL T, KBTI
uhe ___*g,h % h lgh on =1,
Ygen—1Gon = Zh h—1gh S

ERYET.
o ZDRAMND, haDIEENHLLBDT, ’ﬁtiﬂ%‘ft’]?ﬁ*ﬁ BE3BR

|G ‘ Z (x§)*xg = dap
9€Go

&V, akha®1=8 VRENEI BAHETEEXT.
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R : Wigner¥l ES&H

° h€GHRA=Y ) —¢, = IDBATHOBMERLhat 2= 5 | AELIBAR, K
) INELI=S URBTHZICEN DT, "BX TEALHY ET. (KramersiiiR)
o BREIICIE, RDWignertIE %#%ﬁ]b\f#u&ﬁéhiﬁ“

Wa = |G | Z Zhg,hgX(ng)y2 € {0, %1}
9€Go

Wa=0 = o&haldIEE.
Wa=1 = othaldd=49VREETHY, 757—fEEARL.
Wo=-1 = athaldd=8)RETHY, V57— fEHY.
° it;ﬁ;%tﬁﬁl I3, BERREEG) = {}OBBAARRICH LT, Z: = {e, T} OB REGERMELNFET 25
87T )

T2 =27 =1 = KuramersfigiR7 L, 7% = zpr=—-1 = KuramersifgiR%H V).
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38 symmetry classes (cont.)

(iii) The problem is recast as how different symmetry actions there are in a single block H,.

(iv) We can assume the absence of unitary symmetry (i.e., (¢g,ng,cq) # (1,1,1)).
— The symmetry group G realized in the single block is either one of

G=zY, N=0,1,2,3.

(Otherwise, there is a unitary group element.)

(v) For a group element g with ¢, = —1, namely antiunitary symmetry, the square is proportional to
identity (since g® = ¢) but its coefficient is quantized to a sign °

uguy = £1.

5The coefficient should‘ be a sign: Set uguy = e'?. Then, e®u, = UgUyug = Ug(uguy)™ = uge™"®. The sign £1 is
unchanged under ug — e'“ug.
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38 symmetry classes (cont.)

(vi) Case of N =0 — Unique.
(vii) Case of N =1 — Seven patterns:
(¢17771701) = (_1717 1)7 (_17 -1, l)a (_1717_1)7 (_17_]-7 _1)7 (1a -1, 1)7 (17 1, _1)7 (17 -1, _1)
For ¢1 = —1, we have 2 cases for each, resulting in 2 x 4 4+ 3 = 11.
(viii) Case of N =2 — When ¢, = —1 is included, there are four patterns
{(¢17n1761)7(¢27n2502)} :{(717151) (71 71 1)} {(715171) (7171571)}
{1, LD, (=L -1, -D}{(-1,-1L1),(-1,1,-1)},

and choices of the signs of ujuj = £1 and uou3 = %1 for each. When ¢4 = —1 is not included,
there is only one pattern

{(¢17771a01)a (¢2»772702)} = {(17 -1,1),(1,1, _1)}7

with the commutation or anticommutation relation of them wjus = fusui. As a result, we have
4x44+2=18.
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38 symmetry classes (cont.)

(ix) Case of N =3 — The set of three generators is unique

{(¢177ll’01)7 (‘152,772702)7 (¢3,U3,C3)} = {(_17 1, 1)7 (_17 -1, 1)7 (_17 1, _1)}'

The choices of the signs of uiu] = %1, uaus = +1, and uzui = +1. We have 2 x 2 x 2 = 8.

(x) In sum,

1+11+ 18 +8 = 38 classes. [

o Cf. This is contrasted to the 43-fold classes in the pioneered work by
Bernard-LeClair. This is due to overcounting and overlooking.
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Symmetry in non-Hermitian systems 38-fold symmetry class Some fundamental issues

0000

000000000 0000

Issues in the 38 Symmetry Classes of Non-Hermitian Systems

@ Having fundamental symmetry classes, several fundamental issues arise:

Anderson localization problem Hatano—Nelson cond-mat/9603165, ...

Spectral statistics (Level-spacing distribution) of random matrices
Hamazaki=Kawabata=Kura=Ueda 1904.13082, ...

Topological classification w.r.t. gap conditions (point or line gap)
Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964, Kawabata=KS=Ueda=Sato
1812.09133, Zhou=Lee 1812.10490, ...

Symmetry protected exceptional points? Kawabata=Bessho=5ato 1902.08479

Existence/absence of non-Hermitian skin effect Kawabata=KS=Ueda=Sato 1812.09133,
Kawabata=Okuma=Sato 2003.07597, ...

Connection to quantum many-body physics
Experimental relevance

And more...

Note: This is far from the exhaustive reference list on the topics above, due to the lack of my knowledge of recent developments.

51/113



Some fundamental issues
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38 Symmetry Classes in Finite Space Dimensions

o In finite space dimensions (with d > 1), how we encode the 38 fundamental symmetries depends
on the specific physical systems under consideration.

@ One might focus on internal symmetries, which don't change the spatial position, as they remain
compatible with the effects of the disorder.

@ Here, we consider the following constraints on the hopping Hamiltonian H(z,z'):
o Complex conjugation is local: H(z,2')* +» H(z,z').
o Transpose exchanges the hopping direction: H(z,2")T < H(2',x).
This rule can be summarized in the table below:

Symmetry Symmetry in Real Space With Translational Invariance
Unitary/SLS  wH (z, 2 )u’ = +H (z, 2’ wH(k)ut = £H(k)
TRS/PHST uH(a: 2 Vul =+H(z,2)) wH(E)*u' = +H(—k)
TRS'/PHS H(z,o') ul = +H(2',z) wHk) ul = £H(=k)
PH/CS H(z,2')'u' = +H(z',2) wHE) w' = £H(k)
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Symmetry in non-Hermitian systems 38-fold symmetry class Some fundamental issues
0000 000000000 [ele] lele]

A Numerical Experiment: PBC vs OBC for 38 symmetry classes

No symmetry Pseudo Hermiticity o-H(k)'o. = H(k)

Lx=100,n=4

Im

® 0BC
ze ® PBC
20

Sublattice symmetry o.H(k)o. = —H (k) Chiral symmetry o H(k)'o, = —H (k)
Lx=100,n=4
Lx=100,n=4 Im

20

@ 0BC
re ® PBC
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Symmetry in non-Hermitian systems 38-fold symmetry class Some fundamental issues

[e]e]e]e] 000000000 [e]e]e] T}

ClassAl  o:H(k)*o. = H(—k) ClassAll  o,H(k)*o, = H(=k)
Lx=100,n=4 Lx=100,n=4

® 08C
® PBC
ClassD  o.H(k)To, = —H(—k) Class C oyH(k) o, = —H(—k)
Lx=100,n=4 Lx=100,n=4
Im im
2t
® OBC ® o8C
re ® PBC e ® PBC
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Some fundamental issues

Symmetry in non-Hermitian systems 38-fold symmetry class
0000 000000000 [e]e]ele] )
Class Alf o H(k)'o, = H(—Fk) Class Allf  oyH(k) 0, = H(-k)
Lx=100,n=4 Lx=100,n=4
Im Im
brr————3
A
X ® OBC @ 0BC
= Re
-2 = Sl N
e
Class DY o.H(k)'o. = —H(-k)
Lx=100,n=4
e 0OBC @ 0BC
@ PBC ® PBC

2

+ Other 28 classes — The PBC and OBC spectra are coincident if class Al symmetry exists.
Kawabata=KS=Ueda=Sato 1812.09133, Kawabata=Okuma=Sato 2003.07597, ...
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Hermitianization and flattening Altland-Zirnbauer symmetry class and classifying space Finite spacial dimension and dimensional isomorphism ~Classification of non-Hermitian topological ph
® 000000 000000000000000000000 00000000 000

Topological Classification

Hermitianization and flattening

Altland-Zirnbauer symmetry class and classifying space
@ Finite spacial dimension and dimensional isomorphism

o Classification of non-Hermitian topological phases

56 /113



Hermitianization and flattening Altland-Zirnbauer symmetry class and classifying space Finite spacial dimension and dimensional isomorphism ~Classification of non-Hermitian topological ph
© ®@00000 000000000000 O00OOO0000 00000000

Classification table of Hermitian topological phases “Periodic Table"
Schnyder=Ryu=Furusaki=Ludwig 0803.2786, Kitaev 0901.2686

class\| T C S| 0 1 2 3 4 5 6 7
A o o0 0 z o0 zZ 0 Z 0 Z 0
ALl | 0 0 1| 0 Z O Z O Z 0 Z
Al + 0 0 Z 0 0 0 22 0 Z2» Z2
BDI | + + 1| Z2 Z 0 0 0 2Z 0 Zo
D 0 + 0| Z2 Z Z 0 0 0 2Z O
bpir | - + 1 0 Z» Z» Z 0 0 0 2%
AIl | — 0 0] 2Z 0 Z2 Zo Z 0O 0 O
cir | — — 1 0 22 0 Z» Z2 Z O O
C 0O — 0] O 0 2Z 0 Zo Zo Z O
CI - 11 0 0 0 2Z 0 Zo Zo Z

o Well-established. (The derivation is soon later. )
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Hermitianization and flattening
O@0000

Point Gap and Hermitianization Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964

@ The non-Hermitian skin effect is characterized by a nontrivial topological number with a point gap.

Class AII{ oyH(k) o, = H(—Fk)

Lx=100,n=4

— E,e

(-1)" = sgn [M[(H(U) )]

Re @ PBC X vxp% / dlogdet[(H(0) — Eyer)oy]
2Jo

[Okuma=Kawabata=KS=Sato 1910.02878]

e A point gap of H(k) implies a gap of H(k). This is because
Spec(H(k)) = Spec(£+/H(k)TH(K)). l.e., the singular values of H (k) are the same as (absolute
values of) eigenvalues of H (k).

o Classifying non-Hermitian H (k) is recast as that of Hermitian Hamiltonian H (k), which is
well-established. — Done!
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al dimension and dimensional isomorphism Classification of non-Hermitian topol

Hermitianization and flattening Altland-Zirnbauer symm
O 00@000 C

Line Gap and Flattening Kawabata=KS=Ueda=Sato 1812.09133

y class and classifying space Fini

Hermitionization and Flattening

With the real /imaginary line gap, non-Hermitian Hamiltonians H can be Hermite and flattened while
keeping the real/imaginary line gap.

— Done!
ImE ImE ImE ImE
Real gap I
C+ Hermitian ' Anti-Hermitian
flatten i )
attening flattening
. =) — e o —_—
R E=1 E=+1 ReE Imaginary gap ReE ReE
E=i @

C- L 4

[Figure from Kawabata-KS-Ueda-Sato 1812.09133]

ogical ph
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Hermitianization and flattening
[e]e]e] lele)

Proof (Based on App. D in )

@ For simplicity, from now on, we set F,er = 0.

Flattening
e Let C1(C-) be a circle enclosing all the eigenvalues with Re E > 0(Re E < 0).
o The projector onto the eigenspace with Re E > 0(Re E < 0) is given by ’

Pi(k) = fci %%H(k)’ Py (k)* = Pe(k).

@ Introduce the homotopy

Hicpoay(k) = (1 =) H (k) + t[Py (k) — P-(K)],

whose eigenvalues are (1 — t)En (k) + t sgn[Re Ey(k)], which have a real line gap for ¢ € [0, 1].

e Hi(k) = Py(k) — P_(k) has eigenvalues £1.

"Use the resolvent equation (A —w) ™' — (A —2)"! = (z — w)(A — 2) (A — w) ! to show [P+ (k)]? = P+ (k).
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Hermitianization and flattening
[e]e]e]e] o)

Hermitianization

o Decompose Hi(k) into real and imaginary parts as

Hy(k) = ha (k) + iha(k) = T2 +2H1(W L k) ;iHl(k)T'

o Hy(k)? = Py (k) + P_(k) = 1 implies that
hi(k)* — ha(k)® =1, {hi(k), ha(k)} = 0.

@ Introduce the homotopy

Hyco,11(k) = (1 — s)Hi(k) + sha(k) = hi(k) +i(1 — s)ha(k),

whose square is

Hy(k)® = hi(k)? — (1 —5)ha(k)® =14 (1 — (1 — 5)*)ha(k)® > 1.

Thus, H,(k) keeps the real line gap and H; (k) is Hermitianized to hi (k).
@ hi(k) is not flat. We take the flattening to hi (k) again. O

@ (Remark) These flattening and Hermitianization methods are compatible with 38 symmetries.

8Not compatible with type of symmetries j:u;va = H H* HT H'.
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Hermitianization and flattening
[e]e]e]e]e] )

Topological Classification of Hermitian Systems

@ For both point and line gaps, the classification problem is recast as that for Hermitian systems,
which is well-established.

H(k)' = H(k), H(k)> =1 (after flattening)

@ So, in the remainder of this part, | review the classification of Hermitian topological phases.

o Strategy: Classify 0-dimensional Hamiltonians and extend to finite space dimensions.

@ (Remark) The classification of non-Hermitian topological phases here is for PBC. Due to the
non-Hermitian skin effect, quantitative (and possibly qualitative) properties such as edge states
must be discussed using the bulk Hamiltonian in OBC. The bulk-boundary correspondence is true
between the bulk OBC Hamiltonian and the edge state.
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Altland=Zirnbauer symmetry classes

@ The fundamental internal symmetries are classified into 10-fold Altland-Zirnbauer (AZ) symmetry
classes.

@ There are three types of symmetries: °
TRS:  wurH(z, x/)*uTT = H(z,z") urup = +1,
PHS:  wcH(z,2')*ul = —H(z,2) ucuy = +1,
Chiral:  urH(z, 2" )ul. = —H(z,z") ufg =1, trlur]=0.
AZ class TRS PHS Chiral
A 0 0 0
Alll 0 0 1
Al 1 0 0
BDI 1 1 1
D 0 1 0
Dl -1 1 1
All -1 0 0
Cll -1 -1 1
C 0 -1 0
Cl 1 -1 1

9%r [ur] = 0 is needed. Otherwise, H has zero modes.
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Altland-Zirnbauer symmetry class and classifying space
O@000000000000O0O0000

Classifying Space

@ We start with the classification of zero-dimensional Hamiltonian.
H ' =H, H*>=1 (& E=41) + AZ symmetry.

@ What is the “space” of such matrices?

o With “stable equivalence”, such “spaces” become the classifying spaces in the K-theory.
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Altland-Zirnbauer symmetry class and classifying space
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Example: 2 x 2 Hermitian matrix with H? = 1

@ 2 x 2 Hermitian matrix H can be expanded as
H=dy+dyo, +dyoy +d.o. =do+d-o.
o Eigenvalues:
E =do £ |d].
@ Thus, flattening implies either one of the following.
e dp=1and d=0,

e dp=—-1land d=0,
e dy=0and |d|=1.

@ Thus, there is a one-to-one correspondence

{H € Matoy2(C)|H" = H,H® =1} = {do = 1}U{d € S*}U{do = —1}.
—_——— —— ———

pt Sphere pt
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Stable equivalence

Practically, the homotopy classification of Hamiltonians whose target space is a finite and fixed
dimension is hard to compute.

Even the classification is not a group.

o Example: class A 2 x 2 Hamiltonian in 3-space dimensions (“Hopf insulator

n) 10:

7%, 57 = (i) Three Chern numbers (n,,ny,n.) € Z2*3
’ " | (ii) Hopf invariant is classified by Z3.GOD(ngny.nz)

The “stable equivalence condition” was introduced: Two Hamiltonians Ho (k) and H; (k) are said
stably equivalent Ho(k) ~ Hi(k) if Ho(k) ® H'(k) and Hy(k) ® H'(k) are homotopically
equivalent. !

Physical motivation: stable against hybridization of higher- and lower-energy bands and the band
folding by breaking translational symmetry.

Mathematical motivation: (relatively) easy to compute.

10#3(52) = 7, which is generated by the Hopf map S? — S3.

e further introduce the equivalence relation to pairs of Hamiltonians with the same size (Ho(k), H1(k)). Two pairs
(Ho(k), H1(k)) and (H{(k), H;(k)) are equivalent if Ho(k) ® Hy(k) ~ H{(k) @ Hi(k). The equivalence classes form the
K-theory.
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Class A: Classifying Space ()

o Let H be an N x N Hermitian matrix H with H* = 1.
@ H is diagonalized by a unitary matrix

H:U(lN_M )U*,
—1m

where M (0 < M < N) is the number of negative eigenvalues.
e U is not unique:

Ul—>U<V W), VEeUN— M), WeUM).

Thus, H is characterized by Grassmann manifolds

LNJ U(N) ,
2o UN—-M)xU(M)
@ With the stable equivalence , the Hamiltonian is eventually characterized by the
classifying space Cp, '
. U(2n)
= 1 .
Co gzninéo Uln+ k) x Un — k)

22 >DITHOHRE(Ho, Hi )& (Ho ® (—Hy), Hi © (—H1))IKRERMETH 3. nidHo, H DITIRTT, kidHo, Hi D
EOEEEOHDE.
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Class Alll: Classifying Space Cy

o Let H be an 2N x 2N Hermitian matrix H with H? = 1 and chiral symmetry

urHult =—H, u% =1, trlur]=0.

WLOG, we can set ur = o, = (1 71>. Then,

H= <q qT)7 q € U(N).

Thus, H is characterized by the unitary group U(N).

With the stable equivalence , the Hamiltonian is eventually characterized by the
classifying space (1,

Cr = lim U(n).

n— oo
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Class Alll: Classifying Space C; (alternative)

@ There is another perspective on (.
o Start with the diagonalization H = Uo,Ut.
o Set ur = 0. The symmetry 0, Ho, = —H implies that one can choose 0,U = Uo,. Namely,
_ 1 fuy+u- up —uo
U=uyPr+u_P_ = 3 (u+ w w. +u,> ,  us,u_ € U(N).

where Py = li% is the projection onto o, = £1.

@ The redundancy of U is U +— UV with Vo.Vi =0, and 0,V = Vo,. Thus, V is a form
V=0,0V,VecU(N).
We got

Cr = nlLH;O[U(n) x U(n)]/U(n).
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R : BRAMTIIDDAE (Autonne=E AR R)

AL EHERFTINAT = AL T3, HB1=9VTHIQEERNIABERONAITISAFEL T,
A= QAQ". J
(GEBR) 3 QADTEETY. A= Ap +idy = AEAT 1 iAAY Q= Q) +iQy = YL 199 rme
EEICHRT 5L, HRERA = QAQT LT & %
= QAQT — Q2AQT, Az = Q1AQF + Q2AQT .
ZhiE, LUF & &

A:Q(A fA)QT’ A:(_Af? ﬁi)’ Q=(8§ _QQ21>'

QPI=% JHQQT = 11F, QDPEXHQQT = 1& %M. S TARENTTINTH 21 5ERITINTHALS

N, TN SVHTHE(io,)A = —Alio,) EBTHD5, BN,

o~((3) = (&)

RBERTITHALEINS. O

0 SIEX LT, BREHMTIAITTAIETREE ER SRV, Autonne=ERKDRITEICELET 3.
ByyvokasEil L.
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g Altland-Zirnbauer symmetry class and classifying space Fi
0000000080000 00000000

?ﬁE BRRAFFITI DR

A= BERTOBRRIMTINAT = —AL T2, H21=8)TQEERIVHEAERROTAIT
SISHAFELT,

A=QA® (i0,)Q".

o FIFAIXIRBRIEL ¥ 3.
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BRE R =4 ) B DEER

o R1=4 V) IRZIFMEIE, 2TEFEHFET 5.
u=+uT.

o uT =udHFEIE, v=QQRTHRZA=ZFVYITIIEFEETS. ZOQERAVWVTEEERATEZ
&Y, ®iC

u QluQ =1

BREBEENFET DI LN DHS.

o AKIC, v = —uDBE, u=Q(i0,)QTRBDI=Y VITHNEETS. ZOQEAVWTE
EE#ESTDIEICLY, BIC

u— QMuQ* = io,

BRLEENFET 5.
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Class Al: Classifying Space Ry

@ Let H be an N x N Hermitian matrix H with H? = 1 and class Al TRS
uTH*u} =H, wurur=1.

e WLOG, we can set ur = 1 *, meaning that H is diagonalized by an orthogonal matrix

H=0 (1N‘M > o',
—1m

@ The same logic as class A leads the classifying space Ry,

O(2n)
Fo = U hooOn—i—k)xO(n—k)'

1%Every symmetric matrix u% = wp can be ur = QAQT with A > 0 and Q a unitary (Autonne-Takagi factorization).
When wr is unitary, A = 1.
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Class BDI: Classifying Space R;

o Let H be an N x N Hermitian matrix H with H? =1 and class BDI symmetry

urH ub, = H, urujp =1,
urHu} =—H, wi=1, tr [ur] =0,

UTUL = UPUT.

@ We can set ur = 0, and ur = 1, meaning that ¢ is an orthogonal matrix

H= (q qT), q € O(N).

We get the classifying space Rj,
R, = lim O(n).

n— 00

@ The Zs invariant is given by det ¢ € {£1}.
As for C1, it can also be obtained as R1 = lim,—+[0O(n) x O(n)]/O(n).
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Class D: Classifying Space Ro

@ Let H be an 2N x 2N Hermitian matrix H with H? = 1 and class D PHS
ucH ul, = —H, ucuf =1.

o We can set uc = 1, meaning that ¢H is a real skew-symmetric matrix, which is diagonalized as
iH =0 [1N ® (71 1)} o7, 0eo0(2n).

@ O is not unique:

U+U* U- U
5 o mU=—7%—

ReU ImU
—ImU ReU

OHO( ) Re U = U € Un).

Ry = lim 2GM)

n—o0 (TL)

@ The Z; invariant is given by pf [i{H] = det O € {£1}.
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Class D: Classifying Space Rs (alternative)

Start with the diagonalization H = Uo,Ut.

Set uc = 1. Then, the symmetry constraint " = —H implies that U can be chosen as
U* = Uo,, which is the same as V = Ue @ ("=~ is real V* = V.

o Then, H=V(—0,)VT.
o The redundancy of V is V = VQ with Q* = Q and Qo, Q' = o, which means Q € U(N) as
before.
o We get
. 0O(2n)
=1
Ra = lim 70y
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Class DIII: Classifying Space R3

o Let H be an 4N x 4N Hermitian matrix H with H? = 1 and class Cl symmetry
uTH*u} =H, wurur=1,
urHult =—H, ud = 1, tr[ur] =0,
UTUL = —UTUT.

@ We can set ur = 0. and ur = 0,7y. Then, the symmetry constraint is recast as follows.

+
H:(q q>7 quTTy:Q

The matrix 7yq is a complex skew-symmetric and unitary, meaning that it can be a form

Tyq = Q(ic,)QT with Q € U(2N).

o The redundancy of Q is Q — QV with VVT =1 and V(io,)V" = io,. Namely, V € Sp(N).
We get
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Class All: Classifying Space Ry

o Let H be an 2N x 2N Hermitian matrix H with H? = 1 and class All TRS

uTH*u; =H, wurur=-—1.
. 1 . . .
o We can set ur = ioy = ( 1 5 The eigenvectors come in Kramers pairs

(u2i—1,u2i) = (u2i—1,i0yus;_1),

meaning that H is diagonalized by a compact symplectic matrix

H=358 (lN*M —1M) ST, S e Sp(N)=Sp2N;C)NU((2N) = {S € U2N)|8"ic},S = icy}.

Sp(2n)
_>R4_Un—>ooSpn+k)><Sp( n)’

15Every skew-symmetric matrix ug = —ug can be ur = QAQT with A = D, (7)\‘ Ai) Q7 with Q a unitary. When

wr is unitary, A;s can be \; = 1.
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Class ClI: Classifying Space Rj

Let H be an N x N Hermitian matrix H with H? =1 and class CIl symmetry

uTH*uTT =H, wurup=-—1,
urHuP =—H, ui=1, trlur]=0,

UTUL = UTUT.

@ We can set ur = 0., and ur = 7. Then, the symmetry constraint is recast as follows.

N
q *
H:(q )7 Tyq Ty:q@quqT:Ty‘

We get

Rs = lim Sp(n).

n—r00

@ As for C1, it can be obtained as Rs = lim, o [Sp(n) x Sp(n)]/Sp(n).
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Class C: Classifying Space Rg

o Start with the diagonalization H = Uo,Ut.

@ Set uc = oy. Then, the symmetry constraint o, H* = —Ho, implies that U can be chosen as
oy,U" = Uoy. Namely, U € Sp(N).

o The redundancy of U is U — UV with Vo,VT =5, and Vo,V = 5., which means
V= (“ U*> with v € U(N).

o We get

Rg = nh—>Holo Uln)
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Class Cl: Classifying Space Rz

o Let H be an 2N x 2N Hermitian matrix H with H? = 1 and class Cl symmetry
urH ul, = H, wurup =1,
’LL[‘H'LLP =—H, uli=1 tr [ur] =0,
UTUL = —UTUT.

@ We can set ur = 0, and ur = 0,. Then, the symmetry constraint is recast as follows.

"
q T

H = , =gq.

<q ) q q

The complex symmetric and unitary matrix can be a form ¢ = QQT with Q € U(N).
@ The redundancy of Q is @ — QV with VVT =1and VVT = 1. Namely, V € O(N).
We get

-

(n

Rr = li

~
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Classifying Space

o Eventually, we get the 10 classifying spaces and their disconnected parts.

AZ class TRS PHS Chiral Classifying Space mo  Top. invariant
A0 0 0 Co = Urez limnoo goriatiny % K€Z
Alll 0 0 1 Cy1 = limy, 00 U(n) 0
Al 10 0 Ro = Urez im0 grrpetm—y L KEZ
BDI 1 1 1 Ry =limp 00 O(n) Zo detqg e +1
D 0 1 0 Ry = limy, 00 220 Zo pfliH] € £1
b -1 1 1 Ry = limy, o0 574 0
All -1 0 0 Ry = Upez im0 sy 22 k€L
Cll -1 -1 1 Rs = limp o0 Sp(n) 0
C 0 -1 0 R = limy 00 550 0
Cl 1 -1 1 Rr = limy o0 50 0

1859p(N) = Sp(2N;C) NU(2N) = {S € U(2N)|STi0,S = ioy,}
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Altland-Zirnbauer symmetry class and classifying space
O000000000000OO00000e

0 10BYDAZYV ZRICHL T, RIMEDEREFZUTOLI ICEEL TR,
o TIL—TRFICEY, nBIRTES

17

AZ class TRS PHS Chiral Classifying Space mo  Top. invariant
A C() = UkEZ llmn_>oo % Z k (S VA
Alll o C1 = limn—oo U(N) 0
BDI 1 o, o, R = limy 00 O(n) Zo detq e +1
D 1 Ry = limy 00 220 Zo pfliH] € £1
DIl oy oy Ry=limu o 504 0
All oy Ry = Urez liMnoo soiriso—ry 22 k€Z
Cll ioy 1Ty oyTy  Rs =limp o Sp(n) 0
C ioy Rg = limy 00 550 0
cl 1 iocy oy Rr = limy o0 50 0

UHASIHFMEIH + HT = 0Ic D2 W TR EOEBEOFELY, tr = 04" RE.
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Finite spacial dimension and dimensional isomorphism
@0000000

Finite Space Dimensions (i) from torus to sphere

@ Thanks to the stable equivalence, the topological structure from “different origins” can be
discussed independently.

@ For d-spatial dimensions, the Bloch-momentum space is a d-dimensional torus T, however, with
stable equivalence, the topological classification is decomposed into that of sub-spheres S?,
0<p<d, like

“H (Skyrmion + Vortex)” — “H (Skyrmion) & H (Vortex)”.

@ We can assume the Bloch-momentum space is a d-sphere.
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Finite Space Dimensions (ii) Dirac Hamiltonians

@ Moreover, it is found that the representative Hamiltonian can be a form of the Dirac Hamiltonian

d
H(k) =Y kvi+M, {y,7}=26; {nM}=0 M =L

i=1

The topological classification of H(k) is recast as the classification of the mass term M subject to
the constraint by 7;s and AZ symmetry.

Adding space dimensions d = 1,2, ... is the same as adding gamma matrices 1,72, . ...

The gamma matrices «;s behave as chiral symmetries.
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Dimensional isomorphism

@ We will show that adding gamma matrices is nothing but a shift of AZ symmetry class.

oo A= Al A — - (without TRS and PHS),

Al -+ CI - C— CIl - AIl - DIIl - D —- BDI - Al — ---.

@ The key observation is that two chiral symmetries can be “solved” trivially:

{00;M} ={0,,M}=0 = M=0,®M.
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Finite spacial dimension and dimensional isomorphism
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A— Alll - A

@ Let us consider a d =1 class A Dirac Hamiltonian
H(kl):k171+M7 {’Y17M}:O
@ 71 behaves as chiral symmetry for M, thus,

(d=1, class A) = (d=0, class Alll).

@ Next, let us consider a d = 1 class Alll Dirac Hamiltonian
H(k1) = kiya+ M, {y2, M} =0,
NH(k )] = —H(ky).

o We can set 71 = 0, and 72 = 0. Then,

M=0c,® M.

No constraints on M exist, meaning that

(d=1, class Alll) = (d=0, class A).
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Finite spacial dimension and dimensional isomorphism
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Dimensional isomorphism with TRS or PHS

o With antiunitary symmetry, we chase the change of AZ symmetry for M.
@ The symmetry constraint

implies that
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Finite spacial dimension and dimensional isomorphism
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Al — CI

@ Let us consider a d = 1 class Al Dirac Hamiltonian

H(k1):k‘1"yl+M, {’yl,M}:O
The symmetry algebra

* F *
uryiup = =%, UTUP = 17

is solved by
ur =1, 71 =o0y.
Introducing PHS uc = ivyiur = i0y, the constraint on the matrix M is the same as class Cl:
uTM*uTT =M, wurup=1,
ucM*ul, = —M, ucuf = —1.

Thus,
(d=1, class Al) = (d=0, class Cl).
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Finite spacial dimension and dimensional isomorphism
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Cl—=C

o Let us consider a d =1 class Cl Dirac Hamiltonian
H(k1) =kivi+ M,
uc'yfuz. =1, ucM*uTC =-M, wucus=—1,
ur’ylu} = —71, urMult =—-M, u% =1,
UCU] = —UTUC-
o We can set ur, 71, and M as
ur =0z, Y1 =02z, M:0y®M.
@ The only remaining symmetry is u., which should be a form
uc =0, ®ic, dcic= -1,
and constrain the mass term M as
GcM*al, = —M.
@ Thus,
(d=1, classCl) = (d=0, class C).
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Dimensional isomorphism

@ In this way, we have the shift of AZ symmetry classes by adding space dimensions

o+ > A AIll - A — ---  (without TRS and PHS),

--+Al - Cl - C — CII - AIl - DIIl - D —-BDI - Al — --- .
@ These also show the Bott periodicity
Cn72 = Cn7 Rn78 - R’n~

o Eventually, the topological classification of d-dimensional Hamiltonian H (k) with AZ symmetry
C,, or R, is given by

™0 [Cnfd] and o [Rn—d]-

— periodic table.
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Classification of non-Hermitian topological ph
@00

Identify Mapped Symmetry: Point gap
@ The remaining task is to identify how 38 non-Hermitian symmetry classes are mapped to 10 AZ

Hermitian symmetry classes for each gap condition.

o For the point gap, the Hermitianized doubled Hamiltonian

has additional chiral symmetry
o.H(k)o. = —H(k).

Other internal symmetries are mapped for a symmetry constraint of ﬁ(k) and
commutation/anticommutation relation with o.

@ Ex: Class Al — Class BDI

H(k)*=H(-k) = H(k)" =H(-k), o.Hk)o.=—H(—k).
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Classification of non-Hermitian topological ph
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Identify Mapped Symmetry: Line gap

o For the real (imaginary) line gap, H(k) can be (anti-)Hermite H(k)' = H(k) (H(k)" = —H(k))
while keeping the line gap.

@ The (anti-)Hermitian condition of H (k) is the same as imposing an additional chiral symmetry on
H(k):

oyH(k)o, = —H (k) for real line gap = H(k)=0,® H'(k).
o.H(k)o, = —H(k) for imaginary line gap = H(k) = 0, ® H'(k).

Other internal symmetries have definite commutation/anticommutation relations with o, (04).

o Ex (real line gap): class Al — class Al
Hk)" =H(-k) = H'(k)"=H(-k).
Ex (imaginary line gap): class Al — class D

H(k)*=H(-k) = H'(k)"=—-H'(-k).
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Hermitianization and flattening Altland-Zirnbauer symmetry class and classifying space Finite spacial dimension and dimensional isomorphism ~Classification of non-Hermitian topological ph
O 000000 0000000000000 00000000 00000000

Classification tables of non-Hermitian topological phases Kawabata—KS—Ueda—Sato 1812.09133, cf.
Gong=Ashida=Kawabata=Takasan=Higashikawa=Ueda 1802.07964, Zhou=Lee 1812.10490

AZ class Gap Classifyingspace d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7T

P R Zs Z 0 0 0 27 0 Za
Al L. Ro z 0 0 0 27 0 Zs Zs
Li Ro Lo Lo Z 0 0 0 27 0
P Ra Z, Z, 7 0 0 0 27 0
BDI L. R1 Zy z 0 0 0 27 0 Zs
Li R2 X Ra Z:0Z2 22022 ZOZ 0 0 0 2Z&2Z 0
b P R 0 Z, Zy 7 0 0 0 27
L Ra Lo Lo Z 0 0 0 27 0
P Ra 27 0 Zy Zy z 0 0 0
DI L. R 0 23 Zy z 0 0 0 27,
Li Co z 0 Z 0 Z 0 Z 0
P Rs 0 27 0 Za Iy z 0 0
All L. Ra 27 0 Zy Zy z 0 0 0
Li Re 0 27 0 Z, Z, Z 0
3 Re 0 0 27 0 7, 7, Z 0
cl L. Rs 0 27 0 Zy Zs z 0 0
Li Re x Re 0 0 20022 0 Zo®Zo Lo®L: LOL 0
c P Rz 0 0 0 27 0 Z, Z, 7
L Re 0 0 2z 0 Zs Zs z 0
P Ro Z 0 0 0 27 0 Zs Zs
CI L. Rz 0 0 0 27, 0 Zy 7y Z
Li Co Z 0 Z 0 Z 0 Z 0

+ 30 other symmetry classes. (See Kawabata=KS=Ueda=Sato 1812.09133 for the details.)
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Point gap vs Line gap Intrinsic Non-Hermitian topology Examples
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@ Point gap vs Line gap
@ Intrinsic Non-Hermitian topology

@ Examples
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Point gap vs Line gap Intrinsic Non-Hermitian topology Examples
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AZ class Gap Classifyingspace d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7

P R4 Zo Z 0 0 0 27 0 Za
Al L. Ro L 0 0 0 27 0 Zs Zs
L; Ra Zo Zo Z 0 0 0 27, 0
P Rs T, I 9 ]
BDL . Ry Za Z :
L RoxRo L0l L0l Z27— v— 0 0 22027 0
b P Ra 0 7. Zo 7 0 0 0 2L
L Ra Za Za Z 0 0 0 27, 0
P Ry 27 0 7% 0 0 0
DIII ’ .
Igf ?3 ; ZD’ Edge Majorana zero mode ]
P Rs 0 27 0 Za Lo Z 0 0
All L. Ry 27, 0 T Zy Z 0 0 0
L; Re 0 0 27 0 Za Zs Z 0
P Re 0 0 27, 0 Za Za Z 0
CIL L. Rs 0 27, 0 Lo Za Z 0 0
L; Re x Re 0 0 2L®2ZL 0 Zo®Lo Eo®Ze LZDL 0
o P R+ 0 0 0 2Z 0 Za Zo 7
L Re 0 0 27, 0 Za Za Z 0
P Ro Z 0 0 0 27 0 Za Zo
Cl L, Rr 0 0 0 27 0 Za Zy Z
Li Co Z 0 Z 0 z 0 Z 0
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Point gap vs Line gap
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Motivating example: 1d class D non-Hermitian superconductor

@ Class D PHS symmetry:
ToH (ks) 7 = —H(~ks), E— —E.
@ Both the point gap and line gap show the Zs classification.
@ Non-Hermitian Zs invariant:
v Pf[H (7)7] 1 /7T
-1)" = —_— —= 1 H w
(-1) Sgn{Pf[H(O)Tz] X exp |~ | dlog det[H (k)7s]

e If (—1)” = —1, there is a Majorana zero mode at each edge Kawabata=KS=Ueda=Sato 1812.09133.
OBC, L = 100,6h = 102

N
L

R5T04-070.0 02 04 06
[Figure from Okuma=Sato 1904.06355]

@ Unique to non-Hermitian systems?
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Point gap vs Line gap
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Topological phenomena unique to non-Hermitian systems

@ Sometimes, we encounter topological phases which are realized only in non-Hermitian systems.
Non-Hermitian skin effect, PT-symmetry breaking (exceptional point), ...

@ On the other hand, there are topological phases that are remnant in non-Hermitian systems. For
instance, the Chern insulator with a small non-Hermite perturbation is still characterized by the
Chern number of the Bloch wave function.

@ Is there any good approach to extracting topological phases realized only in the presence of
non-Hermiticity?

@ Our proposal [Sec.IX in Supplemental Material of I:
Take the cokernel of the following map

Line-gapped topological phases ——  Point-gapped topological phases
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Intrinsic Non-Hermitian topology
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Line gap = point gap

o If a line gap is open, the point gap is also open.

ImE ImE ImE

Real gap
- &

° @ S I
’ Ei ‘ReE ReE Imaginary gap ReE

[Figure from Kawabata=KS=Ueda=Sato 1812.09133]

o This implies that there exist homomorphisms f. and f; from the real and imaginary line-gapped
topological phases to the point-gapped topological phases!

fx : (Real line-gapped topological phases) — (Point-gapped topological phases),
fi : (Imaginary line-gapped topological phases) — (Point-gapped topological phases).
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Intrinsic Non-Hermitian topology
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Intrinsic non-Hermitian Topology

@ The point-gapped topological phases that are in the image
Im f. +Im f; C (Point-gapped topological phases)

can be deformed into a real or imaginary line-gapped topological phase while keeping the point
gap.

@ Such point-gapped topological phases are also realized in Hermitian or anti-Hermitian systems.

@ Importantly, their physics such as the bulk-boundary correspondence can be understood in
Hermitian or anti-Hermitian systems.

@ On the other hand, the quotient
(Point-gapped topological phases)/(Im f, +Im f;)
represents topological phases intrinsic to non-Hermitian systems.

@ Thanks to the dimensional isomorphism introduced before, it suffices to calculate the
homomorphisms f;, f; from line-gapped to point-gapped topological phases only for d = 0.
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Intrinsic Non-Hermitian topology
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Ex: 1d class A with sublattice symmetry

@ Sublattice symmetry (non-Hermitian SSH chain)

hi(kz
0. H(ky)o, = —H(ks) = H(k,) = (hQ(kx) i )) .
@ The winding number is defined for each hi(ks) and ha(ks),
1 .
N; = %?{dlogdethj(kz) €Z (j=1,2).

= The classification of point-gapped topological phases is Z & Z, which is characterized by
(N1, Na).

@ The real(imaginary)-line gap condition implies that H(k;) can be (anti-)Hermite, i.e.
ha(ks) = £hi (k).
= N1 = —Nz = Im fr/i = Z[(l, —1)].

@ The classification of intrinsic Non-Hermitian topology is

(ZeZ)/Z[(1,-1)] = 2.

Remark: The image Im f,/; = Z[(1,—1)] C Z ® Z does not show the non-Hermitian skin effect,
since the total winding number Ny + Ny is zero.
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Results: AZ class

Tables from

w
S
N

coocolNooooofl
S
=y

cooNococo o NI
o
=y
Il
o
ISH

AZ class d=0

A
AIIT
Al
BDI
D
DIII
All
CII
C
CI

ISH

cocoNoooNON|I
—
.
Il
[N}
.

o
o
o

coococoocoocoo
coocococoococoo
[\
ONC oo NoooN|I
coococoocoococoo
[\
ONoocogoooN|I

N
N

@ d =1, class A: non-Hermitian skin effect.

@ d = 3, class A: non-Hermitian skin effect induced by a magnetic field.
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AZT class

AZf class d=0 d=1

Intrinsic Non-Hermitian topology
[e]e]ele] lelele)

d=2 d=3 d=4 d=5 d=6

AT 0
BDIf
DT
DIt
ATt
crrf
CT
crf

OO OO o oo

0
0
Z
Za
Zs
0
27
0

cooNo oo

0

O OO O O oo

ZLs
0
27
0
0
0
Z
Zo

=y
cooNoooN|l
-3

o d=1,2, class All': Zy non-Hermitian skin effect.
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Intrinsic Non-Hermitian topology
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AZ class with sublattice symmetry or pseudo-Hermiticity

AZ class Add. symm. d=0 d= d=2 d=3 d=4 d=5 d=6 d=
A n 0 0 0 0 0 0 0 0
ATIT S+, M+ 0 0 0 0 0 0 0 0
A S 0 Z 0 / 0 Z 0 Z
AIII S_,n— Lo 0 Zo 0 Zo 0 Zo 0
Al N4+ 0 0 0 0 0 0 0 0
BDI S, N+ 0 0 0 0 0 0 0 0
D N+ 0 0 0 0 0 0 0 0
DIIT S_ 4+ 0 0 0 0 0 0 0 0
ATl N+ 0 0 0 0 0 0 0 0
CII S++, N++ 0 0 0 0 0 0 0 0
C N+ 0 0 0 0 0 0 0 0
CI S 04+ 0 0 0 0 0 0 0 0

o d =2, class All4-5S_: Edge exceptional point
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(cont.)

Intrinsic Non-Hermitian topology

00000080

AZ class Add. symm. d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=71
AT S_ 0 Z 0 0 0 Z 0 0
BDI S i e 0 0 0 0 Zs 0 Zs 0
D Sy 0 0 0 zZ 0 Zs 0 z
DIII S_i -y 0 0 0 0 Zs 0 Zs 0
ATI S 0 z 0 0 0 Z 0 0
CII S_ini. Zo 0 Zs 0 0 0 0 0
C Sy 0 Zs 0 zZ 0 0 0 z
CI S_in-v  Zo 0 Zs 0 0 0 0 0
Al n- 0 Zo s 0 0 0 0 0
BDI S__n_ 0 0 0 0 0 0 0 0
D n- 0 0 0 0 Zs 0 0 0
DIII St - 0 0 0 0 Zo Iy 0 0
AT n- 0 0 0 0 0 Zo I 0
CII S__m__ 0 0 0 0 0 0 0 0
C n- Zs 0 0 0 0 0 0 0
CI Siv,n—— Lo I 0 0 0 0 0 0
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Intrinsic Non-Hermitian topology
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(cont.)

AZ class Add. symm. d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
Al St Lo Lo 0 0 0 Zo 0 Lo
BDI S+, n—+ Lo Lo Lo 0 0 0 Lo 0
D S_ 0 Zo Zo Z 0 0 0 Z
DIII Sy, ny— Lo 0 Lo Lo Lo 0 0 0
All St 0 Zo 0 Zo Zo Zo 0 0
CII S+7, n—+ 0 0 Zio 0 Zio Zo Zo 0
C S_ 0 0 0 Z 0 Lo Zo Z
CI S+7, N+— ZQ 0 0 0 Zz 0 ZQ ZQ

Note: I'm not familiar with the current status of the studies of intrinsic non-Hermitian topological phases. The reference list
above may be very limited.
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1D class A (No symmetry)

@ The intrinsic non-Hermitian topology is classified by Z.
o Topological invariant:

N(Eret) = % 74 dlog det[H(k) — Eret] € Z.

@ Nonzero winding number N(E,ef) # 0 implies the non-Hermitian skin effect.

Lx=100,n=1
_.3 [ )
@ OBC
I e PBC
B ROl
1 2 3 4 5
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1D class Allf: Zy non-Hermitian skin effect

o Class All" symmetry
oyHk) oy =H(-k) < oyH(z—2")"0,=H( —z).

@ The intrinsic non-Hermitian topology is classified by Z.!
@ Topological number:

(_I)V(Ercf) _ Pf[(H(ﬂ’) - Eref)ay}
PI[(H(0) — Eret)oy]

@ Nonzero v(E,t) # 0 implies the reciprocal non-Hermitian skin effect:
O(L) modes localized both at left and right edges.

X exp [_% /O " dlog det[(H (k) — Evet)o]| € {£1}.

o Remark: Let |E) is an right eigenvector with eigenvalue E and ((E/| be the corresponding left
eigenvector, i.e.,

Hopc = E|E) ((E| + -
The class AllT symmetry implies that o,|E))* is also an eigenvector with eigenvalue E orthogonal
to |E).
Hopc |E) = E|E) < Hopcoy|E))" = Eoy|E))",
((Eloy|E))" =0.

If |E) is localized at right, then its Kramers pair oy|E))™ is at left. 108113



Point gap vs Line gap Intrinsic Non-Hermitian topology Examples
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2D class AllT: Zs non-Hermitian skin effect at w-vortex

o Class All" symmetry
oyH (kz, ky)Tay = H(~ky,—ky) & o,H@x—2,y— y/)Tay =H(@ —z,y —y).

@ The intrinsic non-Hermitian topology is still classified by Zs.

@ When the bulk is Z2 nontrivial, under the m-vortex defect, the O(L) non-Hermitian skin modes
are localized at the m-vortex and boundary. (figure from Okuma=Kawabata=KS=Sato 1910.02878)

E=0124049i
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3D class A: non-Hermitian skin effect induced by magnetic field

@ The intrinsic non-Hermitian topology is classified by Z.
The topological number is 3D winding number

1 _
W(Be) = 535 /T (= Brar) ™ d(Ha — Brar))* € 2.

Nonzero W (E\yer) implies that the non-Hermitian skin effect is induced by the magnetic field.
Model:

Hy, = cosky + cosky + cosk. + iy(oz sinks + oy sinky + o, sink.).

x,y: PBC, zz PBC/OBC. m: magnetic flux along the z direction. (figure from Kawabata=KS=Ryu
2011.11449)

(@@m=1, PBC (bym=1, OBC (c)m =5, PBC (d)ym =5, OBC

1 10— skin modes 1 10— skin modes
0| > 0.5} % 05| . 0.5|
w ’
£ o9 - . 1 ool 00|~ - . A ool
NI o123 S 20T 23 R T2 3 ST o T 23
Re E Re £ Re E Re E

FIG. $4. Chiral magnetic skin effect. Complex spectra of the non-Hermitian Hamiltonian (S28) with the vector potential ($29) are shown.
The parameters are chosen as ¥ = 0.5 and Ly = Ly = L. = 10. The number of magnetic fluxes is m = 1 for (a, b), and m = 5 for (c,
d). The periodic boundary conditions are imposed along the - and y directions. Along the = direction, the periodic boundary conditions are
imposed for (a, ¢), and the open boundary conditions are imposed for (b, d). Skin modes appear under the open boundary conditions (b, d). 110/113



Examples
0000e00

Example: Class Alll4+S_ (sublattice symmetry anti-commuting with chiral symmetry)

@ Symmetry:

o H(k)o. = —H(k),
{ oy HK) oy = —H(k). — HE= (m(k)

e d=0: (Point-gapped topological phases)/(Im f. Ulm f;) = Zs.
— is understood as the existence of the PT-symmetry breaking accompanied with an exceptional
point at £ = 0:
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Example: Class AlllI4+S_ (cont.)

d=2: (Point-gapped topological phases)/(Im f. Ulm f;) = Z,.

There exists an intrinsic non-Hermitian topological phase.
A model:

b
lax2

H (ks ky) = (

hchern (kzy ky) = sinkyo, + sinkyoy + (m — tcosky — tcosky)o.

ci=(, ) = {E130= 20

hChern (kam ky))
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Example: Class AlllI4+S_ (cont.)

@ The Chern insulator hchern (kz, ky) has a chiral edge state localized at each edge.

@ Therefore, the non-Hermitian Hamiltonian H (k., ky) has an exceptional point, the trajectory of
the “PT-symmetry breaking”, at each edge.

\e5t =
6 6 c ] 1:(7 Q
?fu‘tej
| L D
S/ Bulk
e KCQ\N{OM‘ Steles
Po'\vff
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Summary

In this lecture, | gave
1. Introduction
— One-particle non-Hermitian systems
— Exceptional point
— Non-Hermitian skin effect

2. Gap condition and topology
— Point gap
— Real and imaginary line gaps

3. Symmetry classes
— 38 classes in non-Hermitian systems

4. Topological classification
— Point gap — doubled Hermitian Hamiltonian — Hermitian topological phases
— Line gap — Hermitianization — Hermitian topological phases
— Classifying spaces
— Dimensional isomorphism

5. Intrinsic non-Hermitian topology
— Line gap implies point gap

— Intrinsic non-Hermitian topological phases should be interesting!
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Skin effect is topological

o W(H(k)) := 5= § dlogdet[Hppc (k)] # 0 = skin effect.
(Our proof)

o Let o(Hpgc), o(Hogc) and o(Hsisc) be the spectrum for PBC, OBC and the semi-infinite bdy
condition, respectively. It holds that

o(Hogc) C o(Hsisc).
@ The spectrum for OBC is invariant under the similarity transformation
Vofivi =e’fl, g€ (0,00).
Therefore,

o(Hosc) C m U(Vg_lHSIBCVG)'

g€(—00,00)
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Skin effect is topological (cont.)

@ Toeplitz index theorem:

o(Hsisc) = o(Hppc) U{FE € C|W(H(k) — E) # 0}.

dense spectrum

Periodic I_ Semi-infinite
- |C =

This is because the bulk-boundary correspondence for the class Alll doubled Hamiltonian

70 = (g ).

If W(H(k) — E) < 0, there exists a zero mode (0, |E))” of H, i.e., the right eigenstate of H(k)
with eigenvalue E.
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Skin effect is topological (cont.)

@ Suppose that Hpac(k) has a nonzero winding number.

@ Take an arbitrary complex energy E with W (Hpgc(k) — E) # 0. |E) represents an right or left
eigenstate localized at the boundary.

o There exists g € (0,00) s.t. |E) such that |E) is a delocalized plane wave of V,; ' HsiscV, i.e.
E e O'(ngalBch).

o The intersection of o(Hsisc) and o(V,; ' HpecVy) is strictly smaller than o(Hsisc). This proves
that O'(Hch) 7& U(HOBc).

° Furtherr_no.re, ﬂge(_mm) o
contradiction arises.

(V, ' HsiscVy) reaches a topological trivial area or curves, otherwise a

117 /113



	Introduction
	Examples of non-Hermitian systems
	Some basic properties of non-Hermitian systems 
	1D hopping models

	Gap Conditions and Topology
	Why gap condition?
	Hermitian cases
	Non-Hermitian cases

	Symmetry Classes
	Symmetry in non-Hermitian systems
	38-fold symmetry class
	Some fundamental issues

	Topological Classification
	Hermitianization and flattening
	Altland-Zirnbauer symmetry class and classifying space
	Finite spacial dimension and dimensional isomorphism
	Classification of non-Hermitian topological phases

	Intrinsic Non-Hermitian Topology
	Point gap vs Line gap
	Intrinsic Non-Hermitian topology
	Examples

	Appendix

